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Preface

Multirate digital signal processing techniques have been practiced by engineers for
more than a decade and a half. This discipline finds applications in speech and
image compression, the digital audio industry, statistical and adaptive signal pro-
cessing, numerical solution of differential equations, and in many other fields. It
also fits naturally with certain special classes of time-frequency representations such
as the short-time Fourier transform and the wavelet transform, which are useful in
analyzing the time-varying nature of signal spectra.

Over the last decade, there has been a tremendous growth of activity in the
area of multirate signal processing, perhaps triggered by the first book in this field
[Crochiere and Rabiner, 1983] Particularly impressive is the amount of new litera-
ture in digital filter banks, multidimensional multirate systems, and wavelet repre-
sentations. The theoretical work in multirate filter banks appears to have reached a
level of maturity which justifies a thorough, unified, and in-depth treatment of these
topics. This book is intended to serve that purpose, and it presents the above men-
tioned topics under one cover. Research in the areas of multidimensional systems
and wavelet transforms is still proceeding at a rapid rate. We have dedicated one
chapter to each of these, in order to bring the reader up to a point where research
can be begun.

| have always believed that it is important to appreciate the generality of
principles and to obtain a solid theoretical foundation, and my presentation here
reflects this philosophy. Several applications are discussed throughout the book,
but the general principles are presented without bias towards specific application-
oriented detail.

The writing style here is very much in the form of a text. Whenever possible |
have included examples to demonstrate new principles. Many design examples and
complete design rules for filter banks have been included. Each chapter includes a
fairly extensive set of homework problems (totaling over 300). The solutions to these
are available to instructors, from the publisher. Tables and summaries are inserted
at many places to enable the reader to locate important results conveniently. |
have also tried to simplify the reader’s task by assigning separate chapters for more
advanced material. For example, Chap. 11 is dedicated to wavelet transforms, and
Chap. 14 contains detailed developments of many results on paraunitary systems.
Whenever a result from an advanced chapter (for example, Chap. 14) is used in an
earlier chapter, this result is first stated clearly within the context of use, and the
reader is referred to the appropriate chapter for proof.

The text is self-contained for readers who have some prior exposure to digi-
tal signal processing. A one-term course which deals with sampling, discrete-time
Fourier transforms, z-transforms, and digital filtering, is sufficient. In Chap. 2 and
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3 a brief review of this material is provided. A thorough exposition can be found
in a number of references, for example, [Oppenheim and Schafer, 1989]. Chapter 3
also contains some new material, for example, eigenfilters, and detailed discussions
on allpass filters, which are very useful in multirate system design.

A detailed description of the text can be found in Chap. 1. Chapters 2 and
3 provide a brief review of signals, systems, and digital filtering. Chapter 4, which
is the first one on multirate systems, covers the fundamentals of multirate building
blocks and filter banks, and describes many applications. Chapter 5 introduces
multirate filter banks, laying the theoretical foundation for alias cancelation, and
elimination of other errors. The first two sections in Chap. 4 and 5 contain material
overlapping with [Crochiere and Rabiner, 1983]. Most of the remaining material in
these chapters, and in the majority of the chapters that follow, have not appeared
in this form in text books.

Chapters 6 to 8 provide a deeper study of multirate filter banks, and present
several design techniques, including those based on the so-called paraunitary matri-
ces. (These matrices play a role in the design of many multirate systems, and are
treated in full depth in Chap. 14.) Chapters 9 to 12 cover special topics in multirate
signal processing. These include roundoff noise effects (Chap. 9), block filtering,
periodically time varying systems and sampling theorems (Chap. 10), wavelet trans-
forms (Chap. 11) and multidimensional multirate systems (Chap. 12). Chapters
13 and 14 give an in-depth coverage of multivariable linear systems and lossless (or
paraunitary) systems, which are required for a deeper understanding of multirate
filter banks and wavelet transforms.

There are five appendices which serve as references as well as supplementary
reading. Three of these are review-material (matrix theory, random processes, and
Mason’s gain formula). Two of the appendices contain results directly related to
filter bank systems. One of these is a technique for spectral factorization; the other
one analyzes the effects of quantization of subband signals.

Many of these chapters have been taught at Caltech over the last three years.
This text can be used for teaching a one, two, or three term (quarter or semester)
course on one of many possible topics, for example, multirate fundamentals, mul-
tirate filter banks, wavelet representation, and so on. There are many homework
problems. The instructor has a great deal of flexibility in cheosing the topics, but
| prefer not to bias him or her by providing specific course outlines here.

In summary, | have endeavored to produce a text which is useful for the class-
room, as well as for self-study. It is also hoped that it will bring the reader to a point
where he/she can start pursuing research in a vast range of multirate areas. Finally,
I believe that the text can be comfortably used by the practicing engineer because
of the inclusion of several design procedures, examples, tables, and summaries.

ACKNOWLEDGMENTS

The generous support and pleasant environment offered by the California Institute
of Technology has been most crucial in the successful completion of this project. The
funding provided by the National Science Foundation for our research in multirate
signal processing has been very helpful in developing many of the results which are
included in this text. | also take this opportunity to thank Prof. Alan Oppenheim
for his enthusiasm about this project, and for including this text in his distinguished
signal processing series. | am indebted to Brendan Stewart, Prentice Hall, for

xiv  Preface



carefully supervising the production of the final book. Karen Gettman, Prentice
Hall, was very helpful during all stages of the writing process.

Several professional colleagues and students have played a major role in the evo-
lution and completion of this project. Professor Maurice Bellanger (TRT, France),
and Drs. Ron Crochiere, N. S. Jayant, and Larry Rabiner of the AT&T Bell Lab-
oratories, provided the valuable encouragement which | needed during the initial

stages.

I am deeply thankful to Dr. Rabiner for his criticism of the first draft, and for
providing many valuable suggestions on the style of presentation. His feedback has
resulted in significant improvement of the presentation here. My heartfelt gratitude
also goes to Prof. Martin Vetterli (Columbia University, New York) for his great
enthusiasm, interaction, friendship, and valuable feedback over the years, and to
Professors Mark Smith and Tom Barnwell (Georgia Institude of Technology), for
their constant support. Prof. Smith had studied the first draft of the manuscript
very carefully, and provided valuable suggestions. | am indebted to Dr. Ajay Luthra
and his colleagues (Tektronix laboratories), for their enthusiasm and interest in the
project. Some of the research work related to this book has been done with the

support from Tektronix.

Dr. Rashid Ansari (Bellcore), Prof. Roberto Bamberger (Washington State
University) and Dr. Jelena Kovacevi¢ (AT& T Bell laboratories) provided valu-
able comments on the chapter on multidimensional multirate systems. Dr. Ingrid
Daubechies (AT& T Bell laboratories) provided very useful feedback, which im-
proved parts of Chap. 11 (wavelets) substantially. Ramesh Gopinath (Rice Univer-
sity) also provided important comments on this chapter. | also wish to thank Prof.
Tom Parks (Cornell University) for his valuable feedback on Chap. 1 to 6 and 11,
Prof. P. K. Rajan (Tennesse Technological University) for his comments on Chap.
12, and Prof. A. Sideris (Caltech) for comments on Chap. 13.

| appreciate the interest shown by Prof. H. Malvar (University of Brasilia),
Prof. George Moschytz (Swiss Federal Institute of Technology), and Prof. Tor
Ramstad (Norwegian Institute of Technology). | also sincerely acknowledge the
constant moral support and encouragement | received from Prof. Sanjit Mitra
(University of California, Santa Barbara) during various stages.

Several graduate students at Caltech have participated in the research that
eventually gave rise to this book. In this regard, my interactions with Tsuhan Chen,
Zinnur Do@anata, Phuong-Quan Hoang, David Koilpillai, Vincent Liu, Truong
Nguyen, Vinay Sathe, and Anand Soman have been most enjoyable. David’s re-
search at Caltech has had a major effect on Chap. 8 (cosine modulated filter banks).
In addition to providing intellectual interactions at the deepest level, Tsuhan Chen,
David Koilpillai, Truong Nguyen, and Anand Soman have also generated many of
the multirate design examples in this text. They have also read various chapters of
the manuscript and provided useful feedback. In this connection my special thanks
go to Tsuhan Chen, Zinnur Doganata, lan Galton, David Koilpillai, Ramesh Ra-
jaram, Ken Rose and Anand Soman for reading many of the chapters. Tsuhan
was a very careful reader, and provided many valuable suggestions for Chap. 12.
lan Galton provided several comments on writing style as well as technical contents,
which | found to be extremely useful. lan’s enthusiasm and friendship are gratefully
acknowledged.

Debbie McGougan and Cynthia Stewart at Caltech were very helpful during
various phases of the manuscript preparation. Solutions to all the homework prob-

Preface XV



lems have been prepared by Tsuhan Chen, Igor Djokovic, See-May Phoong, and
Anand Soman. | appreciate their interest and patience.

My parents have been responsible for teaching me many valuable “theorems
of life” which 1 could not find in text books and papers. These certainly were the
principles which sustained me during all phases of this project.

My deepest gratitude goes to my wife Usha who showed infinite patience and
understanding during my absorption in this long project, and offered the type of
moral support and loving encouragement which only she can offer. Countless were
the evenings, weekends, and holidays during which she provided me with the seclu-
sion and peace of mind needed to pursue this ambitious goal. She is certainly
my best blessing, and this book would have remained an idle dream without her
support.

P. P. Vaidyanathan
California Institute of Technology

xvi  Preface



PAR T 1 INtroductory Chapters

INntroduction

A traditional single rate digital signal processing system can be schemat-
ically represented as shown in Fig. 1.1-1, which is an interconnection of
computational building blocks such as multipliers, adders, and ‘delay ele-
ments' (which store internal signals). Examples are digital filters, Fourier
transformers, modulators, and so on. In a multirate signal processing sys-
tem, there are two new building blocks, called the M-fold decimator and
the L-fold expander (Fig. 1.1-2). These will be defined and illustrated in
Chapter 4. For the purpose of the present discussion, the decimator is a
device that reduces the sampling rate by an integer factor of M, whereas the
expander is used to increase the rate by L. Such sampling rate alteration
can be introduced at the input and/or Output of the system or internal ©

the system, depending on the application.

Multiplier

Figure 1.1-1 Schematic of a (single rate) digital signal processor.



Multirate techniques have been in use for many years. Some of the early
references are Schafer and Rabiner [1973], Meyer and Burrus [1975], and
Oetken, et al. [1975]. The use of multiple sampling rates offers many advan-
tages, such as reduced computational complexity for a given task, reduced
transmission rate (i.e., bits per second), and-or reduced storage requirement,
depending on the application.

Figure 1.1-2 Multirate building blocks.

One of the earliest applications of multirate processing is in professional
digital music [Digital audio, 1985]. Broadly speaking, the idea is as follows.
Suppose we Wish O digitize an analog signal xa(t). If the signal has significant
energy only up to a frequency M, we can first bandlimit the signal to this
range using an analog lowpass filter (antialiasing filter), and then sample
and digitize it. The lowpass filter in this case has a sharp transition from
passband to stopband.

A second technique proceeds in two stages: (a) First use an antialias-
ing filter with wider transition bandwidth, say by a factor of two Then
oversample by a factor of two before digitizing, so that aliasing due to the
poor bandlimiting filter is avoided. (b) Pass the digitized signal through a
linear phase digital filter and decimate by two, so that the sampling rate is
reduced to the minimum rate. This tWo-stage process eliminates the need
for sharp-cutoff antialiasing analog filters, which not only are expensive, but
also introduce severe phase distortion. Details of this technique will be con-
sidered in Chap. 4.

A second application is in fractional sampling rate alteration, for ex-
ample, converting a 48 kHz discrete-time signal to a 44.1 kHz discrete-time
signal. Such requirements are common in the digital audio industry, where a
number of sampling rates coexist [Bloom, 1985]. For example, the sampling
rate for studio work is 48 kHz, whereas that for CD production is 44.1 kHz.
These, in turn, are different from the broadcast rate (32 kHz). The obvious
Way to perform the rate conversion would be to first convert the discrete-time
signal into a continuous-time signal and then resample it at the lower rate.
This method is expensive and involves analog components, along with the
associated inaccuracies. A direct digital (multirate) method is to perform the
conversion directly in the discrete-time domain. Such fractional decimation
(or interpolation) is done by combining integer decimators, expanders and
filters appropriately. This is more accurate as Well as convenient. Details of
this technique will be described in Chap. 4.

There are many more applications of multirate processing, and several
of them are based on the so-called subband decomposition, to be described
next.

2 Chap. 1. Introduction



11 MAJOR DEVELOPMENTS

If a sequence x(n) is bandlimited, then it is possible to decimate it either
by an integer or by a fraction, by use of appropriate multirate techniques.
The desire to reduce the sampling rate whenever possible is of course under-
standable, because it usually reduces the storage as Well as the processing
requirements.

Figure 1.1-3 Example of Fourier transform of a sequence x(n) which has most
of the energy in the low frequency region.

Now suppose x(n) is not bandlimited, but nevertheless has most of the
energy in the low frequency region. Figure 1.1-3 demonstrates the Fourier
transform of such a signal. Even though this cannot be decimated Without
aliasing, it seems only reasonable to expect that some kind of data rate re-
duction is still feasible. This is indeed made possible by a technique called
subband decomposition, implemented with the so-called quadrature mirror
filter bank. In this technique, the average number of bits per sample is
reduced, even though the average number of samples per unit time is un-

changed.

1.1.1 The Quadrature Mirror Filter (QMF) Bank

The quadrature mirror filter bank is shown in Fig. 1.1-4. Here a discrete-
time signal x(n) is passed through a pair of digital filters Hk(z) called anal-
ysis filters, with frequency responses as demonstrated in the figure. The
filtered signals xk(n) (subband signals) are thus approximately bandlimited
(lowpass and highpass, respectively). They are then decimated by two, so
that the number of samples per unit time [counting vO(n) as Well as v1(n)] is
the same as that for x(n). The decimated subband signals, vk(n), are then
quantized and transmitted. At the receiver end, these are recombined by us-
ing expanders and synthesis filters Fk(z). In this manner, an approximation
x(n) of the signal x(n) is generated. This system will be studied in Chap.
5.

The above system can be regarded as a sophisticated quantizer. Thus,
assume that we are allowed to transmit b bits per sample. In a direct method,
we would quantize each sample of x(n) independently to b bits. In the above
filter-bank approach, we quantize the lower rate signals vO(n) and vi(n) to

Sec. 1.1 Major developments 3



b0 bits and bl bits per sample, so that the average bit rate is b = 0.5(b0 +b1).
If the signal is dominantly lowpass, then we can make b0 > b and bl < b. An
extreme case is to assign b0 = 2b and bl = 0. Thus, depending on the energy
distribution in the frequency domain, we can allocate bits to the subbands
appropriately, thereby increasing the accuracy of representation of x(n), for
a fixed bit rate b.

Figure 1.1-4 (a) The quadrature mirror filter (QMF) bank, and (b) typical
frequency responses Hk(ejw) .

This scheme is called subband coding [Croisier, et al., 1976], [Crochiere,
1977], [Esteban and Galand, 1977], [Barnwell, 1982], [Galand and Nuss-
baumer, 1984]. This has been found to be very useful in speech coding
[Crochiere, et al., 1976], where the perceptual properties of the human ear
play a major role while assigning bits to vk(n).

More recently, the effectiveness of subband coding has been demon-
strated for music signals. Digitized music normally uses 16 bits per sample
(at a sampling rate of about 44 kHz). Using subband coding, it has been
demonstrated that a major bit rate reduction can be obtained (compared to
the traditional 16 bit repesentation), with little compromise of quality [Veld-
huis, et al., 1989]. This has been used in the digital compact cassete (DCC).
See also the papers in ICASSP, 1991, pp. 3597-3620, and [Fettweis, et al.,
1990]. At the end of this section, more applications of subband splitting will
be mentioned.

Reconstruction from subband signals. In many applications, the
signals vk(n) (or, more properly, the quantized versions) are recombined to
obtain an approximation x(n) of the original signal x(n). This recombina-
tion is done by use of expanders (which restore the sampling rate) followed
by digital filters Fk(z) (whose purpose Will be explained in Sec. 5.1). Such

4  Chap. 1. Introduction



recombination is subject to several errors (apart from the error due to quan-
tization). One of these is aliasing, created due to decimation of xk(n). Other
distortions will be discussed in due course. One of the major developments
in multirate signal processing is the recognition of the fact that all of these
errors (except quantization error) can be eliminated completely at finite cost,
by proper design of filters.

The QMF bank, introduced in the mid seventies, has since been ex-
tended to the case of more than two subbands. Thus, a system with M
subbands Would have M filters followed by M-fold decimators. The deci-
mated (and quantized) signals Would then be recombined using a synthesis
bank (expanders and digital filters), to obtain an approximation x(n) of the
signal x(n). Such a system is called an M-channel maximally decimated filter
bank or simply an M-channel QMF bank (even though QMF is a misnomer
unless M = 2, as explained in Chap. 5).

Figure 1.1-5 (a) An M-channel analysis bank, and typical frequency responses.
(b) An M-point Fourier transformer, viewed as a filter bank.

Figure 1.1-5(a) shows the analysis filters of an M-channel system. Two
sets of typical frequency responses are also sketched in the figure. One
of these has uniform filter bandwidths and spacing, while the other has
nonuniform (octave) spacing. The latter is particularly useful in the analysis
and coding of speech and music.

A filter bank can be viewed as a sophisticated spectrum analyzer as elab-
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orated in Chap. 4 and 11. For the moment, we note that a spectrum analyzer
takes a signal x(n) and computes the Fourier transform of short blocks, af-
ter some preliminary processing (such as windowing). Such a system can
be interpreted as a filter bank [Fig. 1.1-5(b)]. The outputs of the ‘filters’
represent the discrete-time Fourier transform coefficients of the blocks of in-
put data. While the details Will be presented only in Chap. 4 and 11, the
main point here is that the filter bank of Fig. 1.1-5(a) is a generalization of
the Fourier transformer, with greater flexibility on the choice of frequency
responses. While the Fourier transformer provides filters with overlapping
responses, the generalized system can provide filters with arbitrarily sharp
cutoff, better interband isolation and unequal bandwidths.

1.1.2 Polyphase Decomposition

One of the reasons why multirate processing became practically attractive
is the invention of the polyphase decomposition [Bellanger, et al., 1976],
[Vary, 1979]. This enables the designer to perform all computations at the
“lowest rate permissible within the given context,” and reduces the speed
requirements on the processors. Polyphase decomposition is useful in vir-
tually every application of multirate signal processing, and often results in
dramatic computational efficiency. It is valuable in theoretical study, practi-
cal design and actual implementation of filter banks. This will be introduced
in Chap. 4, and subsequently used throughout the text.

1.1.3 Perfect Reconstruction Systems

In a practical filter bank system, the filters Hk(z) are not ideal, and decima-
tion of the filter outputs results in aliasing errors. As will be seen in Chap.
5, the z-transform of the output signal x(n) can be expressed as

X(z) = T(z)X(z) + terms due to aliasing.

It was shown in Croisier, et al. [1976] that aliasing can be completely elimi-
nated in the two channel QMF bank, by proper choice of the synthesis filters
FO(z) and F1(z).

If T(z) can be forced to be a delay, that is, T(z) = cz-K, then the
alias-free system is said to have the perfect reconstruction (PR) property.
If this is not the case, then the alias-free system still suffers from residual
distortion. If the designer does not impose any specifications on the analysis
filters such as large stopband attenuation, sharp cutoff rate, and so on, it
is an easy matter to choose the filters Hk(z) and Fk(z) so as to satisfy the
perfect reconstruction property. However, this is not very practical because,
in order to utilize the benefits of subband coding, it is necessary to impose
fairly stringent specifications on the attenuation characteristics of the filters.

For the two channel QMF bank a fundamental result was proved in-
dependently by Smith and Barnwell [1984 and 1986], and Mintzer [1985].
These papers showed that perfect reconstruction can be achieved even af-
ter imposing such practical attenuation requirements. This involves careful
design of the four filters, as will be seen in Chap. 5.

6 Chap. 1. Introduction



1.1.4 Extension to M Channels

The above results from many authors stimulated further research, result-
ing in techniques to generalize the subband splitting ideas for the case of
M-channel QMF banks [Nussbaumer, 1981], [Rothweiler, 1983], [Ramstad,
1984b], [Smith and Barnwell, 1985, 1987], [Masson and Picel, 1985], [Chu,
1985], [Cox, 1986], [Princen and Bradley, 1986], [Wackersreuther, 1986b]
[Vetterli, 1986a], [Vaidyanathan, 1987a], [Malvar, 1990b], and [Akansu and
Liu, 1991]. Nussbaumer's pioneering Work on pseudo QMF banks provides
approximate alias cancelation, which is sufficient in some applications. Smith
and Barnwell as Well as Ramstad independently showed how to formulate
the perfect reconstruction conditions in matrix form. It was first recognized
by Vetterli, and then independently by Vaidyanathan (in the two references
mentioned above) that a polyphase component approach results in consid-
erable simplification of the theory.

It has since been shown that, by using a class of filter banks called
paraunitary filter banks, perfect reconstruction can be achieved quite eas-
ily. In these systems, the filter bank is constrained to have a paraunitary
polyphase matrix (to be explained in Chap. 6). The designer can specify
arbitrary filter attenuation, and at the same time obtain perfect reconstruc-
tion [Vaidyanathan, 1987a], [Nguyen and Vaidyanathan, 1988], [Vetterli and
Le Gall, 1989].

Subsequent to this, a class of systems called the cosine modulated filter
banks has been developed by some authors [Malvar, 1990b], [Ramstad, 1991],
[Koilpillai and Vaidyanathan, 1991a, 1992]. These have the advantage that
the cost of design as well as implementation is largely determined by the
cost of one prototype filter, since all the other filters are derived from it.

The paraunitary property of filter banks offers many advantages, as
elaborated in Chap. 6. Interestingly enough, paraunitary matrices have
their origin in classical electrical network theory (see Sec. 14.1 and references
therein). In the past, applications of these matrices have been confined
mostly within the network theory and control theory communities. The use
of paraunitary matrices in digital signal processing, especially filter bank
theory, is relatively recent.

Filter bank theory has been extended to the case of nonuniform band-
widths and decimation ratios [Hoang and Vaidyanathan, 1989], [Kovacevi¢
and Vetterli, 1991a], and [Nayebi, Barnwell, and Smith, 1991a].

1.1.5 Other Applications and Interrelations

The success of subband coding encouraged researchers to extend the ideas
to multidimensional signals. The extensions to two dimensional signals has
application in image compression and coding. A systematic study of multi-
dimensional filter banks was first undertaken by Vetterli [1984]. This idea
has since been applied for image coding by Woods and O’Neil [1986]. Since
then there has been major progress in multidimensional multirate systems
[Ansari and Lau, 1987], [Viscito and Allebach, 1988b, 1991], [Smith and Ed-
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1.2

dins, 1990], [Chen and Vaidyanathan, 1991,1992], [Bamberger and Smith,
1992], and [Kovacevi¢ and Vetterli, 1992]. Further references will be cited
in Chap. 12. Research results in multidimensional multirate systems are
emerging at a rapid rate now.

Recently it has been observed that multirate/subband techniques are
attractive in adaptive and statistical signal processing [Gilloire, 1987], [Sathe
and Vaidyanathan, 1990,1991], and [Gilloire and Vetterli, 1992]. Research on
these topics is still evolving; an excellent reference on the subject is provided
by Shynk [1992]. Further applications in communications have been reported
by some authors, for example, transmultiplexing [Vetterli, 1986b], high speed
analog to digital conversion [Pertraglia and Mitra, 1990], and equalization
[Ramesh, 1990].

In recent years, it has been recognized that there is a close connection
between multirate filter banks and the so-called “wavelet transforms”. This
relation was revealed by the fundamental contributions by Daubechies [1988]
and Mallat [1989a,b]. (See Sec. 11.0 for further references.) This Work
has opened up considerable amount of research activity in both the signal
processing and mathematics communities. In Chap. 11 we will present this
in considerable depth. It will be seen that Wavelet analysis is closely related
to the so called octave-band filter banks, introduced in the early seventies
for analysis of sound signals. Research in wavelet transforms has grown very
rapidly after the mid 1980s (and is still growing).

SCOPE AND OUTLINE

Contributions by many researchers, as outlined above, have resulted in a
mature theory of multirate systems. In particular, the detailed aspects of
filter bank theory Were developed largely during the last decade, subsequent
to (and in many cases triggered by) the publication of Crochiere and Rabiner
[1983]. The theory of perfect reconstruction filter banks has now reached a
state where such systems can be designed as Well as implemented with ease.
The underlying theory is somewhat complicated, but as a reward it has
immense potential for further research and applications. For example, the
theory can be applied directly to areas such as subband coding, voice privacy,
image processing, multiresolution, and Wavelet analysis.

The purpose of this text is to present an in-depth study of multirate sys-
tems and filter banks. We have assumed that the reader has some exposure
to signal processing (e.g., a one-term course from Oppenheim and Schafer
[1989], covering sampling, z-transforms, and digital filtering). Except for this
requirement, the book is self-contained. However, this background material
is reviewed in Chap. 2 and 3.

Each chapter is supplemented with several homework problems, making
it suitable for classroom use. At the same time, our aim has also been to
provide a useful reference for researchers. This is evidenced by the inclusion
of several advanced topics. There are many examples, design methods, and
tables which will aid the practicing professional as well. The chapters can
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be grouped naturally into the following four parts as elaborated.

Chapters 2 to 4: Introductory Material

A brief review of linear system fundamentals and digital filtering is
provided in Chap. 2 and 3. More detailed presentation can be found in a
number of references indicated in these chapters. In Chap. 3, IIR elliptic
filters, FIR eigenfilters, and allpass filters have been treated in greater detail
because of their special role in multirate systems.

Chapter 4 is a detailed study of multirate building blocks, and their
interconnections with other systems (such as digital filters). This can be
considered to be the ‘foundation chapter' for this text. Some of the early
sections Overlap with the material covered in Crochiere and Rabiner [1983].
At the expense of this overlap, we have ensured that the chapter is self-
contained.

A number of special types of digital filters, for example, Nyquist filters,
power complementary filters and so on, which are frequently encountered in
multirate systems, are also studied in Chap. 4. The polyphase decomposi-
tion is introduced, along with special types of filter banks, for example, the
uniform-DFT bank.

Many applications of multirate processing are also described in Chap.
4. This includes subband coding, digital audio, and transmultiplexers, to
name a few. A complete section of this chapter is devoted to “multigrid”
techniques, which find application in the numerical solution of differential
equations.

Chapters 5 to 8: Maximally Decimated Filter Banks

Chapter 5 is a study of the M-channel maximally decimated filter bank
system (shown in Fig. 1.1-4(a) for the M = 2 case). Various distortions Will
be analyzed, foremost being aliasing caused by decimation. Conditions for
alias cancelation and perfect reconstruction will be established. Transmulti-
plexers will also be studied.

Chapter 6 is dedicated to the design of M-channel QMF banks with the
perfect reconstruction property. The method presented is based on a class
of matrices called paraunitary or lossless transfer matrices. The presentation
Will use some of the results on paraunitary matrices, which will be proved
only in Chap. 14. We have chosen to defer the proofs to Chapter 14 (which
is devoted to paraunitary systems) in order to ensure an easy and smooth
fow. (The results of Chap. 14 will also be stated and used in some other
chapters, e.g., Chap. 8 and 11.)

Chapter 7 deals With linear-phase perfect reconstruction QMF banks.
In these systems the analysis filters have linear phase, which is a requirement
in some applications.

Chapter 8 describes a particular class of M-channel filter banks, in
which all the analysis filters are derived from a single filter by use of co-
sine modulation. As a result, this system is very efficient both from the
design and implementation points of view. It turns out that one can eas-
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ily achieve perfect reconstruction in these systems, by further imposing the
paraunitary property. We first describe cosine modulated systems with ap-
proximate reconstruction properties (pseudo QMF banks, Sec. 8.1-8.3), and
then show how these can be modified to obtain perfect reconstruction (Sec.
8.4, 8.5). The cosine modulated perfect reconstruction system (Sec. 8.4,
8.5) can, however, be studied independently, with Sec. 8.1-8.3 used only as
a reference.

Chapters 9 to 12: Special Topics on Multirate Systems

Chapter 9 studies the effects of finite precision in the implementations of
multirate filter banks. This includes roundoff noise analysis and coefficient
quantization analysis. The effect of quantization of subband signals is dealt
with in Appendix C.

In Chap. 10 we study the connection between filter banks and a num-
ber of “peripheral” topics such as periodically time varying systems, block
filtering, and unconventional sampling theorems.

Chapter 11 deals with a special type of time-frequency representation
called the short-time Fourier transformation, and extends this to develop
wavelet transforms. Wavelet transforms, in particular, have drawn consid-
erable attention in recent years from a wide scientific community, including
physicists, mathematicians, and signal processors. Many researchers in the
signal processing community have taken the view that wavelet transforms
are closely related to filter banks (see Chap. 11 for references). In Chap.
11, we will take this viewpoint; this makes it easier to understand, design,
and implement wavelet transforms.

In Chap. 12 we study the multidimensional versions of many of the
fundamental multirate concepts introduced in earlier chapters. These find
applications in image and video signal processing.

Chapters 13 and 14: Multivariable and Paraunitary Systems

Many of the multirate (time-varying) systems discussed in the text can
be represented in terms of multi-input multi-output (MIMO) linear time in-
variant (LTI) systems. This will be evident when we analyze filter banks
using the polyphase approach. It turns out, therefore, that a deeper under-
standing of MIMO LTI systems is very useful in the study of filter banks.
Chapter 13 is meant to serve this purpose. Even though the results of this
chapter are not explicitly used in earlier ones, they are required to establish
some of the deeper properties of paraunitary systems discussed in Chap. 14.

Chapter 14 is a complete treatment of paraunitary and lossless trans-
fer matrices. These systems find application in perfect reconstruction filter
banks (Chap. 6 and 8) as well as in wavelet transform theory (Chap. 11).
As mentioned previously, some of the results in Chap. 14 are in turn stated
and used in some of the earlier chapters. The detailed discussions in Chap.
13 and 14 ensure completeness of presentation, and also serve as research
aids.
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Appendices

There are five appendices. Appendix A provides a brief review of matri-
ces, where we have summarized matrix concepts used throughout the text.
Appendix B is on random processes, and its primary use is in the analysis of
roundoff noise effects in filter banks (Chap. 9), and in the study of subband
quantization (Appendic C). Appendix C deals with the effects of quantiza-
tion in subbands, and summarizes theoretical results on bit-allocation strate-
gies in subband and transform coding schemes. Appendix D is on 'spectral
factorization' which is a frequently used tool in filter bank design. Appendix
E is on Mason’s gain formula, which is useful for the analytical evaluation
of transfer functions.

Most of these appendices include several examples and homework prob-
lems. While the appendices are not substitutes for a good book or chapter
on these topics, they serve to make the text self contained and complete.
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2.0

2.1

Review ofF

Discrete—TimMme Systems

INTRODUCTION

This chapter provides a brief revieW of the fundamentals of discrete-time
systems. This serves as quick reference material throughout the text, and
also familiarizes the reader With the notations we Will use. In this chapter,
we will present basic facts and results without detailed justification. Detailed
treatements can be found in Oppenheim and Schafer [1989]. Other related
references are Rabiner and Gold [1975], and Jackson [1991].

DISCRETE-TIME SIGNALS

Discrete-time signals are typically denoted as u(n), x(n), and so on, where
n is an integer called the time index. We will use notations such as x(n) to
indicate the entire sequence (i.e., with —oco < n < oo) or, on occasions, just
to denote the nth sample x(n). The context Will clarify the exact meaning.
All sequences are taken to be complex valued unless mentioned otherwise.
Figure 2.1-1 shows some typical sequences.

1. The unit-pulse, denoted &(n), is defined according to

(2.1.1)

This is sometimes called the impulse function, and should not be con-
fused with the impulse function da(a) of the real continuous variable a.
The function da(a) is usually called the Dirac delta function, and is de-

fined to be zero everywhere except a = 0, and such that [ da(a)da = 1

if, and only if, p< 0 < q.
2. The unit-step sequence is defined as

(2.1.2)
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. Exponentials. A sequence of the form can is said to be an exponential.
Here c and a are arbitrary (possibly complex) constants. Sequences such
as canU(n) and cbnU(—n) are called one-sided exponentials (or trun-
cated exponentials). Thus, canU(n) is right-sided, whereas cbnU(—n) is
left-sided.

. Single-frequency sequence. The sequence cejwOn is said to be a single-
frequency sequence. This is an exponential sequence with a = ejw0.
Here, w0 is real, but can have either sign. In less formal terms this is
sometimes called a sinusoid with frequency w0. This is periodic if, and
only if, the frequency w0 is a rational multiple of 2m, that is, w0 = 21tkT
for integer k and L.

. A sequence of the form Acos(wOn + 0) is a true sinusoid. Since we
can Write cos(wOn + 8) = 0.5(ej(w0n+8) + e-j(wOn+8)), contains two
frequencies, that is, w0 and -w0. So it is not a single-frequency signal.
. Bounded sequence. A sequence u(n) is said to be bounded if there exists
a finite B such that u(n) < B for all n. Examples: (a) anU(n), a < 1,
(b) coswOn (real w0). Note that an exponential an is not bounded unless
a=0or a =1

Figure 2.1-1 Demonstration of well known sequences.

2.1.1 Transform Domain Analysis

It is often convenient to work with transformed versions of signals such as
the z-transform and Fourier transform. These are defined next.

The z-Transform

The z-transform of a sequence x(n) is defined as

(2.1.3)
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If this summation does not converge for any z, the z-transform does not
exist; an example is the exponential sequence an,a # 0.

In general, the summation converges in an annulus defined as Rl <
z| < R2? in the z-plane. This is called the region of convergence (ROC). For
example if x(n) = anU(n), then X(z) = {1 - az-1) with ROC given by
z > (a. This same X(z) With ROC specified as z < a Would result in
the inverse transform x(n) = —anU(-n - 1). Given X(z) and its associated
ROC, x(n) can be uniquely recovered from X(z).

For a finite length sequence (with finite sample values) the z-transform
converges everywhere except possibly at z = 0 and/or z = co.

The Fourier Transform (FT)

If the ROC of X(z) includes the unit circle (i.e., points of the form
z = ejw where w is real), we say that X(ejw) is the Fourier transform (FT)
of x(n). Thus,

(2.1.4a)

The inverse transform relation is given by

(2.1.4b)

Note that the frequency variable w is in radians. The FT X(ejw) is periodic
in ® With period 2m, so that the region m < w < 27 is considered to be the
negative frequency region (equivalent to —m < w < 0).

Fourier transform of a single-frequency signal. Since the z-
transform of an does not converge anywhere (unless a = 0), the Fourier
transform of ejw0On, in particular, does not exist in the usual sense. However,
by using a Dirac delta function da(w), one can write the FT of this sequence
as 2mda(w — w0) in the range 0 < w < 2m (and periodically repeating with
period 2m).

Parseval's Relation

Let U(ejw) and V(ejw) be the Fourier transforms of u(n) and v(n).
Parseval's relation says

(2.1.5a)

In particular, if we set u(n) = v(n), then

(2.1.5b)
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Energy of a sequence. The energy of a sequence u(n) is defined as
Eu = > con=-w|u(n) 2. If this summation does not converge, the energy is
taken to be infinite. Eq. (2.1.5b) gives us two ways to express the energy.

Tables of z-transform and Fourier transform pairs, and Tables of their
properties can be found in Chap. 2 and 4 of Oppenheim and Schafer [1989].
We will make use of these throughout the text.

2.1.2 Discrete-Time Systems

A discrete-time system operates on an input sequence u(n) to produce an
output sequence y(n). It is assumed that the value of u(n) in the range
—oo < n < oo uniquely determines the output y(n) in the range —co < n <
co. Of great interest to us in this text are linear systems and shift invariant
(or time invariant) systems. The properties of linearity and shift invariance
enable us to characterize the system using the notion of transfer functions.

Linearity. Suppose the input sequences u0O(n) and ul(n) produce the
output sequences y0(n) and yl(n) respectively. If the system output in re-
sponse to the input aOu0(n) + alul(n) is equal to aOyO(n) + alyl(n), and if
this is true for every pair of constants a0,al and every possible u0(n) and
ul(n), then we say that the system is linear.

Shift-invariance. Let y(n) denote the output of a system in response
to the input u(n). If the output in response to the shifted version u(n- N) is
equal to y(n— N), and if this holds for all integers N and all input sequences
u(n), we say that the system is shift-invariant or time-invariant.

LTI Systems

A system is said to be linear and shift-invariant (abbreviated LSI or
LTI) ifit is both linear and shift-invariant. Such a system can be completely
characterized by the impulse response sequence h(n) (also called the unit-
pulse response) which is the output y(n) in response to an unit-pulse input
o(n). For LTI systems, the input-output relation is given by

(2.1.6)

which is called the convolution summation. This can be expressed in the

transform domain as
(2.12.7)

where H(z) is the z-transform of h(n), that is,

(2.1.8)

H(z) is called the transferfunction of the LTI system. To physically visualize
the meaning of H(z), note that if we apply an exponential input an, the
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output is also an exponential, given by y(n) = H(a)an [provided "a" belongs
to the region of convergence of H(z)].

Eigenfunctions of LTI systems. If a nonzero input f(n) to an LTI
system H(z) produces an output of the form cf(n), where c is a constant,
we say that f(n) is an eigenfunction (and ¢ an eigenvalue) of H(z). Thus,
exponentials are eigenfunctions of LTI systems.

Causality

A discrete-time system is said to be causal if the output y(n) at time n
does not depend on the future values of the input sequence, that is, does not
depend on u(m),m > n. An LTI system is causal if and only if the impulse
response satisfies the condition

(2.1.9)

This has given rise to the term 'causal sequence’ for any sequence x(n) which
is zero for n < 0. We say that a sequence x(n) is anticausal if x(n) = 0 for
n = 0. An example is U(—n — 1).

From (2.1.8), we see that a causal LTI system has H(oo) = h(0), and
that an LTI system is causal if and only if H(oo) is finite. For convenience
of language, we often use phrases such as 'H(z) is causal’. This means that
the associated ROC has been so chosen that the inverse transform h(n) is
zero for n < 0.

Rational Transfer Functions

All transfer functions in this text are rational, that is, of the form
(2.1.10)

With
(2.1.11)

Here an and bn are (possibly complex) finite numbers. If there are no com-
mon factors of the form (B — az-1),a # 0 between A(z) and B(z) (i.e., if
A(z) and B(z) are relatively prime), we say that (2.1.10) is an irreducible
rational form. Under this condition, N is called the order of the system
(assuming that at least one of aN or bN is nonzero).

Zeros and poles. If A(zyB(z) is irreducible, the zeros of A(z) and
B(z) are said to be the zeros and poles, respectively, of H(z). The time-
domain significance of poles and zeros is Well known, and is discussed in
Problems 2.4 to 2.6.

Realness. A system is said to be ‘real’ if the output y(n) is real for real
inputs u(n). For LTI systems this is equivalent to the condition that h(n) be

16 Chap. 2. Discrete-time systems



real for all n. For rational LTI system in the irreducible form (2.1.10), this
in turn is equivalent to the condition that an and bn be real for all n. Real
systems are also referred to as real coefficient systems.

FIR and 1IR Systems

A finite impulse response (FIR) system is one for which bn in (2.1.11)
is nonzero for only one value of n. As an example, let N = 3, and let b2 = 1.
Then, H(z) = a0z2 + alz + a2 + a3z-1, and is FIR.

A causal Nth order FIR filter can be represented as

(2.1.12)

[This corresponds to B(z) = 1 and A(z) = H(z).] The quantity N + 1, which
is the number of impulse response coefficients, is said to be the length of the
filter (i.e., H(z) is an (N + 1)-point filter). In Sec. 2.4.2 we will see that
FIR systems can be designed to have exactly linear phase response, which
is required in some applications.

An LTI system which is not FIR is said to be an IIR (Infinite impulse
response) system. An example is the system with impulse response anU(n),
which has transfer function H(z) = {1 — az-1).

All-zero and all-pole systems. An FIR system is also said to be an
all-zero system (because poles are located only at z = 0 and/or o). An IIR
system of the form H(z) = cz-K~B(z) is said to be an all-pole system. The
zeros for such a system are at z = 0 and/or co.

FIR sequences. A finite-duration (or finite-length) sequence u(n) is
often referred to as an FIR sequence. We often use the terms “FIR input”,
“FIR output” and so on, where the term FIR actually stands for "finite-

length™.

Stability

If a discrete-time system is such that every bounded input produces a
bounded output, we say that the system is stable (more precisely bounded
input bounded output stable or BIBO stable). For the case of LTI systems,
it can be shown that BIBO stability is equivalent to the condition

(2.1.13)

In other Words, the impulse response must be absolutely summable.

Stability condition in terms of poles. If H(z) is rational and h(n)
causal, then (2.1.13) is equivalent to the condition that all poles pk of H(z)
be inside the unit circle, that is, pk < 1. Unless mentioned otherwise,
the statement “stable” in this text Will imply this condition (i.e., pk < 1).
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Causality of h(n) and rationality of H(z) will be implicit. The only exception
to this convention will be noncausal filters of the form zK H(z), where K > 0
and H(z) is causal and stable. This system has K poles at z = oo, yet it is
stable.

2.1.3 Implementations of Rational Transfer Functions

It is Well known that the system with transfer function (2.1.10) can be de-
scribed in the time domain by a difference equation of the form

(2.1.14)

Since the output y(n) depends in general on past outputs y(n — m), this
is called a recursive difference equation. Without loss of generality, we can
assume that at least one of a0,b0 in (2.1.11) is nonzero. Ifb0 = 0 and a0 # 0
this implies a noncausal system [since H(eoo) is then not finite]. For causal
systems b0 # 0, and we can assume b0 = 1 Without loss of generality.

Direct form structure. With b0 = 1 we obtain the structure of
Fig. 2.1-2(a) (demonstrated for N = 2) for the implementation of this
difference equation. This is called the direct form structure, and requires
2N +1 multiplications and 2N additions for the computation of each output
sample y(n). The number of delays is N, which is the filter order.

Figure 2.1-2(b) shows the common notations and building blocks (mul-
tipliers, adders and delays) used to draW digital filter structures. Multipliers
with values +2+K are often not counted as multipliers, as these can be
implemented with binary shifts on a digital machine.

FIR direct form. For the special case of FIR filters the structure
reduces to the form shown in Fig. 2.1-3(a) (assuming causality), requiring
N + 1 multipliers, N adders, and N delays. An equivalent structure called
the transposed direct form is shown in Fig. 2.1-3(b). FIR structures do not
have any feedback paths (unlike Fig. 2.1-2(a)). Equivalently, the difference
equation (2.1.14) has only the input terms u(n — m) and no y(n — m) terms
on the right hand side, that is, the difference equation is nonrecursive.

Cascade form structures. Another popular structure used in digital
filtering is the cascade form. This is obtained by expressing A(z) and B(z)
in factored form as

(2.1.15)

so that
(2.1.16)
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Figure 2.1-2 (a) The direct form structure for N = 2. (b) Meanings of signal
flow graph notations used.

Figure 2.1-3 Direct form structures for FIR filters. (a) Standard form, and (b)
transposed form.
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Figure 2.1-4(a) shows the cascade form structure, where the building blocks
are as in Fig. 2.1-4(b). Notice that pn and zn are, respectively, the poles
and zeros of H(z).

There exist more complicated structures for filters. A useful tool to
compute the transfer functions of arbitrary structures is provided by Mason’s
formula, reviewed in Appendix E.

Figure 2.1-4 (a) The cascade form structure, and (b) the first order building
blocks. Here zn and pn can be complex.

Real Coefficient Case

In the above cascade form structure, the multipliers can in general be
complex even if an and bn are real. For the special case where bn are real,
the poles are either real or occur in complex conjugate pairs. (The same is
true of zeros if an are real.)

If pk is complex, we can combine the factors 1 — pkz-1 and 1 — p*kz-1
to produce the real factor 1 - ckz-1 — dkz-2. In this way, we can obtain a
real coefficient cascade form. The transfer function can now be expressed as

(2.1.17)

where i and £ can take the values 0 or 1. All coefficients in (2.1.17) are real.
The second order sections can be implemented as in Fig. 2.1-5, using the
direct form structure.

A complex conjugate pair of poles can also be represented as Rkezxjpk,
as demonstrated in Fig. 2.1-6(a), where Rk is the pole radius and @k the
pole angle. This gives rise to a factor in the denominator of H(z), of the

form
(2.1.18)

The same is true of zeros. In particular, a complex conjugate pair of zeros
on the unit circle [Fig. 2.1-6(b)] can be represented by the factor

(2.1.19)
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Figure 2.1-5 Implementa-
tion ofa second order section
in (2.1.17), using the direct
form structure.

Figure 2.1-6 (a) A complex conjugate pair of poles inside the unit circle, and
(b) a complex conjugate pair of zeros on the unit circle.

Figure 2.1-7 Example of
a delay-free loop.

The number of delays in all the above structures is equal to N, which
is the smallest possible. So these structures are minimal. t

Delay-free loops. A loop in which there is no delay is said to be a
delay-free loop. Fig. 2.1-7 demonstrates the idea. Discrete-time structures
With delay free loops cannot be implemented in practice. Such structures
are, therefore, of no practical interest.

t Digital filter structures which use the smallest possible humber of delays
are said to be minimal in delays, or just minimal or canonical.
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2.1.4 Continuous-Time Systems

Continuous-time functions are denoted as xa(t), ya(t) and so on. The sub-
script a , which stands for “analog”, is deleted if the context makes it clear.
The Fourier transform of xa(t), if it exists, is defined as

(2.1.20)

and the inverse transform relation is

(2.1.21)

Here, the frequency variable Q has the dimension of radians per second.

Many of the concepts described earlier carry over to continuous-time
systems in an obvious manner. A continuous-time LTI system is character-
ized by an impulse response ha(t) and transfer function Ha(s). The transfer
function is the Laplace’s transform of ha(t), that is,

One has to specify a region of convergence for this integral in the s-plane
[Oppenheim, Willsky, and Young, 1983]. If the region of convergence in-
cludes the imaginary axis, then Ha(jQ) [the Fourier transform of ha(t)] is
defined, and is called the frequency response of the system. The system is
causal if, and only if, ha(t) = 0 for t < 0. A causal system is (BIBO) stable
if, and only if, all the poles of Ha(s) are in the open left half plane (abbre-
viated LHP) which is the region characterized by Re[s] < 0. In this case the
region of convergence includes the closed right half plane, that is, the region
Re[s] = 0.

Sampling

We say that x(n) is the sampled version of xa(t) if x(n) = xa(nT) for
some T > 0. The quantity T is the sampling period (or sample spacing),
and 2T the sampling frequency or sampling rate. Denote the Fourier
transforms of x(n) and xa(t) as X(ejw) and Xa(jQ). It can be shown that

(2.1.22)

Thus, X(ejw) is obtained as follows: (a) duplicate Xa(jQ) at uniform in-
tervals separated by 2m-T, (b) add these copies and divide by T, and (c)
replace Q with w~T. Figure 2.1-8(a) demonstrates this idea. In part (b) we
demonstrate the physical dimensions of the frequency axis, by assuming that
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the sampling period T is one millisecond [i.e., 2T is 21 Kilo radians per
second (K¥-S)]. Figure 2.1-8(c) shows the correspondence with the frequency
variable w associate with the sequence x(n).

Figure 2.1-8 (a) Fourier transform of a sampled version of xa(t). (b) Example
of frequency dimensions in kiloradians/second, assuming 1 kHz sampling rate, and
(c) correspondence with discrete-time frequency variable w (radians).

Aliasing. If there is no overlap between Xa(jQQ) and the shifted ver-
sions, we can recover xa(t) from the sampled version x(n) by retaining only
one copy. This is accomplished by filtering. If we have the apriori knowledge
that the signal is lowpass, then an ideal lowpass filter is used. Otherwise a
bandpass filter with appropriate center frequency is required.

The overlap-free condition can be ensured by requiring that Xa(jQ) be
zero for Q = 1/T. (This is the lowpass case; see Problem 2.15 for other
possibilities.) If there is overlap between Xa(jQQ) and any of its shifted
versions, we say that there is aliasing.

Bandlimited signals and Nyquist rate. If Xa(jQ) is zero for Q =
o, we say that xa(t) is o-bandlimited or o-BL. We see that if xa(t) is o-

BL, then we can avoid aliasing by sampling at the rate ©=2c¢ (Shannon or
Nyquist sampling theorem). This is called the Nyquist rate for xa(t).

Samplers and A/D Converters

We often refer to a continuous-time signal as an “analog” signal, even
though there is a fine distinction between these two [Oppenheim and Schafer,
1989]. The amplitude of an analog signal can take continuous values (pos-
sibly complex). A digital signal can take values only from a preassigned
discrete set (e.g., the values represented by the binary number system). Ei-
ther of these signals could be continuous-time or discrete-time. In this text,
we often use the term “analog signal” to imply both analog and continuous-
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2.2

time signals. Similarly, terms such as “digital signals” and “digital filters”
are used to imply “digital” as well as "discrete-time" versions. Whenever a
finer distinction is appropriate, it is either mentioned or will be clear from
the context.

We often refer to black boxes in figures, with the labels "A/D convert-
ers" and "D/A converters" (or just A~D and D/A). These stand for "analog-
to-digital” and "digital-to-analog," respectively. In most cases, these black
boxes really imply conversion between continuous-time and discrete time,
and a notation such as C/D and D/C (as in Oppenheim and Schafer, [1989])
would have been appropriate. We will, however, use A/D and D/A every-
where, and the precise meaning will be clear from the context.

MULTI-INPUT MULTI-OUTPUT SYSTEMS

Consider a system with r inputs and p outputs, with a transfer function
connected from every input to every output. Thus, let Hkm(z) denote the
transfer function from the mth input to the kth output. This is demonstrated
in Fig. 2.2-1 for p = r = 2. The kth output in response to all the inputs is
given by

(2.2.1)

Figure 2.2-1 A two-input two-output system.

The entire system is said to be a multi-input multi-output (MIMO) LTI
sytstem, and can be characterized by the set of pr transfer functions Hkm(z).
In order to compactly represent the system, we define the input and output
vectors

(2.2.2)
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and their z-transforms

(2.2.3)
Then the system can be described as

(2.2.4)
where

(2.2.5)

Note the use of bold letters to indicate matrices and vectors. The p x r
matrix H(z) is called the transfer matrix of the system. We will use the
terms "r-input p-output system” and "p X r system" interchangeably. A
system with p = r = 1 is said to be a single-input single-output (SISO)
system, or a scalar system.

Fig. 2.2-2 indicates two ways of representing the system. The input and
output lines are indicated either by heavy arrows, or by double-line arrows
according to convenience. The double lines do not imply that there are only
two inputs or two outputs.

Figure 2.2-2 Two ways to represent a multi-input multi-output LTI system.

The impulse Response Matrix

Let hkm(n) denote the impulse response of the transfer function Hkm(=).
Define the p x r matrix of impulse response sequences as

(2.2.6)

Then, the relation (2.2.4) can be expressed in the time-domain as

(2.2.7)

which is the matrix version of the familiar convolution summation (2.1.6).
From the definitions of H(z) and h(n) it is evident that they are related as

(2.2.8)
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In general, the above infinite summation converges only in certain regions of
the z-plane.

The matrix sequence h(n) is said to be the "impulse response” or "unit-
pulse response” of the system H(z). For example, let

(2.2.9)

This can be rewritten as

(2.2.10)

and the sequence h(n) can be readily identified, as indicated.

Transfer matrices which are row or column vectors. A system
with one input and p outputs has a p x 1 transfer matrix, that is, a column
vector. A system with r inputs and one output has a 1 x r transfer matrix,
that is, a row vector. Figure 2.2-3 shows both types of examples, where

Figure 2.2-3 Examples of transfer matrices (a) a column vector, and (b) a row
vector.

Such vector-transfer functions arise in the study of digital filter banks (e.qg.,
Chap. 5).

The frequency response matrix. The discrete-time Fourier trans-
form of a sequence is obtainable from the z-transform by setting z = ejw.
This is given by

(2.2.11)

and is the frequency response matrix of the system.

Stability and causality. The system H(z) is said to be ‘causal' if
h(n) is causal [that is, h(n) = 0 for n < 0]. This is equivalent to saying that
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each hkm(n) is causal. We say that a is a pole of H(z) ifit is a pole of some
element Hkm(z). The system H(z) is stable (in the BIBO sense) if each of
the functions Hkm(z) is stable. So, H(z) is causal and stable if, and only if,
each of the systems Hkm(z) is causal with all poles strictly inside the unit
circle. This is equivalent to the condition that the region of convergence of
the summation (2.2.8) includes all points on and outside the unit circle of the
z-plane. In particular, this means that the summation in (2.2.11) converges.

No poles at infinity. For a causal rational system H(z), the region
of convergence is everywhere outside a certain circle in the z-plane. In par-
ticular, therefore, there are no poles at z = oo, whether the system is stable
or not. Since the ROC of H(z) includes z = oo, the value H(oo) can be
obtained from the infinite power series >wn=0 h(n)z-n. Thus H(eo) = h(0).
In contrast, the value of H(O) cannot be found by using the infinite power
series, since the ROC of the causal power series does not include the origin.

Parseval's relation for vector signals. Let x(n) and y(n) be vec-
tor sequences with Fourier transforms X(ejw) and Y(ejw). We then have
(Problem 13.1)

(2.2.12)

Degree of a system. The degree or “McMillan degree” of an LTI
system H(z) is defined to be the smallest humber of delay elements (z-1
elements) required to implement the system. Unlike in the scalar case, the
degree of an MIMO system cannot be determined just by inspection of H(z).
In Chap. 13 we will study this topic carefully.

Exponential Inputs Produce Exponential Outputs

For a scalar LTI system H(z), we know that an exponential input an
produces the output H(a)an. Now consider a p x r system H(z), and apply
the input van where a is an arbitrary scalar and v an arbitrary vector. Using
(2.2.7) we find

(2.2.13)

In other words, an exponential input van aligned in the direction of the
vector v produces the exponential output H(a)van, which is aligned in the
direction of the vector H(a)v. This gives us a beautiful *physical’ significance
for the transfer matrix H(z).

Chapter 13 is dedicated to a thorough review of MIMO LTI systems,
and is a preparation for some of the deeper results shown in the later sections
of Chap. 14 on paraunitary system.
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2.3 NOTATIONS

In what follows we summarize the notations used in the text. The reader
may wish to glance through this section during first reading (a section on
notations can hardly be entertaining!), and then use this primarily as a
reference.

2.3.1 Preliminaries

1. The variables Q and w are the frequency variables for the continuous
and discrete-time cases respectively.

2. U(n) denotes the unit step sequence and should not be confused with
u(n) which sometimes represents the input signal.

3. d(n) is the unit-pulse (n is discrete) and da(t) is the Dirac delta function
(t is continuous). Both &(n) and da(t) are often termed as the “impulse
functions,” and the distinction is usually clear from the context.

4. The terms "inside the unit circle" and "outside the unit circle" are often
abbreviated as "the region z < 1" and "region z > 1" respectively.

5. Superscript asterik, as in H*(z), denotes complex conjugation of H(z),
whereas subscript asterik, as in H*(z), means that only the coefficients
are conjugated. For example, if H(z) = a + bz-1 then, H*(z) = a* +
b*z-1.

2.3.2 Polynomials

A polynomial in x has the form =Nn=0anxn, that is, has only nonnegative
powers of x. Here N is a finite integer. If aN # 0, N is said to be its order.
Usually we do not use the word “degree,” which is reserved for the number
of delays required to implement a causal LTI system.

Let H(z) = =Nn=0 h(n)z-n. This is a polynomial in z-1, and repre-
sents a causal FIR filter. It is common to attach various adjectives to H(z)
depending upon its zero locations. Here are some commonly used ones.

1. H(z) is strictly minimum-phase (or strictly Hurwitz, abbreviated SH)
if all zeros are inside the unit circle.

2. H(z) is strictly maximum-phase if all zeros are outside the unit circle.

3. H(z) is minimum-phase if all the zeros satisfy zk < 1 (i.e., are inside
or on the unit circle) .

4. H(z) is maximum-phase if all the zeros satisfy zk = 1
5. H(z) is a mixed phase polynomial if none of the above holds.

2.3.3 The “Tilde” Notation (Paraconjugation)

The notation H(z) plays a crucial role in our discussion. This is defined

such that, on the unit circle, H(z) = [H(z)]* (that is, complex conjugation).
Examples:
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Let H(z) = 1 + 2z-1, then H(z) = 1 + 2z.
Let H(z) = (a + bz-1Ly1c + dz-1), then H(z) = (a* + b*z) (c* + d*z).
More generally, we define H(z) for a rational function H(z) as follows: first

conjugate the coefficients, and then replace z with z-1. Using the subscript
asterik notation defined earlier, we see that

As an application, if H(z) = =Nn=0 h(n)z-n, then

that is, the coefficients are time-reversed and conjugated. A number of points
about the "tilde notation" are worth noting.

1. The function H*(z*) also reduces to H*(z) on the unit circle (in fact for
any z), but it is not a rational function of z [unlike H(z)]. The function
H(z), on the other hand, continues to be rational in z (hence analytic),
and it is mathematically more convenient to use. H(z) is also called the
paraconjugate of H(z) and can be regarded as an analytic extension of
unit-circle conjugation.

2. Given a function H(z), the quantity H(z)H(z), evaluated on the unit
circle, is the magnitude squared response H(ejw) 2.

3. We can write H(z) = H*(1/z*) for any z. This has been used, for
example, in Oppenheim and Schafer [1989] when discussing magnitude
squared responses of digital filters.

4. If H(z) = 0 for z = a, then H(z) = 0 for z = 1-&* (the reciprocal
conjugate point).

5. If H(z) has (strictly) minimum phase, then H(z) has (strictly) maxi-
mum phase, and conversely.

6. If H(z) = H1(z)H2(z), then H(z) = H1(z)H2(z). If H(z) = H1(z) +
H2(z), then H(z) = H1(z) + H2(2).

2.3.4 Matrices and Matrix Functions

Bold faced letters such as A,v denote matrices and vectors. See Appendix
A for a brief review of matrices, and matrix operations such as transpose,
transpose conjugate, and so on. We often encounter matrix functions H(z).
These are matrices in which each element is a rational function (e.g., polyno-
mial) in z or z-1. Once again the "tilde" notation plays a major role. Here
is a summary of key matrix notations.

1. AT denotes the transpose of A, and HT(z) stands for [H(z2)]T.
2. At denotes transpose-conjugate of A, and HTt(ejw) denotes [H(ejw)]T.
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3. H*(z) denotes conjugation of coefficients without changing z (see ex-
ample below).

4. H(z) denotes HT*(z-1).
As an example, let H(z) = h(0) + h(1)z-1. Then

(2.3.1)

The matrix H(z) is said to be the paraconjugate of H(z). For rational H(z)
it continues to be rational. Notice that H(z) = HT(z) for z = ejw, that is,
paraconjugation and transpose conjugation are identical on the unit circle.
In general, one can write H(z) = Ht(1-z*) for any z.

The word 'scalar’' corresponds to a matrix withp = r = 1. Thus a 'scalar
system' is a single-input single-output (SISO) system. All the notations
introduced above apply to the scalar case; just remember that transposition
leaves the scalar quantity unchanged.

2.3.5 Notations for FIR Functions

An FIR function is any function of the form

(2.3.2)

where —oco<<nl =n2<<oco.A causal FIR function (or a polynomial in z-1)
is of the form H(z) = =Nn=0 h(n)z-n. Several types of causal FIR filters can
be distinguished:

1. Hermitian and skew-Hermitian polynomials. We say that H(z) is Her-
mitian [or h(n) is Hermitian] if h(n) = h*(N — n) for all n, and skew-
Hermitian if h(n) = —h*(N — n). In terms of H(z) this means H(z) =
z-NH(z) (Hermitian) and H(z) = —z-NH(z) (skew-Hermitian). For
example, 1 + 2j + (1 — 2j)z-1 is Hermitian whereas 2 + j — (2 —j)z-1
is skew-Hermitian.

2. Generalized-Hermitian polynomial. We say that H(z) is generalized
Hermitian if h(n) = ch*(N — n), [i.e., H(z) = cz-NH(z)] for some ¢
with ¢ = 1. Examples: (a) a+2z-1+a*z-2, (b) a+jz-1+z-2+ja*z-3
Evidently, Hermitian and skew-Hermitian polynomials are special cases
of this.
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2.4

3. Symmetric and antisymmetric polynomials. H(z) [or h(n)] is said to be
symmetric if h(n) = h(N - n) and antisymmetric if h(n) = —h(N — n);
[this definition is particularly useful if h(n) is real]. These are equiv-
alent, respectively, to H(z) = z-NH(z-1) and H(z) = -z-NH(z-1).
Examples: 1 + 2z-1 + z-2 is symmetric; 1 + 2z-1 — 2z-2 — z-3 is anti-
symmetric.

4. Hermitain image and mirror image. Let A(z) and B(z) be two polyno-
mials in z-1 with order N. We say that B(z) is the generalized Hermitian

image of A(z) if B(z) = cz-N A(z) for some ¢ with ¢ = 1 (Hermitian

image if ¢ = 1, skew-Hermitian image if ¢ = —1). Also B(z) is the
mirror image of A(z) if B(z) = z-N A(z-1). Here are some examples,
with N = 1.

a) 1 +jz-1 and j + z-1 (mirror images)

b) 1 +jz-1 and -j + z-1 (Hermitian images)

c) 1+jz-1 and 1 + jz-1 (Hermitian images; why?)

d) 1+jz-1 and j — z-1 (Hermitian images)

e) 1+ 2z-1 and 2 + z-1 (mirror and Hermitian images)

The above terminology can also be used for the more general form (2.3.2).
For example, we say G(z) is symmetric if H(z) defined as z-n1G(z) =
> Nn=0 h(n)z-n is symmetric. Thus, z + 2 + z-1 is symmetric, and so is
the transfer function z-1 + 5z-2 + z-3.

2.3.6 Miscellaneous Mathematical Symbols

The following symbols are sometimes employed for economy: (there exists);
— (ifand only if); (for all); = (approximately equal to); (implies);

(belongs to); = (defined as).

DISCRETE-TIME FILTERS (DIGITAL FILTERS)

We use the term ‘'digital filter' for discrete-time filters even though digiti-
zation (quantization) effects will be considered only in Chap. 9. A digital
filter, then, is an LTI system with rational transfer function as in (2.1.10).
The quantity H(ejw) is called the frequency response. Its meaning is clear
from (2.1.7) which yields

(2.4.1)

From the time domain viewpoint, if we apply an input with frequency w0,
that is, u(n) = ejw0n, then the output is y(n) = H(ejw0)ejwOn. This follows
because ejwOn is an eigenfunction of the system. H(ejw0) is the weighting
function (or eigenvalue) or simply “the gain of the system” at frequency w0.
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Transmission Zeros

If H(ejw0) = 0 then the frequency w0 is rejected by the filter. So
the filter offers infinite attenuation at this frequency. We say that w0 is a
transmission zero of H(z).

Transmission zeros come from zeros of H(z) on the unit circle. Let
H(z) = A(zyB(z), with A(z) and B(z) as in (2.1.11). It is clear that w0 is
a transmission zero if, and only if, (1 — ejw0z-1) is a factor of A(z). If all
zeros of H(z) are on the unit circle, then all the factors of the numerator
A(z) have the form (1 — ejwkz-1).

For the real coefficient case, each factor (1 — ejwkz-1) is paired with
(1 — e-jwkz-1) unless wk = 0 or 1. The factor of A(z) which represents the
complex conjugate pair of zeros is, therefore, 1 — 2coswkz-1 + z-2. This is
a symmetric polynomial so that the product of such factors is symmetric.
Transmission zeros at w = 0 and 1 give rise to the factors (1 — z-1) (anti-
symmetric) and (1 + z-1) (symmetric). Thus, for a real filter with all zeros
on the unit circle, the numerator A(z) is either symmetric or antisymmetric.
That is,

(even number of zeros at w = 0) 2.4.2)
(odd number of zeros at w = 0). Y

For the more general case of complex systems, if all zeros are on the unit
circle then A(z) is generalized-Hermitian (Problem 2.3). Notice, however,
that these conditions on A(z) are not sufficient to ensure that all zeros are
on the unit circle.

2.4.1 Magnitude Response and Phase Response

The frequency response which in general is a complex quantity, can be ex-
pressed as

(2.4.3)

The real-valued quantities H(ejw) and @(w) are, respectively, called the
magnitude response and the phase response of the filter. The quantity
r(w) = —d@(wydw is said to be the group delay of the system H(z).

Depending on the nature of H(ejw) , filters are typically classified as
lowpass, bandpass and so on. Figure 2.4-1 demonstrates this for real coeffi-
cient filters (see below).

Figure 2.4-1 Various types of magnitude responses for real-coefficient filters.
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Real Coefficient Filters

For real h(n), the magnitude H(ejw) is an even function of w whereas
the phase response @(w) is an odd function. For example, let H(z) = 1—az-1
with real a. Then, H(ejw) = 1 — ae-jw, and

so that H(ejw) is even, and @(w) odd indeed. So the response needs to be
shown only for the region 0 < w < m. If H(z) has real coefficients, an input

cos(w0n) produces the output y(n) = H(ejw0) cos(wOn + @(w0)). f
Unwrapped and Wrapped Phase

Consider the filter H(z) = (1+z-1/2)6. The frequency response is given
by H(ejw) = e-j3w cos6(w2). So, the phase response is gu(w) = —3w and
varies from 0 to -61t as w changes from 0 to 2m. If we replace @u(w) with
its principal value pw(w) = @u(w) mod 2m, this does not change the value
of H(ejw), as seen from (2.4.3). The quantities @u(w) and @w(w) are called
the unwrapped and wrapped phase responses, respectively (this also explains
the introduction of subscripts for this discussion).

The unwrapped phase @u(w) can have any value whereas the wrapped
phase @w(w) is always within a range of length 2m, for example, -2n <
Pw(w) < 0 or —t < ew(w) < 1. The unwrapped phase @u(w) is related to
the group delay r(w) according to the integral

Most computer programs that evaluate the phase response actually return
the wrapped phase @w(w). There exist good algorithms to obtain the un-
wrapped phase from the wrapped phase [Tribolet, 1977], [Oppenheim and
Schafer, 1989].

If the distinction between the wrapped and unwrapped phases is not
necessary (as in the majority of our discussions), the subscript will be omit-
ted. The distinction is sometimes essential, for example, when dealing with
the so-called complex cepstrum. We will have occasion to describe this in
Appendix D, where we study the spectral factorization problem.

Decibel (dB) Plots

The plot of 20logl0 H(ejw) as a function of w is particularly useful in
revealing the stopband details of the response. This is often referred to as
the dB plot of the (magnitude) response. Figure 2.4-2 demonstrates this for

t Notice that, in general, signals of the form cos(w0n) are not eigenfunc-
tions of LTI systems.
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a lowpass filter. It is helpful to remember that H(ejw) = 10-k implies a
level of -20k dB on this plot. For example, H(ejwl) = 0.01 implies that
the filter provides 40 dB attenuation at w! (see Sec. 3.1 later).

Figure 2.4-2 Demonstration of decibel (dB) plot of the magnitude response.

2.4.2 Linear Phase Filters

Strictly speaking, a digital filter is said to have linear phase if the phase
response @(w) is linear in w (i.e., of the form aw where a is constant). In
engineering practice, a less stringent definition is used, which we employ in
this text. According to this definition, H(z) has linear phase if

(2.4.4)

where c is a possibly complex constant, K is real, and HR(w) is a real valued
function of w. Note that HR(w) does not necessarily have period 2m [for
example, try H(z) = 1 + z-1], and we have to avoid the notation HR(ejw).

The quantity HR(w) is called the amplitude response or zero-phase re-
sponse. Linear phase filters for which c is real and K = 0 are called zero-
phase filters. For a zero-phase filter H(ejw) itself is real, but it can become
negative (this typically happens in the stopband).

In a region where HR(w) has fixed sign, the group delay of a linear-
phase filter is constant, that is, r(w) = K. For filters with nonlinear phase,
it is common practice to plot the group delay r(w) to show the nonlinear-
ity. The degree to which r(w) is a nonconstant reveals the degree of phase
nonlinearity.
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Four Types of Real Coefficient Linear Phase Filters

Let H(z) = =N=0h(n)z-n, with real h(n). It is well known that the
response has the form (2.4.4) if h(n) is symmetric or antisymmetric. De-
pending on whether N is even or odd, and whether h(n) is symmetric or
antisymmetric, we obtain four types of real coefficient linear phase filters.
These are summarized in Table 2.4.1.

Notice that some of these filters have transmission zeros at w = 0 and/or
1T, so that they cannot be used for certain applications. For example, Types
3 and 4 (antisymmetric cases) cannot be used for lowpass filter design, and
Type 2 cannot be used for highpass design. If H(z) is Type 1 or 3, then the
filter G(z) = zMH(z) (where M = DN-2) is a zero-phase filter. In this text
whenever we refer to linear phase filters of Type 1-4, it is implicit that the
coefficients are real so that the properties in Table 2.4.1 hold.

TABLE 2.4.1 Four types of real coefficient linear phase FIR filters.
N
Here H(z) = ¥ h(n)z~", with h(n) real
n=0

Type 1 2 3 4
Symmetry h(n)=h(N-n) h(n)=h(N-n) h(n)=-h(N-n) h(n)=-h(N-n)
Parity of N N even N odd N even N odd

Expression for ~ e-joN/2HR(w)  e-joN/2HR(®)  je-jwN/2 HR(w)
frequency
response
H(ejw)

Amplitude response
or zero-phase

response
HR(w)
Special features Zeroatw=n Zeroatw=0andm Zeroatw =0
Can be used for Any type of Any bandpass  Differentiators and  Differentiators,
bandpass response  response except and Hilbert Hilbert
(LPF, HPF, etc.) Highpass transformerst transformers,

and high pass filters

tSee Rabiner and Gold, 1975
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For Type 1 filters, HR(w) does have period 21, whereas for Type 2 filters
the period is 4. (This can be deduced from Table 2.4.1.) Notice that HR(w)
changes sign at w = 0 in some cases. Note also that [HR(w)]2 has period 21
in all cases.

Efficient structures for linear phase filters. Because of the prop-
erty h(n) = =h(N-n), Type 1-4 linear phase FIR filters can be implemented
with only about (N + 1}»2 multipliers. For example, Fig. 2.4-3 shows how
we can implement a fifth order (Type 2) filter with only 3 multipliers.

Figure 2.4-3 Efficient di-
rect form implementation of
a linear phase filter.

Advantage of Linear Phase Property

Suppose we have a signal u(n) whose energy is dominantly in the region

w < 0. Suppose this is passed through a real lowpass filter with passband

edge at 0. (This is often done to attenuate the out-of-band noise.) The
output signal is

(2.4.5)

If we assume that the filter H(z) is a 'good' lowpass filter, then H(ejw) =1
in the passband. Moreover, both Y(ejw) and U(ejw) are very small in the
stopband. So we have

(2.4.6)

for all w. The approximate nature of this relation is due to the facts that (a)
the filter is not ideal, and (b) u(n) is not perfectly bandlimited. Nevertheless,
(2.4.6) implies that the output signal y(n) tends to resemble u(n) provided
that there is no phase distortion.

The phase distortion, in turn, is eliminated if U(ejw) and Y(ejw) have
same phase (except for a linear offset term). This can be satisfied if H(z)
has linear phase. In this case (2.4.4) holds so that (2.4.5) can be replaced
with

(2.4.7)
For the case where c is real and K an integer, this implies y(n) = cu(n - K),
which is a (scaled) and delayed version of u(n).
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Summarizing, if the input has energy confined to the passband of the
filter then the output signal is approximately equal to (a scaled and shifted
version of) this input provided the filter has linear phase and '‘good' passband
and stopband. (The above discussion assumes K is an integer. But this is
not always the case, e.g., when the filter order is odd.)

If the filter has nonlinear phase, then we still have (2.4.6), but due to
phase distortion, the time domain relation y(n) = cu(n — K) does not hold.
Whether this distortion is acceptable or not depends largely on applications.
For example, in speech processing a certain degree of phase distortion can
be tolerated, but in image processing, phase distortion is often disastrous
[Lim, 1990].

Most General Conditions for the Linear Phase Property

Let H(z) = =Nn=0 h(n)z-n with h(0) # 0 and h(N) # 0. Then it
is a linear phase filter if and only if the impulse response is generalized-
Hermitian, that is, satisfies the condition

(2.4.8)

for some d with d = 1 (Problem 2.12). The following points are worth
noting:

1. For the real coefficient case, the above condition reduces to h(n) =

+h(N — n). So, the impulse response has to be symmetric or antisym-

metric.
2. In the transform domain, (2.4.8) is equivalent to the condition

(2.4.9)

3. Zero-locations of linear-phase filters. One consequence of (2.4.9) is that,
if zk is a zero then so is 1¥Zk. So, the zeros of a linear phase FIR filter
H(z) occur in reciprocal conjugate pairs. This also explains why it is
not possible to design causal stable IIR linear phase filters (Problem
2.11 requests a more rigorous discussion.)

2.4.3 Analytic Continuation

Let HO(z) and H1(z) be two transfer functions such that HO(ejw) = Hl(ejw)
for all w. This implies that their impulse responses are identical, that is,
ho(n) = hl(n), and, therefore, that the transfer functions are identical.
Thus, two filters with identical frequency responses must have identical
transfer functions. In other words, if

(2.4.10)

then
(2.4.11)
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This is called the analytic continuation property. If HO(z) and H1(z) in the
above discussion are replaced with px r transfer matrices HO(z) and H1(z),
then the analytic continuation property still holds.

The above mentioned property might appear to be trivial but it holds
because all practical transfer functions are rational (hence analytic), and the
unit circle is in the region of analyticity. If HO(z) and H1(z) were arbitrary
(nonanalytic) functions, then (2.4.10) would not imply (2.4.11). Consider,
for example, a function P(z), defined to be zero in an annulus around the
unit-circle, but unity otherwise (Fig. 2.4-4). This satisfies P(ejw) = 0, but
P(z) is not identically zero for all z.

Figure 2.4-4 A function P(z), defined to be zero everywhere on the unit circle,
but not identically zero for all z.
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2.1.

2.2.

2.3.

2.4,

2.5.

2.6.

PROBLEMS

In Sec. 2.1.2 we stated that exponential sequences are eigenfunctions of LTI
systems. Conversely, suppose s(n) is an eigenfunction of a rational 1IR transfer
function H(z) (with order > 0 to avoid trivial answers). Does this necessarily
mean that s(n) is an exponential? Justify (that is, prove if yes; give counter
example if no ).

Suppose we apply the truncated exponential anU(-n) to a causal stable LTI
system H(z). Assume a > 1 so the input does not blow up for n - —oo. (a)
What is the output y(n) for n < 0? (b) Suppose y(n) is zero for n > 0, i.e.,
the output becomes zero as soon as the input becomes zero. This leads us to
suspect that the system might be memoryless, [i.e., H(z) = constant]. This is
indeed true. Prove this.

Let H(z) = =Nn=0 h(n)z-n be a transfer function with all zeros on unit circle.
Show that h(n) is generalized-Hermitian. [In particular if h(n) is real, this
reduces to the fact that h(n) is symmetric or antisymmetric.]

Let H(z) = =wn=0 h(n)z-n, h(0) # 0, be a rational transfer function represent-
ing a causal, stable LTI system. So, H(z) = A(zyB(z) where A(z) and B(z)
are relatively prime polynomials in z-1. We shall now develop a time domain
interpretation of “poles™, which is more appealing than the definition which
says that H(z) "blows up" at a pole.

a) Suppose p # 0 is a pole of H(z). Show that there exists a causal finite
length input x(n) and a finite integer L such that the output y(n) has the
form pn for n > L.

b) Conversely suppose there exists a causal finite length input x(n) and a
finite integer L such that the output y(n) has the form pn for n > L.
Show that p is a pole of H(z).

We know that if zk is a zero of H(z) then the output in response to the input
zk is zero for all n. This input is noncausal (and doubly infinitely long).
In this problem we develop another engineering insight for the meaning of a
zero of H(z). This is based on causal inputs, and might be more appealing.
Assume H(z) is in irreducible rational form as in (2.1.10). Also, assume that
it is causal so that it can be implemented with the difference equation (2.1.14)
(with b0 = 1). Assume a0 # 0, and bN # 0.

a) Consider the first order case (N = 1). We know the system has a zero at
zl = —ala0. Suppose, we apply an input of the form zhU(n) where U(n)
is the unit step. Find an initial value y(—1) such that y(n) = 0 for all
n=0.

b) More generally, for the Nth order system suppose z! is a zero and we
apply the causal input zhU(n). Show how you can find an initial state
y(-1), y(-2),-.. ,¥(=N) such that y(n) = 0 for all n = 0.

c) Conversely, suppose there exists an initial state y(-1), y(-2), ... ,y(—=N)
such that the input z&U(n) produces zero output for all n = 0. Show that
zl is a zero of H(z).

Let H(z) = >wn=0 h(n)z-n, h(0) # 0, be a rational transfer function represent-
ing a causal, stable LTI system. So, we can write H(z) = A(zyB(z) where
A(z) and B(z) are relatively prime polynomials in z-1.
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2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

40

a) Let z0 be a zero of the system. Then show that there exists a causal finite
length sequence s(n) such that the input

(P2.6)

produces a causal, finite-length output.

b) Conversely, let there exist an input of the form in (P2.6) where s(n) is
causal and finite-length, such that the output is of finite length. Then
show that z0 is indeed a zero, assuming z0 # 0.

Note. This gives the following engineering interpretation of a zero: there exists
a causal input such that, if you wait for finite time after applying the input,
the input will look like an exponential z& whereas the output will become zero
and stay zero!

You are given a black box, which you can imagine to be a computer program.
This black box takes an input sequence x(n) and computes each sample of the
output y(n) in finite amount of time. You are given the additional information
that any exponential input an produces an exponential output H(a)an. Can
you conclude that the black box is an LTI system? Justify (i.e., prove if yes;
give counter example if no).

Let H(z) = =Nn=0h(n)z-n be a Type 1 linear phase FIR filter. Define a new
filter G(z) with g(n) = h(n) cos[w0(n — K)] where K is an integer. How would
you choose K so that G(z) also has linear phase?

Let x(n) = cos(wOn) be the input to a Type 1 linear phase FIR filter H(z).
Find an expression for the output y(n) and simplify as best as you can. Can
you say that y(n) = cx(n — K) for some ¢ and K? What if the filter were Type
3?

Let H(z) = {1 + =Nl bnz-n] represent a causal filter with linear phase.
Prove that it is unstable (unless bn = 0 for all n).

Let H(z) be causal stable with irreducible form A(z}*B(z). Suppose this has
linear phase, that is, satisfies (2.4.4). Show then that H(z) is FIR! [This is
a generalization of Problem 2.10. It is somewhat subtle because, you have to
wonder whether H(z) might have linear phase even if A(z) and B(z) are not,
individually, linear phase functions.]

This is a continuation of (2.4.8) and the paragraph preceding it. We stated
that (2.4.8) is necessary and sufficient for linear phase property. Prove this.

This pertains to stability.
a) Consider a causal IR filter with transfer function H(z) = 1~D(z) where

with dn real for all n. Show that this is BIBO stable only if D(1) > 0 and
D(-1) > 0.

b) As a special case, consider a second order causal IIR filter with transfer
function H(z) = {1 + az-1 + bz-2), with a,b real. Show that this is
BIBO stable only if the values ofa and b are restricted to be strictly inside
the triangular area in Fig. P2-13 (called the stability triangle).
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Figure P2-13

c) Finally, show that, in the above second-order case, the converse is also
true, that is, if a,b are stritctly inside the triangular region then H(z) is
BIBO stable.

2.14 The deterministic cross correlation between two sequences x(n) and y(n) is
defined as

(P2.14)

The integer k is called the lag variable. Let Sxy(z) denote the z-transform

of Rxy(k). Show that Sxy(z) = X(z)Y(z). [Note: A special case of this re-
sult arises when y(n) = x(n). The quantity Rxx(k) is called the determin-

istic autocorrelation of x(n). Its z-transform is Sxx(z) = X(z)X(z), so that
Sxx(ejw) = X(ejw) 2.

2.15. Give example of a function xa(t) such that (a) it is not o-BL, and (b) if it is
sampled at the rate 2T = 20, no two terms in (2.1.22) overlap.
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3.0

3.1

Reviewvw of Digital Filters

INTRODUCTION

This chapter includes a brief review of digital filter design techniques. Many
of these topics are treated in Oppenheim and Schafer [1989]. Other related
texts are [Rabiner and Gold, 1975], [Antoniou, 1979], and [Jackson, 1989].
Because of the availability of these references, our review is brief and limited
to those techniques that are directly relevant to multirate systems. Dis-
cussions on relatively recent developments, for example eigenfilters (Section
3.2.3), and allpass decomposition of IR filters (Section 3.6), are not available
in the above references.

Some design techniques and structures will be treated in greater detail
here. These include (a) the Window design (FIR), (b) eigenfilters approach
(FIR), (c) elliptic filters (I1IR), (d) properties of allpass functions, and (e)
allpass lattice structures. This elaboration is motivated by the applications
in multirate filter bank design, as we indicate at the appropriate places.

Section 3.1 describes the common filter design specifications. In Sec. 3.2
and 3.3 we consider the design of finite impulse response (FIR) and infinite
impules response (IIR) filters. Section 3.4 discusses allpass filters, which
play a key role in the design of filter banks. Section 3.5 summarizes several
special filters. In Sec. 3.6 we will show that many IIR filters (e.g., elliptic)
can be expressed as a sum of two allpass filters. A special case of this (called
IIR power symmetric filters) will find application in two-channel QMF bank
design (Chap. 5).

FILTER DESIGN SPECIFICATIONS

The specifications on the magnitude response of a digital filter are usually
given in terms of certain tolerances as demonstrated in Fig. 3.1-1(a) for
the lowpass case. We assume the coefficients to be real, so only the region
0 < w < m has to be specified. Between the passband and stopband, we
have to specify a transition band region since the response cannot change
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abruptly from unity to zero. The region 0 < w < wp is the passband and

ws < w < 1 the stopband. The responses in the passband and stopband are
required to lie Within the tolerance regions.

Figure 3.1-1 Magnitude response specifications for real-coefficient lowpass fil-
ters. (a) unnormalized magnitude, and (b) normalized magnitude.

The following terminology is standard.

(3.1.2)
(Note that BW is an abbreviation for bandwidth.) The variable f=w21 is
said to be the normalized frequency. Frequency response plots in the range
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0 < w < m correspond to the range 0 < T < 0.5 in terms of ¥ Figure
3.1-1(a) also shows example of a response conforming to these specifications.

Normalized specifications. It is sometimes convenient to normalize
the peak passband magnitude to unity. This can be done by dividing the
response by (1 + 81). Ifdl << 1, this does not significantly affect the ripple
sizes. Figure 3.1-1(b) shows this normalized set of specifications. One can
verify that

(3.1.2)

The quantity A(ejw) = -20logl0 H(ejw) is said to be the attenuation
characteristics for the filter. -A(ejw) is the magnitude response in dB.
Fig. 3.1-2 shows how to specify the tolerances in terms of this quantity, for
the case of normalized response. Note that the normalization of H(ejw)
corresponds to setting the minimum value of A(ejw) to 0 dB. The quantity
Amax shown in this figure is called the maximum passband attenuation. With
0l << 1, one can verify that

(3.1.3)

Figure 3.1-2 Specifications in terms of attenuation function, normalized to 0
dB. The attenuation goes to infinity at the transmission zeros.

Criteria for Optimality

We often talk about optimal filters, that is, filters that are “best” in
some sense. The criterion of optimality has to be mentioned in order to
make the meaning complete, as elaborated next.

Equiripple filters. For an equiripple filter, the extremal values of the
error are the same throughout a given band. The examples in Fig. 3.1-1 are
equiripple. To describe the optimality of such filters, let N denote the filter
order, and let 61,52 and Af be defined as above. If any three of these four
quantities are fixed, then the fourth parameter is minimum for an equiripple
filter. Such a filter is said to be optimal in the minimax sense because, the
maximum ripple sizes have been minimized for fixed N and Af.
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3.2

Least-squares filters. In the design of these filters, the square of
the difference between the ideal and actual responses is integrated over the
appropriate frequency bands and minimized. The simplest examples are
FIR filters based on rectangular windows (Sec. 3.2). In Sec. 3.2.3 we will
describe more useful variations, called eigenfilters.

Flatness constraints. In some applications it is desirable to have a
high degree of flatness around zero frequency in the passband. Such flat-
ness is usually specified in terms of the number of zeros of the derivative of

H(ejw) 2 at w = 0. These specifications are called flatness constraints. In the
IIR case, Butterworth filters (Sec. 3.3) serve this purpose. In the FIR case
also it is possible to design filters With flatness constraints [Herrmann, 1971],
and [Kaiser, 1979]. We Will study this while discussing wavelet transforms
in Chap. 11, where the flatness constraint is used to generate orthonormal
basis functions With “regularity” properties.

FIR FILTER DESIGN

Consider Fig. 3.2-1(a) which shows an ideal lowpass response Hi(ejw) With
cutoff frequency wc, that is,

(3.2.1)

Figure 3.2-1 (a) The ideal lowpass response, and (b) truncated filter response.

So, this is a zero-phase filter With magnitude equal to unity in the passband
and zero in the stopband (and no transition band whatsoever). Its impulse
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response [inverse transform of Hi(ejw)] is given by

(3.2.2)

It can be shown that this impulse response does not satisfy the BIBO stabil-
ity requirement (Sec. 2.1.2). So, the ideal filter is not stable. In addition it
is noncausal and IIR. No amount of delay Would make the impulse response
causal.

The simplest Way to obtain an FIR lowpass filter from this would be to
truncate the impulse response

(3.2.3)

It can be shown (Problem 3.5) that the resulting response H(ejw) approxi-
mates Hi(ejw) in the least squares sense, that is, for agiven N, Ji2n[Hi(ejw)-
H(ejw)]2dw is minimized. (Note that both H(ejw) and Hi(ejw) are real.)
However, the above truncation causes ripples in the passband and stopband
[Fig. 3.2-1(b)], and the ripple size grows as we get closer to wc from either
side. As N increases, the ripples get crowded closer to the cutoff frequency
wc, but the size of the peak ripple does not decrease. This is called the Gibbs
phenomenon. This is demonstrated in Fig. 3.2-2 where we shoW dB plots
of the truncated response for N = 20 and N = 50. The minimum stopband
attenuation As in both cases is only about 21 dB.

3.2.1 Window Design

An improvement over the truncation technique is offered by the use of win-
dows. Here the impulse response is obtained as

(3.2.4)

where v(n) is a windoW function, which is zero for n > N-2. As long as v(n)
is symmetric, we obtain a zero-phase filter h(n) [since hi(n) is already sym-
metric]. If we set v(n) = 1 for n < N/2 (rectangular Window), windowing
is equivalent to simple truncation.

In the frequency domain, the response H(ejw) is a convolution of the
ideal response Hi(ejw) with V(ejw). Two parameters of the windoW which
control the quality of the filter response are: (a) the main lobe width AB
of V(ejw) which controls the filter transition bandwidth Aw, and (b) the
peak sidelobe level of V(ejw) which controls the peak passband and stop-
band ripples of H(ejw) . If the main lobe width of V(ejw) is made smaller,
the transition bandwidth of H(ejw) is reduced. On the other hand, if the
window has smaller side lobe ripples, the stopband attenuation provided by
H(ejw) is correspondingly improved. By appropriate choice of the window,
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it is, therefore, possible to control both the attenuation and the transition
bandwidth of the response H(ejw).

Figure 3.2-2 Magnitude responses obtained by truncation of the ideal impulse
response.

Several windows have been invented (e.g., the Hamming window, Black-
mann window, etc.), which offer various degrees of tradeoff between AT and
As [Oppenheim and Schafer, 1975]. A systematic way to obtain such a
tradeoff is offered by the Kaiser window [Kaiser, 1974], which is actually a
family of windows spanned by a parameter 3. By adjusting [3, one obtains
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any desired stopband attenuation for |H(ejw)|; the order N is adjusted to
satisfy the requirement on Af. In all window-based methods, the resulting
filter has 31 = 32

The Kaiser window is given by

(3.2.5)
otherwise,

where 10(x) is the modified zeroth-order Bessel function, which can be com-
puted from the power series

(3.2.6)

Note that 10(x) is positive for all (real) x. In most practical designs, only
about tWenty terms in the above summation need to be retained. Once v(n)
is computed in this manner, the coefficients of the filter can be found from
(3.2.4) where hi(n) is as in (3.2.2) (with wc = 0.5(wp + ws)). The filter order
is evidently equal to N. Since v(n) and hi(n) are even functions of n, the
resulting FIR filter h(n) has zero phase.

The parameter 3 depends on the attenuation requirements of the low-
pass filter. Kaiser has developed simple formulas for estimating the param-
eters 3 and N, for given AS and Af. The quantity (3 is found from

(3.2.7)

Given the quantities As and Af, the filter order N is estimated from

(3.2.8)

Notice that once 3 and N are determined, we do not have independent
control over d1. In most designs, the resulting 3! comes out to be very close
to 42 (which in turn is determined by AS).

It has been demonstrated [Saramaki, 1989] that the Kaiser window can
also be obtained from a rectangular window by means of a change of vari-
ables.

Design Example 3.2.1: FIR Lowpass Filter Using Kaiser Window

Suppose the design specifications are wp = 0.21,w0s = 0.31, As = 40dB,
and 81 = 82. (The value of As implies 82 = 0.01.) The estimated values of
B and N are B = 3.395, N = 44.6. The order can be rounded off to the next
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even integer, that is, N = 46. (This makes N/2 even in (3.2.5).) The cutoff
frequency wc = 0.5(wp + ws) = 0.251m.

Figure 3.2-3 Design example 3.2.1. Lowpass filter based on Kaiser window. (a)
Magnitude response, and (b) impulse response.

We can now compute the coefficients of v(n) and hi(n) as above, and
obtain h(n) from (3.2.4). Fig. 3.2-3(a) shows the magnitude response plot
(with N = 46) which meets the required specifications. For clarity, the
passband details are shown separately in magnified form. One can verify
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that the peak ripple 98l is very close to 42, that is, 8! = 0.01. Part (b) of the
figure shows the impulse response coefficients.

Summary. The Kaiser window technique offers a very simple means
of designing linear phase FIR filters. No elaborate optimization steps are
involved. The quantities wp,ws, and &2 can be specified independently, but
not 8! (which turns out to be close to 32). The Windowing technique is not
suitable for design of filters with more sophisticated specifications (such as
unequal ripple sizes, nonconstant passband responses, and so on).

The Dolph-Chebyshev Function: An Optimal Window

The Dolph-Chebyshev (DC) window v(n) has the property that the
maximum side lobe level of V(ejw) is minimized in the region 0 < w <
1. Consequently, this is called a minimax window. The plot of V(ejw)
is equiripple in the region 0 < w < m. For this windoW a closed form
expression in the frequency domain, based on Chebyshev polynomials, is
available. This can be found in Helms [1971]. The window coefficients in
the time domain can be found by performing an inverse Fourier transform.
Details are omitted.

3.2.2 The Prolate Sequence: Another Optimal Window

The Kaiser window is a good approximation to a class of optimal windows
called prolate spheroidal (or just prolate) Wave sequences v(n) [Slepian, 1978].
A prolate sequence is a real sequence of finite length N + 1 and unit energy,
with the energy in the frequency region 0 < w < 1 minimized. The quanti-
ties N and o can be regarded as parameters of the prolate sequence family.
In all our discussions we assume 0 < g < T.

We now shoW how the optimal window coefficients can be computed.
This makes use of some results from matrix theory (especially Rayleigh’s
principle), reviewed in Appendix A. The derivation will show how we can
pass from optimal windows to optimal (least squares) filters (Sec. 3.2.3).

Matrix-vector formulation of the Optimization Problem

Assume v(n) is causal with length N + 1 so that V(z) = =N=0 v(n)z-n.
Define

(3.2.9)

This is the quantity to be minimized under the unit-energy constraint. Be-
cause of Parseval's theorem we can Write the constraint either in the time
domain or in the frequency domain:

(3.2.10)

[Remember v(n) is real.] Fig. 3.2-4 demonstrates the idea: we minimize the
area of the shaded region, for a fixed total area under the curve. Minimizing
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@s under the constraint (3.2.10) is equivalent to maximizing

(3.2.11)

Figure 3.2-4  Design
of the optimal window.

Defining the vectors

(3.2.12)
we have V(ejw) = vT(n)e(ejw) so that

(3.2.13)

(We could have used VT instead of vt since v is real; we will use vt for
notational uniformity). We can rewrite the objective function ¢ as

(3.2.14)
where

(3.2.15)
The (N + 1) x (N + 1) matrix R(w) has (m,n) element

(3.2.16)

so that R(w) is Hermitian. Its imaginary part Q(w) is therefore antisym-
metric. So, vi Q(w)v = 0 (since v is real). Thus, @ can be simplified to

(3.2.17)

where P has (m, n)th entry

(3.2.18)
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The unit-energy constraint (3.2.10) can also be rewritten in terms of v as

that is, v has unit norm. Summarizing, the problem of finding the unit-
energy window function v(n) with smallest energy in 0 < w < 1 has been
converted to the problem of finding a unit-norm vector v which maximizes
(3.2.17).

Solution to the Optimization Problem

Now the matrix P is evidently real and symmetric (so it is Hermitian).
From Rayleigh’s principle (Appendix A) we know that all the eigenvalues
of P are real, and that ¢ is maximized under the constraint (3.2.19) if, and
only if, v is an eigenvector corresponding to the largest eigenvalue AN. We
can therefore compute the coefficients of the optimal window v(n) simply
by computing this eigenvector. There exist standard techniques such as the
power-method (Appendix A) for this computation. The eigenvalue AN is
the quantity (3.2.11) after maximization, and satisfies AN < 1 [in view of
(3.2.10)].

Design Example 3.2.2: Optimal Window

As an example, let ¢ = 0.1 and N = 32. The optimum window com-
puted in the above manner has response shown in Fig. 3.2-5 which also
shows the Kaiser window response with same N, and 3 = 4.55. The agree-
ment between the plots demonstrates that the Kaiser window is an excellent
approximation to the optimal window. The parameter o of the optimal win-
dow has the same role as the tradeoff parameter (3 of the Kaiser window.
It is intuitively clear that if we increase g, then the optimum window has
smaller peak side lobe level. This is indeed the case as one can verify by
plotting V(ejw) for different values of o.

Notice that there are precisely 16 transmission zeros of V(ejw) in the
range 0 < w < T, that is, a total of 32 on the unit circle. More generally, the
optimal window always has all zeros on the unit circle. This is a consequence
of the properties of P, as will be elaborated.

Properties of P

The quantity @ is the energy of the window in the region 0 < w < ¢
and cannot be zero for o > 0. This statement is true for any nonzero v(n),
hence any nonzero v. In other words, P is positive definite for any o > 0.
It is also clear from (3.2.18) that P is Toeplitz (Appendix A). So, P is real,
symmetric, positive definite and Toeplitz.

Denote the eigenvalues of P by Ai, 0 < i < N. We have Ai > 0 due to
positive definiteness. Combining with AN < 1, we get

(3.2.20)
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Less obvious is the fact [Slepian, 1978] that the above inequalities are strict,
that is, Ai < Ai+1. This means that the eigenvectors are unique (up to scale)
so that, in particular, the optimal window Vv is unique.

Zeros of the window. Based on this uniqueness, one can show (Prob-
lem 3.6) that all the zeros of the optimal window V(z) lie on the unit
circle. This implies, in turn, that v(n) is a symmetric sequence, that is,
v(n) = v(N —n). [It cannot be antisymmetric, as it would mean V(ejO) = 0]
Redefining v(n) to be v(n + M), where M = D2, we obtain the zero-phase
optimal window which can now be used in (3.2.4) to design h(n). The filter
is guaranteed to have linear phase because of the symmetry of v(n).

Figure 3.2-5 Design example 3.2.2. Responses of the optimal window and the
Kaiser window.

3.2.3 Optimal Lowpass Eigenfilters

As discussed in Sec. 3.1, there are several classes of optimal filters, accord-
ing to the choice of the performance measure (or objective function) to be
minimized. In general, FIR filters based on the window approach do not
yield filters which are optimal in any sense, even if the window is optimal in
some sense.

An exception is the rectangular window which yields a filter H(ejw)
which is optimal in the least squares sense, that is, the integral

is minimized, where is the ideal response (3.2.1) (see Problem 3.5).
These filters, however, suffer from Gibbs phenomenon as seen earlier. Fur-
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thermore, the above integral includes the transition band error, which should
actually be excluded.

In this section, we introduce lowpass eigenfilters [Vaidyanathan and
Nguyen, 1987a]. These are optimal in the least squares sense but the objec-
tive function itself is defined differently, by formulating it as a sum of the
passband and stopband errors. The error of approximation in the transition
band is not included. Such an objective function is obtained by adding a
second term to (3.2.9), which was used to design an optimal window. The
second term represents a ‘squared measure' of the deviation from the ideal
passband response. The formulation is such that we can obtain the optimal
filter coefficients from an eigenvector of an appropriate matrix.

The eigenfilter approach is different from other types of least squares
approaches for FIR design, which are obtainable by matrix inversion, for
example, the one described in Roberts and Mullis [1987, Sec. 7.2].

Why eigenfilters? One of the advantages of eigenfilters over other
FIR filters (such as equiripple filters) is that, they can be designed to incor-
porate a wide variety of time domain constraints such as the step response
constraint, Nyquist constraint and so on, in addition to the usual frequency
domain requirements. The filter coefficients are obtained simply by com-
puting an eigenvector of a positive definite matrix, which is derived from
the time and frequency domain specifications. Eigenfilters can be used for
optimal design of the so-called Nyquist filters, which are ideally suited for
interpolation filtering (Chap. 4). Nyquist filters also find use in filter bank
design.

To introduce the basic idea of eigenfilters, consider Type 1 linear phase
filters (Table 2.4.1). These have the form H(z) = =Nn=0 h(n)z-n, where h(n)
is real and satisfies h(n) = h(N — n). Moreover N is even. The amplitude
response is

(3.2.21)

where M = N/2 and
(3.2.22)

The aim is to find the coefficients b such that an appropriate objective
function is minimized. The objective function should reflect the stopband
energy (energy in ws < w < 1) as well as the passband accuracy. We will
formulate the minimization problem in such a way that the optimal b can
be computed as an eigenvector of an appropriate positive definite matrix.

Since H(ejw) = e-joMHR(w) we have
(3.2.23)
So the stopband energy is

(3.2.24)
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where

The (m, n) element of P is

(3.2.25)

which can be evaluated in terms of ws, m, and n. The passband error can
be included in the objective function as follows. The amplitude response at
zero frequency is given by HR(0) = bT1, where 1 is the vector of all 1's. By
taking this as a reference, the passband deviation at any frequency can be
written as

(3.2.26)
so that the quantity

(3.2.27)
is a measure of mean square passband error, where

(3.2.28)
Now define the objective function

(3.2.29)

where 0 < a < 1. Here a is a tradeoff parameter between passband and
stopband performances. We then have

(3.2.30)

where
(3.2.31)

It is easily verified that R is a real, symmetric and positive definite matrix
(Problem 3.8). The unit-norm vector b which mimimizes ¢ is the eigenvector
corresponding to the minimum eigenvalue A0 of R, and can be calculated
using the ‘power method' described in Sec. A.8, Appendix A.

Design Example 3.2.3. Linear Phase Eigenfilters.

Consider an example with bandedges wp = 0.31,wS = 0.51, and order
N = 30. Fig. 3.2-6 shows the magnitude responses of the eigenfilters designed
as above, for two values of a. The passband details are also shown separately.
It is clear that as a is increased the peak stopband ripple is reduced at the
expense of peak passband ripple.
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Even though the role of the tradeoff parameter a is very dear, there is
no known analytical relation between a and the relative peak ripple sizes 6!
and 62.

Figure 3.2-6 Design example 3.2.3. Magnitude response plots for linear phase
eigenfilters.

Extensions of the eigenfilter approach. The approach is readily
extended to the case of other types of filters such as highpass and bandpass
filters, differentiators, and Hilbert transformers [Pei and Shyu, 1989]. It is
also possible to extend the method to include certain flatness constraints in
the passband. Finally, extensions to the case of two dimensional filters have
also been made. These extensions permit faster design of two dimensional
FIR filters than most other methods. See Nashashibi and Charalambous
[1988], and Pei and Shyu [1990].

3.2.4 Equiripple FIR Filters

The filters which result from the Kaiser window approach, and the eigenfilter
approach are such that the ripple size grows as we move closer to the band
edge. Because of this, the filter performace exceeds (i.e., is better than the
specifications) for most frequencies except around wp and ws. So, the filter
has actually been overdesinged in this sense. If this can be avoided, it is
possible to reduce N while meeting the same set of specifications. The way
to achieve this is to distribute the approximation error uniformly in the
passband (and also in the stopband). This leads to the idea of equiripple
FIR filters (Fig. 3.2-7). Here all the local extrema of the approximation
error in the passband are equal. The same is true in the stopband.

For a given set of specifications wp,ws, 61, and 42 it turns out that an
equiripple filter has the smallest possible order N. A more precise state-

56 Chap. 3. Digital filters



ment of optimality is given by the so-called 'alternation theorem' [Rabiner
and Gold, 1975]. Based on this theorem, the problem of designing equiripple
linear phase filters has been solved, by using a technique called the Remez
exchange algorithm. The resulting algorithm [Parks and McClellan, 1972],
often referred to as the McClellan-Parks algorithm, permits unequal ripple
sizes in each of the frequency bands (unlike the window techniques). We skip
details here. Suffice it to say that the method is very systematic, and per-
mits one to design a large family of linear phase FIR filters (all four Types in
Table 2.4.1.) including differentiators and Hilbert transformers. Special re-
quirements such as time domain constraints and flatness constraints cannot,
however, be incorporated in a straightforward manner.

Estimating the filter order. Several formulas have been proposed
for estimating the order of a linear phase equiripple lowpass filter with spec-
ifications wp,ws, 81,62. The most well known of these are:

(Kaiser's formula)
(3.2.32)

(Bellanger’s formula),

Figure 3.2-7 An
equiripple amplitude
response.

where Af = (ws-wpy21. Notice the simplicity of these formulas. They also
clearly reveal the nature of dependency of N on the ripple sizes and Af. A
more accurate (but not as simple) formula has been reported by Herrmann,
and can be found in Rabiner, et al. [1975].

3.2.5 Spectral Factorization

In some filter design problems, one finds it necessary to compute a spectral
factor (defined below) of a transfer function. An example is in the design of
FIR QMF banks (Chap. 5). We now describe the basic idea.

Let H(z) = =Mn=-M h(n)z-n be a zero-phase FIR transfer function so
that H(ejw) is real. If in addition H(ejw) = 0 for all w, we can factorize it
as H(ejw) = HO(ejw) 2. That is, we can write

(3.2.33)
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where HO(z) is causal FIR with order M, that is, HO(z) = =Ml hO(n)z-n.

The filter HO(z) is said to be a spectral factor of H(z). [The notation HO(z)
is described in Sec. 2.3.]

To see how HO(z) can be identified, recall that the zero-phase property
of H(z) implies that, if zk is a zero then so is 1/z* The property H(ejw) = 0,
on the other hand, implies that if zk is on the unit circle, then it is a zero of
even multiplicity (e.g., a double zero). Fig. 3.2-8 shows a typical set of zeros
of the function H(z). Once these zeros are known, we can obtain HO(z) by
assigning to it the zero located at either zk or 1-zk, for each k. The figure

demonstrates this. If zk is assigned to HO(z), then 1/z% is assigned to HO(z).
We can write HO(z) as

(3.2.34)

so that

(3.2.35)

Equation (3.2.33) can now be satisfied for appropriate constant c.

Figure 3.2-8 Obtaining a spectral factor of a transfer function H(z).

Nonuniqueness. The spectral factor HO(z) is in general not unique
because we can replace a particular factor (1 — z-1zk) in HO(z) with (1 —
z-1-7K) (and readjust c) so that (3.2.33) continues to hold. In other words, if
we replace a zero zk of HO(z) with 1-Zk, the result continues to be a spectral
factor after scaling. If H(z) happens to have all zeros on the unit circle,
then the spectral factor is unique (up to a scale factor of unit-magnitude).
If we choose all zeros such that they satisfy zk < 1 (or zk = 1) then
we have a minimum (or maximum) phase spectral factor. Such a spectral
factor is unique (up to a scale factor of unit magnitude). If H(z) is free
from unit-circle zeros, then these become strictly minimum (or maximum)
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phase factors. Finally, note that if the zero-phase function H(ejw) is an even
function of w, then h(n) is real. In this case we can find HO(z) with real
coefficients; in particular we can find minimum or maximum phase spectral
factors with real coefficients.

The most obvious technique to compute a spectral factor is to find the
2M zeros of H(z) and pick an appropriate subset of M zeros to define HO(z).
There exist more efficient procedures, which do not compute the zeros of
H(z) [Mian and Nainer, 1982], and [Friedlander, 1983]. One such procedure
is described in Appendix D.

Application in Nonlinear Phase FIR Design

In some applications linearity of phase is not particularly important,
even though FIR filters are still preferred for other reasons. This situation
arises, for example, in one dimensional QMF banks and will be discussed
in Chap. 5. In general, by relaxing the linear phase property, it is possible
to reduce the filter order required for a given set of magnitude response
specifications. We now describe a technique [Herrmann and Schussler, 1970],
for designing nonlinear phase FIR filters.

Let G(z) = =Mn=-Mg(n)z-n be a zero phase FIR filter designed using
any one of the techniques described above. Let 42 denote the peak stopband
ripple. Now consider the filter

(3.2.36)
The impulse response of H(z) is given by

(3.2.37)
The frequency response of H(z) is

(3.2.38)

Since G(z) has zero phase, G(ejw) is real, so that H(ejw) is obtained just by
lifting the response G(ejw) by 62. This is demonstrated in Fig. 3.2-9 for the
equiripple case. It is clear that H(ejw) = 0 for all w, so that we can find a
spectral factor HO(z) of H(z) (as demonstrated in Fig. 3.2-8). In particular
if G(z) has real coefficients, then so does HO(z). The spectral factor HO(z)
in general does not have linear phase. As explained above it is possible to
find a minimum or maximum phase (or even a mixed phase) spectral factor.

Suppose we wish to design a minimum phase equiripple FIR filter HO(z)
with bandedges wp,ws, and peak ripples €1, and €2. We then design a zero
phase filter G(z) with same bandedges wp and ws but with ripples as follows:

(3.2.39)
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3.3

We can now obtain H(z) = G(z) + 82 and compute the minimum-phase
spectral factor HO(z).

Notice that the stopband attenuation of G(z) is more than twice that
of HO(z). For example suppose HO(z) requires a stopband attenuation of
60 dB. Then H(z) has stopband attenuation 120 dB and G(z) has 126 dB.
Spectral factorization of systems with such large attenuation is typically
subject to considerable numerical error, particularly if the procedure involves
the computation of zeros of H(z).

Figure 3.2-9 Lifting the amplitude response of a zero-phase filter G(z) to obtain
H(z) with nonnegative amplitude response.

1 IR FILTER DESIGN

The most striking advantage of FIR filters is that they can be designed to
have exact linear phase. In situations where linearity of phase is not impor-
tant, it is sometimes preferable to use IIR filters because an IIR filter usually
requires a much lower order for the same set of magnitude response speci-
fications. (See Design Example 3.3.2 later). This implies fewer multipliers
and adders.

For various reasons, a comparison of IIR and FIR filters is more involved
that the above remark appears to imply. First, there exist techniques (which
are perhaps less readily available), for the design of nonlinear phase FIR
filters. For a given magnitude response specification, such FIR filters are less
expensive than the linear phase versions. Second, there are some commercial
signal processing chips, specifically tailored for the implementation of FIR
filters. In these chips, the implementation of IIR filters is not necessarily
more efficient. Finally, there exist multistage design techniques for the design
of narrowband FIR filters (Sec. 4.4) which are sometimes more efficient
than IIR filters. It is, therefore, difficult to provide a comparison that is
fair under all contexts. In this text, we will merely compare the number
of multiplications and additons. It should be cautioned that in many cases
these do not provide a good measure of complexity.

Working Principle of IIR Filters
An IIR filter has transfer function of the form H(z) — P(zyD(z), where
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P(z) and D(z) are polynomials in z-1. The zeros of P(z) are typically located
on the unit circle, and therefore, have the form ejwk. They can be seen in
the magnitude response plots, since H(ejwk) = 0. These zeros are there to
provide stopband attenuation. Figure 3.3-1(a) shows a typical plot of the
numerator P(ejw) with several zeros on the unit circle.

Figure 3.3-1 (a) The roles played by the numerator P(z) and denominator
D(z), (b) typical behavior of " D(ejw) with a single pole, and (c) clustering of
poles around the bandedge.

The plot of P(ejw) has the appearance of a lowpass filter, but the
passband response is very poor (i.e., not close to unity). The denominator
D(z) compensates for this. Figure 3.3T(a) also indicates a typical response
of " D(ejw) , which grows as w increases in the passband. Thus the mag-
nitude 1"D(ejw) is large near the band edge. The product of the two solid
curves tends to approximate unity (the broken curve) in the passband.

Figure 3.3-1(b) demonstrates the behavior of 1" D(ejw) for the case
where D(z) = 1 - RejBz-1. Here R and 8 are the radius and angle of the
pole of 1D(z). We see that the plot has a peak near the pole angle 6. This
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peak gets steeper as the pole moves closer to the unit circle (i.e., as R - 1).
Since 1 "D(ejw) is required to have large values near the passband edge, the
zeros of D(z) (i.e., poles of the filter) are typically crowded near the band
edge [Fig. 3.3-1(c)].

Effect of narrow transition-bands. If the transition bandwidth Af
is small, then the quantity P(ejwp) gets smaller, so that 2" D(ejwp) has
to be 'large’ in order for the product to be close to unity. For this reason,
the zeros of D(z) are placed closer to the unit circle for 'sharp cutoff' filters.
Summarizing, the poles are typically crowded near the band edge, and for
sharp cutoff filters they are also close to the unit circle.

3.3.1 The Bilinear Transformation

The most common technique to design an IIR filter is to first design an
analog filter Ha(s) and convert it into a digital filter using a transformation.
Suppose we are given an analog filter with rational transfer function Ha(s),
having magnitude response Ha(jQQ) as shown in Fig. 3.3-2. This is lowpass
with band edges Qp and Qs, peak passband ripple 8! and peak stopband
ripple 2. (The frequency oo is shown at a finite point just for convenience.)
Suppose we take the transfer function and replace the Laplace transform
variable s as follows:

(bilinear transformation). (3.3.1)

The result is a rational function H(z) in the variable z—1. With s = jQ and
Z = ejw, we have from (3.3.1)

(3.3.2)

which shows that the mapping transforms Q = 0 into w = 0, and Q = oo into
w = 1 (Fig. 3.3-3). The above mapping is called the bilinear transform and
is the most popular technique to convert analog filters into digital. It can
be shown that the transformed version H(z) is stable if and only if Ha(s) is
stable.

Figure 3.3-2 A typical magnitude response of an analog lowpass filter.
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The digital filter response H(ejw) corresponding to the analog response
of Fig. 3.3-2 has the appearance shown earlier in Fig. 3.1-1(b). The band-
edges wp and ws are determined by (3.3.2) as

(3.3.3)

The sizes of the ripples 81 and 42 are unchanged.

If we are given the digital filter specifications wp,ws,d1, and 82, a design
procedure based on bilinear transformation would run as follows: (a) find
Qp = tan(wp?2) and Qs = tan(ws?2), (b) design the analog filter which
meets the specifications Qp,Qs,81, and 82, and (c) transform Ha(s) into
H(z) using bilinear transformation. It remains only to provide details for
the second step, that is, the design of classical analog filters.

Figure 3.3-3 The frequency mapping property of bilinear transformation.

3.3.2 Analog Filters

The magnitude response for most of the standard analog filters takes the
form

(3.3.4)

where F(Q) is a real-valued rational function of Q. Clearly Ha(jQ) < 1
The extreme values of the response are

(3.3.5)

Butterworth (or Maximally Flat) Filters

The simplest and most illuminating example is the Butterworth filter
for which F(Q) = (@-Qc)N. So, the frequency response has the form

(3.3.6)

This is monotone lowpass, and varies from unity (at Q = 0) to zero (at
Q = oo). See Fig. 3.3-4. The quantity N is the order of Ha(s). Here is a
summary of the main features:
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1. We have Ha(j<Qc) 2 = 1/2 which corresponds to an attenuation of 3 dB.
So Qc is called the three dB point. This is not necessarily the passband
or stopband edge.

2. For Q >> Qc we have

(3.3.7)

This shows that as Q is increased by one decade (i.e., by a factor of ten)
the attenuation increases by 20N dB. This is called the 20N dB/decade
property (equivalent to 6.02N dB/octave).

3. The first 2N — 1 derivatives of Ha(jQ) 2 are equal to zero at Q = 0 (see
Problem 3.11). This is the maximum possible humber of derivatives
that can be zero, since Ha(jQ) has order N. So, the Butterworth filter
is said to be maximally fat at Q = 0.

Figure 3.3-4 The magni-
tude response characteristics
of a Butterworth filter.

Expression for the digital transfer function. Since the response
is zero only at Q = #oo, the transfer function Ha(s) has the form

(3.3.8)

where
(3.3.9)

(assuming Ha(0) = 1.) In other words, Ha(s) is an all-pole filter. After
bilinear transformation, the digital Butterworth filter therefore has the form

(3.3.10)

All zeros are now at z = —1, that is, at w = m which corresponds to Q =
oco. Note that H(z) can be implemented with 2N adders and only N + 1
multipliers (rather than 2N + 1) because of the special form of the numerator.

Location of poles. The N zeros of Da(s) [poles of the Butterworth
filter Ha(s)] lie on a circle in the s plane, with center at the origin and radius
Qc. The pole angles are given by

(3.3.11)
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Given Qc and N, one can compute the pole locations as above, and hence
the coefficients of Da(s). The pole locations are demonstrated in Fig. 3.3-5
for N = 3. The pole angles are 23 and 1 so that, with Qc = 1, we have

(3.3.12)

Figure 3.3-5  Pole loca-
tions of a third order Butter-
worth filter.

So, the third order Butterworth lowpass filter with Qc = 1 is given by
Ha(s) = 1-1s3 + 2s2 + 2s + 1).

Note that the transfer function is determined completely by the two
parameters N and Qc. We have only two degrees of freedom available. In
the above example, we see that Da(s) is a symmetric polynomial; this is true
for any N as long as Qc = 1.

From the above demonstration, and more generally from (3.3.11) one
can see that the poles are in the open left half plane (i.e, Re[s] < 0) so that
the filter Ha(s) is always stable.

Design Example 3.3.1: Butterworth Filters

Suppose we wish to design a Butterworth filter with Qp = 2n x (10kHz),
Qs = 2m x (20kHz), As = 60 dB and Amax = 0.1 dB. This is illustrated in
Fig. 3.3-6. Since As = —10logl0 Ha(jQ2s) 2 and so on, we obtain

(3.3.13)

Figure 3.3-6 Specifications in dB for the Butterworth example.
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Dividing one equation by the other we eliminate Qc and obtain N =
12.677. This is the estimated order which should be rounded to the nearest
integer, that is, N = 13. Since Qp,Qs,As and Amax are known we can solve
for Qc from either equation in (3.3.13). Suppose we use the second equation,
then Qc = Qs~1.701. The resulting filter has the specified As, and the value
of Amax is slightly better than specified (because N was rounded up).

Equiripple Filters

As in the digital FIR case, an analog filter with equiripple response
requires smaller order for the same set of ripple sizes and transition band-
width. A Chebyshev filter, for example, has an equiripple passband. This
is obtained by choosing F(QQ) = eCN(Q-Qp) in (3.3.4) where CN(x) is the
so-called Nth order Chebyshev polynomial. The transfer function Ha(s)
corresponding to this is again all-pole. The filter is optimal in the sense
that among all all-pole filters of order N, this filter has the smallest Amax
for fixed Qp,Qs, and As. We will not discuss Chebyshev filters (or inverse
Chebyshev filters) further in this text. (However, Problems 3.13 and 3.14
cover some details.)

Elliptic filters

An elliptic filter is an improvement over Chebyshev in the sense that
both the passband and stopband are equiripple, as in Fig. 3.3-2. From
the figure, we see that there are transmission zeros at finite frequencies, so
that Ha(s) is not an all-pole filter. The filter is optimal in the sense that
among all rational transfer functions of a given order, elliptic filters have the
smallest Amax for fixed Qp,Qs, and As.

Design of Elliptic Filters

A simple algorithm for the design of analog elliptic filters is presented
in pp. 125 to 128 of Antoniou [1979]. The algorithm designs the coefficients
of Ha(s) with magnitude response specified as in Fig. 3.3-2. It is assumed
that the bandedges are related as

(3.3.14)

This is called the frequency normalization condition. Given the quantities

01,02 (equivalently Amax,As) and r Qp~Qs, the algorithm first estimates
the required order which will meet these specifications. This estimate may
turn out to be a noninteger. The coefficients of Ha(s) with nearest integer
N (or next higher integer N, if the user prefers it) are then calculated.

The complete procedure to design a digital elliptic filter is as follows:
given the specifications wp,ws, 8! and 32, compute

(3.3.15)
If these bandedges do not satisfy (3.3.14) then define
(3.3.16)

66 Chap. 3. Digital filters



where a = (QpQs)-0.5 > 0. This ensures that the frequency normalization
QpQs = 1 holds. We can now design the analog elliptic filter H'a(s) whose
specifications are Qp,Q's,Amax and As. If we define Ha(s) = H'(as), then
Ha(s) meets the specifications Qp,Qs,Amax and As. We finally obtain the
digital filter as

(3.3.17)

The filter can then be implemented using the direct form or cascade form
structure (or, better still, using the structure to be derived in Section 3.6,
which has least complexity).

For odd N the elliptic lowpass digital filter has one real pole, and a zero
at z = —1. The remaining poles are complex conjugate pairs and so are the
zeros. Furthermore all zeros are on the unit circle. Based on these facts we
can express the transfer function as

(3.3.18)

where wk are the transmission zeros, @k are the pole angles and Rk the pole
radii for the complex conjugate pairs. (See Chap. 2, discussions around egs.
(2.1.18) and (2.1.19).) The orderis N = 2m+ £, where £ = 0 or 1 depending
on N.

The numerator of the above H(z) is a symmetric polynomial. The direct
form as well as cascade form structures can be implemented with a total of
2N additions and about 1.5N (rather than 2N + 1) multipliers because of
numerator symmetry.

Design Example 3.3.2: Elliptic Filters

Suppose the digital lowpass filter specifications are wp = 0.15m,ws =
0.20m, &1 = 0.01 and &2 = 0.001. (This &2 implies 60dB attenuation.) By
using the above procedure in conjunction with the algorithm in Antoniou
[1979], the order of the elliptic filter is estimated as N = 6.56, which can be
rounded to the integer seven. The resulting digital filter H(z) has magnitude
response as shown in Fig. 3.3-7(a), and satisfies the stated specifications.
The group delay response is shown in Fig. 3.3-7(b). Since this is not con-
stant, the system has a nonlinear phase response. The group delay shows a
variation from about 10 samples to 60 samples.

By using (3.2.32) one can verify that a linear phase FIR equiripple filter
with same specifications requires an order of 101. The 7th order elliptic IR
filter can be implemented with only 7 multiplications (as we will see in Sec.
3.6) whereas the FIR filter requires 51 multipliers!

Comparison with Butterworth filters. Because of the equirip-
ple nature in both passband and stopband, the elliptic filter requires much
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smaller order that a Butterworth filter meeting same specifications. In the
above design example, a Butterworth filter would require an order of 28.

Figure 3.3-7 Design example 3.3.2. Responses of the elliptic filter. (a) Magni-
tude and (b) group delay.
3.3.3 Properties of Digital Elliptic Filters

Elliptic filters are very important in the design of multirate filter banks, as
we will see in Chap. 5. For this reason we now describe their most impor-
tant features. Since we will be using digital elliptic filters (i.e., bilinearly
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transformed analog elliptic filters), our discussions will directly address the
digital transfer function H(z).

For any real transfer function, we can write H(ejw) 2 as H(z-1)H(z)
(with z = ejw). This is notationally more convenient. For an elliptic filter,
H(z-1)H(z) takes the form

(3.3.19)
where R(z) is a rational function of the form

(3.3.20)
The order of H(z) is given by N = 2m + £, with

(3.3.21)
If we set z = ejw then R(z)R(z-1) = R(ejw) 2 = 0 so that

(3.3.22)
It is easily verified that

(3.3.23)

This is illustrated in Fig. 3.3-8 for N = 5 and N = 6. There are precisely
N frequencies (in the region 0 < w < 2m) where H(ejw) = 1, and N
frequencies where H(ejw) = 0. For odd N we have £ = 1 so that H(ejO) =
1 and H(ejrt) = 0. For even N this is not true. By inspecting plots of
the form in Fig. 3.3-8 one can immediately identify the order of the elliptic
filter.

The frequencies wk, as we know, are the transmission zeros of H(z).
The frequencies 6k, where H(ejw) = 1 (maximum magnitude) are called

the reflection zeros.f The values of 6k and wk are such that the response
H(ejw) has equiripple behavior.

The elliptic family. It turns out that for a given wp, ws, and N, the
quantities 6k and wk are fixed. The parameter e in (3.3.19) acts as a tradeoff

t This name has to do with doubly terminated LC realizations of electrical
filters; the interested reader can see Chap. 12 in Antoniou [1979].
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between 8! and &2 (Fig. 3.3-9). By varying e, one spans a complete family
of elliptic transfer functions. Each e corresponds to a unique elliptic filter in
the family.

Figure 3.3-8 Typical responses of digital elliptic lowpass filters (a) odd order
(N =5), and (b) even order (N = 6).

Figure 3.3-9 Two responses belonging to the same elliptic family characterized
by wp, ws and N. The two curves differ only in terms of e.

Uniqueness. Suppose G(z) is an Nth order stable equiripple lowpass
filter with bandedges wp,ws and the same number of ripples as an Nth order
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3.4

elliptic lowpass filter. Then, G(z) is elliptic and belongs to the elliptic family
characterized by N,wp, and ws.

ALLPASS FILTERS

Allpass filters play an important role in some multirate applications. Promi-
nent among these is the two channel IR QMF bank to be discussed in Sec.
5.3. In this section we study the fundamental properties of allpass functions.
A tutorial on allpass filters can be found in Regalia, et al. [1988].

Definition and examples. A discrete-time transfer function H(z) is
said to be allpass if

(3.4.1)

that is, the magnitude response is constant. As a result the frequency re-
sponse has the form
(3.4.2)

where @(w) is the phase response. If H(ejw) =1 (i.e., ¢ = 1) we say that
H(z) is unit-magnitude allpass.

Simple examples of allpass functions are: H(z) = 1 and H(z) = z-K
where K is an integer. A nontrivial example is the first-order filter

(3.4.3)
To verify that this is allpass, rewrite

(3.4.4)
so that the frequency response is

(3.4.5)

Clearly, H(ejw) = 1 for all w.

More complicated examples can be obtained by multiplying first order
filters of the form (3.4.3) because the product of two allpass functions is
allpass. The sum of two allpass functions is, in general, not allpass. For
example H1(z) = 1 and H2(z) = z-1 are allpass but their sum has magnitude
response 2cos(w2) which is not constant.

3.4.1 Properties of Allpass Functions

We restrict attention only to allpass functions which can be expressed as
rational functions (though not necessarily with real coefficients). In what
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follows, we will freely use notations and terms such as “tilde”, “dagger”,
subscript asterik, and “generalized-Hermitian’, which are summarized in
Sec. 2.3.

It is often convenient to express the property (3.4.1) in terms of the
z-transform variable. For this note that (3.4.1) is equivalent to the property

(3.4.6)
Invoking analytic continuation (Sec. 2.4.3), we see that this implies

(3.4.7)
We can verify this for (3.4.3) as follows:

(3.4.8)

The allpass property, expressed in the form (3.4.7), will be frequently used
to derive deeper properties.

A. Poles and Zeros of Allpass Functions

The poles and zeros of an allpass function occur in reciprocal conjugate
pairs. In other words, if a is a pole, then its reciprocal conjugate 1-&* is a
zero. This is easily verified for (3.4.3), where the pole = —a and the zero
= —1-3* indeed.

For a general proof, note that (3.4.7) yields

(3.4.9)

In view of the definition of the 'tilde' notation this implies
(3.4.10)

Conjugating both sides and exploiting the meaning of "'subscript asterik" we
see that this in turn implies H(Z-a*) = 0. That is, L&* is a zero of H(z).

B. Most General Form of Rational Allpass Functions

Suppose HnN(z) is an Nth order rational allpass function with a pole at
al. This implies that HN(z) has a zero at 1-a{ so that HN(z) has the factor
(-al + z-1y11 — alz-1). This factor is clearly a first order allpass function.
We can then write

(3.4.11)
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By taking magnitudes on both sides, we see that HN-1(z) is allpass (with
order N — 1). Repeating the above factorization process, we arrive at

(3.4.12)

where (3 is a (possibly complex) constant. Summarizing, we have proved
that an Nth order allpass function has the general form (3.4.12). Note that
if ak = 0 for some Kk, the corresponding factor reduces to z-1. Thus, the
special case HN(z) — B—N is also covered by the above form.

Most general unfactored form; The form (3.4.12) is induced by
the fact that the poles and zeros of an allpass function come in reciprocal
conjugate pairs. It is often convenient to write an expression for an allpass
function in unfactored form. This can be done by multiplying out the factors
in (3.4.12). It can be shown that after such multiplication the result takes

the form
(3.4.13)

We have restricted d to be real and positive because b0 can be arbitrary.

Except for the scale factor d, the numerator coefficients are therefore
obtainable by writing the denominator coefficients in reverse order and con-
jugating them. In other words if H(z) = A(zyB(z) with

(3.4.14)
then an = dbN-n. We can express this in the z-domain as

(3.4.15)
so that (3.4.13) reduces to the form

(3.4.16)

So any rational allpass filter can be expressed as above.
Conversely, the form (3.4.12) is allpass since each factor is allpass. Sim-
ilarly any transfer function of the form (3.4.16) is allpass because

(3.4.17)
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which has magnitude d for all w.

Summarizing, an Nth order rational function H(z) is allpass if and only
if it can be expressed as in (3.4.16) for d > 0 [or equivalently as in (3.4.12)].
Furthermore, for unit-magnitude allpass functions, we can always take d = 1.

C. Energy Balance Property (Losslessness)

Let u(n) and y(n) be the input and output of a stable allpass filter
H(z). In view of (3.4.1) we have Y(ejw) = c U(ejw) . So,

(3.4.18)

for any input u(n). By Parseval's theorem this implies

(3.4.19)

Thus Ey = c2Eu, that is, the energy-amplification factor c2 is independent
of the input. In particular ifc = 1 in (3.4.1), then the output energy is equal
to the input energy for all possible input sequences. For this reason allpass
functions are also called lossless functions, (whether ¢ = 1 or not).

D. Time Domain Meaning of Allpass Property

In Problem 2.14, we defined the autocorrelation r(k) of a sequence h(n)
to be

From this problem we can conclude that the z-transform of r(k) is given by

R(z) = H(z)H(2). If H(z) is allpass, H(z)H(z) = c2. This implies that r(k)
is an unit pulse function, that is,

(3.4.20)

Conversely, if r(k) is an unit pulse, then its z-transform H(z)H(z) is con-
stant and H(z) is allpass. Summarizing, H(z) is allpass if and only if the
autocorrelation of h(n) is a unit pulse.

E. The Modulus Property of Allpass Functions

We now derive a property of causal stable allpass functions based on a
well-known theorem in the theory of complex variables [Churchill and Brown,
1984] called the maximum modulus theorem. This property was observed in
[Schussler, 1976].
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«The maximum modulus theorem. Let F(z) be a complex function
of the complex variable z. Let F(z) be analytic on and inside a closed
contour C in the z-plane (Fig. 3.4-1). Let the maximum value of F(z) on
the contour C be denoted Fmax. Then we have F(z) < Fmax for all z inside
the contour C. Equality holds somewhere inside the contour if and only if
F(z) is constant.

Figure 3.4-1 Pertaining to
the maximum modulus theo-
rem.

Now let H(z) be a transfer function with all poles strictly inside the unit
circle of the z-plane. Let H(ejw) have maximum value (that is, maximum
over all w) equal to ¢. By defining F(z) = H(1~Z) and invoking the maximum
modulus theorem we conclude that H(z) < c for all z outside the unit
circle. Equality holds for some z outside the unit circle if and only if H(z)
is a constant.

In particular, if the above H(z) is allpass, then more is true. In this
case we can also make a claim about the magnitude H(z) inside the unit
circle. For this note that (3.4.7) implies

(3.4.21)

for any a. Using the fact that H(a) = H*(1~t) and conjugating both sides,

(3.4.22)

For a > 1 we know H(a) < c so that by taking magnitudes we get

(3.4.23)
for every a outside the unit circle, that is, H(B) > c for every [3 inside the

unit circle.
Summarizing we have proved this: if H(z) is a causal stable allpass

function with H(ejw) = c, then

(3.4.24)
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unless H(z) is constant for all z. The example H(z) = z-1 provides a simple
way to remember the above inequalities.

F. The Monotone Phase-Response Property

Consider the delay function H(z) = z-K,K > 0. This is allpass with
H(ejw) = e-jwK. The phase response is @(w) = —Kw, which is a monotone
decreasing function spanning a total range of 21K as w increases from 0 to
21. More generally, let H(z) be any rational Nth order allpass function. If
H(z) has all poles inside the unit circle, we will prove that ¢(w) is monotone
decreasing, and spans a range of 21tN as w increases from 0 to 2.

First order case. First consider H(z) = (a* + z-1{1 + az-1). The
pole is at z = -a. Let R and 6 represent the radius and angle of the pole so
that a = —Rej6. Then

(3.4.25)
The phase response @(w) can be obtained from this as

(3.4.26)
Differentiating with respect to w we arrive at

(3.4.27)

If the pole is inside the unit circle, we have 0 < R < 1. So d@(w)/dw < 0,
that is, ¢@(w) is monotone decreasing.

Figure 3.4-2 demonstrates this for 6 = 0 (real pole at —R). As w varies
from 0 to 2m, the range spanned by the phase is 2rt. For arbitrary 6 we can
simply shift this curve by 8 (and add a constant) to obtain ¢(w). If the pole
is outside the unit circle, then all discussions remain the same except that
the phase is monotone increasing.

Figure 3.4-2 The mono-
tone phase response of a first
order allpass filter (6 = 0).
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Since an Nth order stable allpass function is a product of N first order
stable allpass functions, its (unwrapped) phase response is the sum of the
N individual phase responses, and is thus monotone. The range spanned by
@(w) is the sum of individual ranges, that is, 27IN.

The converse result. Suppose H(z) is a causal Nth order allpass
function with monotone decreasing phase response spanning a range of 21tN
as w varies from 0 to 2m. This is possible only if each of the N first order
factors has a monotone decreasing phase response. So, each factor is stable,
showing that H(z) is stable.

Some of the above discussions turn out to be conceptually simpler if we
think in terms of continuous time allpass functions. See Problems 3.17 and
3.18.

3.4.2 Simple Structures for Allpass Filters

Figure 3.4-3 shows the direct form structure for the first order allpass func-
tion H(z) = (a*+z-1y1{1 +az-1). It has one (complex) delay, two (complex)
multipliers and two (complex) adders. For the real coefficient case we have
a = a* and the equivalent structure of Fig. 3.4-4 can be obtained (since a
and z-1 are interchangeable in this case).

Figure 3.4-3  The direct
form structure for a first or-
der allpass function.

An arbitrary Nth order allpass function can be implemented by cascad-
ing first order sections (Fig. 3.4-5). For the real-coefficient case we know
that poles (and zeros) are either real or occur in complex conjugate pairs so
that the allpass function is a product of first order sections of the form

(3.4.28)

Figure 3.4-4 A one-multiplier implementation of a real coefficient first order
allpass function.
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second order sections of the form

(3.4.29)

and a scale factor (.

Figure 3.4-5 Cascade form implementation of an Nth order allpass function.
Each section is first-order allpass.

Figure 3.4-6 Direct form structures for second order real coefficient allpass
fuctions (a) 4 multiplier, 2 delay version, and (b) 2 multiplier, 4 delay version.
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A real-coefficient second order section can be implemented as in Fig.
3.4-6(a) requiring four multipliers, four adders and two delays. A second
implementation requiring two multipliers, four adders and four delays is
shown in Fig. 3.4-6(b). It is possible to obtain more efficient implementa-
tions having the smallest possible number of multipliers and delays. One
of these is the one-multiplier lattice structure to be derived in the next sec-
tion. Several other interesting allpass structures have been derived in Mitra
and Hirano [1974], by use of a systematic technique called the multiplier
extraction approach. Also see Szczupak, et al. [1988].

3.4.3 Lattice Structures for Allpass Filters

We now derive an allpass structure called the cascaded lattice structure, also
known as the Gray and Markel structure [Gray and Markel, 1973]. Such a
structure can be derived for any Nth order stable unit-magnitude allpass
filter, and has the property that all multipliers have magnitude less than
unity. Its importance lies in the fact that the transfer function remains stable
(and allpass) inspite of multiplier quantization, as long as the multiplier
magnitudes remain less than unity. The derivation of this structure depends
on the following result.

«Theorem 3.4.1. The order reduction step. Let Gm(z) be an
mth order causal, stable, unit-magnitude allpass function. Then it can be
implemented as in Fig. 3.4-7 where (a) km < 1, and (b) Gm-1(z) is a
causal, stable, unit-magnitude allpass function with order m - 1. o

Proof. Gm(z) has the form Gm(z) = z-mBm(z)»Bm(z) where
(3.4.30)

Bm(z) has all zeros inside the unit circle, since Gm(z) is stable. Now Fig.
3.4-7 implies

(3.4.31)
Equivalently, by inversion of this, we have

(3.4.32)
that is,

(3.4.33)

Our aim is to show that there exists km with km| < 1, such that the right-
hand side above does indeed have the form z-1Gm-1(z), with Gm-1(z)
having the stated properties. It is clear that km must be such that the poly-

nomial Bm(z) — kmz-mBm(z) has order m — 1 (so that it can be taken as
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the denominator of Gm-1(z).) By using the definition of tilde we see that
this polynomial has highest term

(3.4.34)
so that the only possible choice of km is

(3.4.35)

Figure 3.4-7 Generation of an allpass function Gm(z) from a lower order allpass
function Gm-1(z).

Now the constant term in the numerator polynomial z-mBm(z) — k*mBm(z)
is ifm,m — kmbm,0 which automatically reduces to zero by the above choice
of km. As a result, the ratio on the righthand side of (3.4.33) has the form
z-1Am-1(zyBm-1(z), where Am-1(z) and Bm-1(z) are polynomials in z-1
with order < m - 1. From the relation z-1Am-1(z) = z-mBm(z) — k'mBm(z)
it is easy to verify that Am-1(z) = z-(m-1)Bm-1(z) so that Gm-1(z) =
z-(m-1)Bm-1(z)»Bm-1(z).

Summarizing, the above choice of km ensures that Gm-1(z) in (3.4.32)
is indeed a causal allpass function, with order m — 1. [It cannot be less than
m — 1, as Gm(z) in (3.4.31) has order m.] To prove that km < 1, note that
the magnitude of the product of all roots of Bm(z) is equal to bm,mHbm,0.
Since all poles of Gm(z) are inside the unit circle, this implies km < 1
indeed.

Next, let a be a pole of Gm-1(z). From (3.4.32) we then have 1 —
kmGm(a) = 0 so that Gm(a) = #km > 1 In view of the modulus
property (3.4.24), this implies a < 1 proving that all poles of Gm-1(z) are
inside the unit circle, that is, Gm-1(z) is stable.

Repeated Application of the Order Reduction Step

We can repeat the order reduction step, and express Gm-1(z) in terms
of a reduced order allpass function Gm-2(z). If we continue this we finally
obtain the constant function G0 with GO = 1. This proves that an Nth
order unit-magnitude allpass function GN(z) with all poles inside the unit
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circle can be implemented with the cascaded lattice structure of Fig. 3.4-8,
with km < 1for all m. The N quantities km are called the lattice coefficients
of GN(z). All multipliers (km and km) in the structure have magnitude less
than unity.

The real-coefficient case. If GN(z) has real coefficients, then kN is
real [see (3.4.35)], so that GN-1(z) also has real coefficients. So all the lattice

coefficients km are real. Since G0 has the form BO~BO, we have G0 = 1.

The Lattice Guarantees Stability and Allpass Property

We saw above that any causal, stable, unit magnitude allpass function
GN(z) can be implemented as in Fig. 3.4-8, where km < 1 and GO = 1
Conversely, the transfer functions Gm(z) indicated in the figure are stable
unit-magnitude allpass filters, as long as km < 1 and GO = 1. This can
be proved by a minor variation of the above reasonings (Problem 3.19).
One consequence of this property is that, stability and allpass property are
preserved inspite of quantization of km, as long as the quantized multipliers
satisfy km <1 and GO = 1

Figure 3.4-8 (a) The cascaded lattice structure, and (b) details of the rectan-
gular boxes labelled km.

Variations of the Lattice Structure

Many variations of the lattice structure are known. We now present
two of these, which are particularly attractive in practice. To derive these,
notice that the structure of Fig. 3.4-7 can be schematically represented as
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in Fig. 3.4-9, where the quantities Tij(z) are

(3.4.36)

Figure 3.4-9 Schematic redrawing of Fig. 3.4-7.
More generally, for arbitrary Tij(z), the relation between Gm(z) and

Gm-1(z) is given by

(3.4.37)

Thus, Gm(z) is unchanged if we change T01(z) and T10(z) in such a way that
the product T10(z)T01(z) is unchanged. For example if

(3.4.38)

where
(3.4.39)

then Gm(z) is unchanged, for a given Gm-1(z). The resulting lattice section,
shown in Fig. 3.4-10, is called the normalized lattice. An advantage of this
structure is that the internal signals are automatically scaled in a certain
sense [Gray and Markel, 1975].

Figure 3.4-10 The nor-
malized lattice section.
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For the special case of real coefficient filters, the choice

(3.4.40)

results in a useful structure, requiring only one multiplier per lattice section!
This structure is shown in Fig. 3.4-11, and requires an extra adder. The
complete allpass lattice structure, therefore, requires N real multipliers, N

Figure 3.4-11  The one-
multiplier lattice section for
real coefficient allpass filters.

3.5 SPECIAL TYPES OF FILTERS

We now summarize a number of special transfer functions, that arise fre-
quently in this text.

1.
2.

3.

Linear phase transfer functions (Sec. 2.4.2).

Allpass transfer functions (Sec. 3.4).

Bounded and BR transfer functions. If H(z) is stable and such that
H(ejw) < 1, then we say that H(z) is bounded. A bounded transfer

function with real coefficients is said to be bounded real (BR).
Lossless transfer functions. A transfer function is said to be lossless if
it is stable and allpass. The name arises from the fact that for such
a system the input and output energies are related as Ey = c2Eu, for
all finite-energy inputs. (If c2 = 1, the name "lossless" is particularly
appealing, but this condition is not there in the definition.)

LBR transfer functions. A lossless transfer function with real coeffi-
cients is said to be (LBR). So an LBR function is a real-coefficient
stable allpass function.

Power complementary transfer functions. Two transfer functions HO(z)
and H1(z) are said to be power complementary if

(3.5.1a)

This can also be rewritten as
(3.5.1b)
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3.6

with z = ejw. Since our filters are always rational functions, this con-
dition holds for all z (Sec. 2.4.3). In practice the transfer functions
are scaled so that c2 = 1. Thus, if HO(z) is a good lowpass filter, then
H1(z) is a good highpass filter. As a generalization, a set of M transfer
functions Hk(z) is said to be power complementary if

(3.5.2)

This concept will be used in many chapters.

7. Mth band or Nyquist(M) filters. These will be described in Section
4.6.1.

IR FILTERS BASED ON TWO ALLPASS FILTERS

3.6.1 The Allpass Decomposition Theorem

A wide family of practical transfer functions including Butterworth, Cheby-
shev, and elliptic filters can be represented as

where AO(z) and Al(z) are stable unit-magnitude allpass filters. This has
been observed by a number of authors, for example, Fettweis [1974], Con-
stantinides and Valenzuela [1982], Ansari and Liu [1985], Saramaki [1985],
and Vaidyanathan, et al. [1986].

The following special case is particularly noteworthy: Let the transfer
function HO(z) be Butterworth, Chebyshev or elliptic lowpass, with order
N. Let n0 and n! denote the orders of AO(z) and Al(z). Then the following
things are true.

1. If N is odd, AO(z) and Al(z) have real coefficients, and N = n0 + nl1.
2. If N is even, AO(z) and Al(z) have complex coefficients and n0 = nl =

N-2. In this case, the coefficients of Al(z) are conjugates of those of

A0(2).

The proof of the first statement (odd N) follows from the theorem to
be proved next. In this text, only odd N will be of interest, and will be used
in Sec. 5.3 (alias-free IR QMF banks). See Vaidyanathan et al. [1987] for
details of even N, which will not be considered here. Also see Problem 3.20.

The fact that a sum of two allpass filters can give rise to good lowpass
behavior might occassion an initial surprise. To appreciate the basic idea,
recall that the allpass functions have frequency responses A0(ejw) = ejp0(w)
and Al(ejw) = ejpl(w). Now the behavior of the magnitude of

(3.6.1)
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is governed by the phase difference @0(w) — @1(w). From Sec. 3.4.1 we know
that the phase responses of stable allpass filters are monotone decreasing
functions. Figure 3.6-1 shows typical sketches of @0(w) and @1(w) which will
ensure that HO(z) is a good lowpass filter. In the passband @O(w) = @1(w) so
that HO(ejw) = 1. In the stopband @0(w)-l(w) = 1 so that HO(ejw) = 0.

Thus, an appropriate behavior of relative phases of the two allpass filters
can give rise to a good lowpass response. More generally, we will now state
and prove the following result.

«Theorem 3.6.1. Allpass decomposition. Let HO(z) and H1(z)
be two Nth order bounded real (BR) transfer functions (Sec. 3.5) with
irreducible rational forms HO(z) = PO(zyD(z) and H1(z) = Pl(zyD(z)

where,

(3.6.2)

Suppose the following conditions are satisfied:
1.PP0(z) is symmetric and P1(z) antisymmetric, that is,

(3.6.3)
2. HO(z) and H1(z) are power complementary, satisfying (3.5.1b) with

c=1
Then HO(z) and H1(z) can be expressed as

(3.6.4)

(3.6.5)
where A0(z) and Al(z) are stable real coefficient allpass functions

(3.6.6)
with orders n0 and n1, respectively. Moreover N = n0 + nl, <o

Comments
1. The BR nature of HO(z) and H1(z) means that these are stable, that
the coefficients pOn,pln and dn are real and that the magnitudes on

the unit circle are bounded by unity.
2. The allpass functions A0(z) and Al(z) have unit magnitude on the unit

circle and their orders AO0(z) and Al(z) add up to N.
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3. Out of the N poles of HO(z), a subset of n0 poles are assigned to A0(z)
and the remaining n! poles assigned to Al(z). This partitioning of the
poles of HO(z) completely determines its numerator. The zeros of HO(z)
are, therefore, not independent parameters any more. The transfer func-
tion has only N degrees of freedom.

4. Figure 3.6-2 indicates a structure which implements the two transfer

functions.

Figure 3.6-1 Demonstrating the phase responses of the two allpass functions.

Figure 3.6-2 Implementing two transfer functions by adding and subtracting
two allpass filters.

Proof of Theorem 3.6.1. First notice that (3.5.1b) can be rearranged

as
(3.6.7)

since c2 = 1. In view of (3.6.3) we have

(3.6.8)

Substituting into (3.6.7) we obtain PQ(z) - P2z) = z—ND(z)D(z), which
can be rewritten as
(3.6.9)
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Notice that PO(z)—-P1(z) = z—N(P0(z) + P1(z)) so that the zeros of PO(z)-
P1(z) are the reciprocal conjugates of those of PO(z) + P1(z).
We know that the zeros of D(z) are inside the unit circle so that those

of D(z) are outside. So, none of the zeros of PO(z) + P1(z) can be on the
unit circle (from (3.6.9)). Let nl be the number of zeros of PO(z) + P1(z)
inside the unit circle. Then, there is a factor of D(z), denote it D1(z), of
order nl which is also a factor of PO(z) + P1(z). Clearly, PO(z) + P1(z) has
n0 N — nl zeros outside the unit circle. As seen from (3.6.9) there is then a
factor of D(z), say DO0(z), of order n0 which is also a factor of PO(z) + P1(z).
Clearly DO0(z) is a nOth order factor of D(z). Summarizing we can always

write
(3.6.10)

where

(3.6.11)

are factors of D(z), and a is a real nonzero constant.
As the orders of DO(z) and D1(z) add up to the order of D(z), we get

(3.6.12)

By using (3.6.10) and (3.6.12) in (3.6.9) we obtain
(3.6.13)

But the symmetry relation (3.6.8) along with (3.6.10) also leads to this
equation, with a in place of 4. This implies a = 1. We take a = 1
(because the other choice a = —1 does not change the magnitude responses
of HO(z) and H1(z) anyway). Dividing both sides of (3.6.10) and (3.6.13)
by D(z) we finally arrive at

(3.6.14)

Rearranging (3.6.14), we therefore obtain (3.6.4) and (3.6.5).

3.6.2 Elliptic, Butterworth, and Chebyshev Filters

Figure 3.6-3 shows the typical magnitude response of a fifth-order elliptic
lowpass filter HO(z) = PO(z)yD(z). The coefficients are known to be real,
and the magnitude is bounded by unity so that HO(z) is BR. We know that
all the zeros are on the unit circle. The zero at w = m contributes to the
factor (1+2z-1) and the complex conjugate pairs of zeros contribute to factors
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of the form (1 — 2z-1 coswk + z-2). So, the numerator PO(z) is indeed a
symmetric polynomial.

Figure 3.6-3 A fifth order elliptic lowpass filter, and its power complementary
response.

The figure also shows the magnitude of the power complementary filter
H1(z). Clearly, Hl(ejw) is equal to zero at frequencies where, HO(ejw)
takes the maximum value of unity. H1(ejw) has one zero at w = 0 and
two complex conjugate pairs of zeros on the unit circle so that all the zeros
are on the unit circle again. The zero at w = 0, however, contributes to an
antisymmetric factor (1 — z-1). As a result, the numerator P1(z) of H1(z) is
antisymmetric. Summarizing, HO(z) has a symmetric numerator and H1(z)
has an antisymmetric numerator.

Figure 3.6-4 Example 3.6.1. Magnitude response of a 3rd order elliptic filter.

More generally, if HO(z) represents an odd order lowpass Butterworth,
Chebyshev or elliptic filter, the above conclusions remain valid. That is, the
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numerator of HO(z) is symmetric and that of H1(z) is antisymmetric. We
can, therefore, apply Theorem 3.6.1 to conclude that HO(z) and H1(z) can
be expressed as in (3.6.4) and (3.6.5).

Example 3.6.1

Consider the third order elliptic lowpass filter

(3.6.15)

whose magnitude response is shown in Fig. 3.6-4. The reader can verify
that HO(z) can be expressed as

Evidently AO(z) and Al(z) indicated above are unit-magnitude allpass.

Efficiency of the Allpass Based Structure

The cost of the implementation of Fig. 3.6-2 (say an elliptic filter) is
equal to the cost of the two allpass filters plus the two adders. We know from
Sec. 3.4.3 that a real coefficient allpass filter of order nk can be implemented
with nk multipliers. So, the structure requires only n0 + n1 = N multipliers.
For this cost, we get two filters HO(z) and H1(z), that is, we require N/2
multipliers per filter! In contrast, a direct form implementation of a single
elliptic filter would require as many as 1.5N multipliers (even after taking
numerator symmetry into account)!

The Pole Interlace Property

Given an odd order elliptic transfer function HO(z) = PO(zyD(z), what
is the procedure to identify the allpass functions AO0(z) and Al1(z)? One
method would be to identify P1(z) using (3.6.7), and compute the zeros of
P0O(z) + P1(z). The zeros inside the unit circle determine D1(z), and those
outside are used to determine D0(z). The allpass functions can then be found

from (3.6.6).
There exists a simpler procedure, whenever the zeros of D(z) [poles of
HO(z)] are known. Let the poles of HO(z) be z0,z1,..., with pole angles

80,61, ... Let the numbering of poles be such that 80 < 81 < .... Then the
poles of AO(z) are given by z2k and those of Al(z) by z2k+1. This is called the
pole interlace property [Gazsi, 1985]. Using this we can identify the allpass
functions as demonstrated in Fig. 3.6-5.
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Figure 3.6-5 Demonstration of interlace property. The nine poles of H0(z) are
split into those of A0(z) and Al(z) as indicated.

Case When N is Even

What happens if the filter has even order? Consider a sixth order elliptic
lowpass filter HO(z) = PO(zyD(z) with response as shown in Fig. 3.6-
6. In the region 0 < w < m, there are three zeros. Thus we have three
complex conjugate pairs of zeros, giving rise to three factors of the form
(1 — 2z-1 coswk + z-2) for the numerator PO(z). This numerator, therefore,
is symmetric.

Figure 3.6-6 A sixth or-
der elliptic lowpass filter and
its power complementary re-
sponse.

Now consider the power complementary response H1(ejw) which is also
shown in the figure. This is zero whenever HO(ejw) is unity. Since HO(ejw)
does not have a maximum at w = 0, we conclude that Hl(ejw) # 0atw = 0.
So the numerator P1(z) of H1(z) does not have the factor (1 — z-1). In fact
P1(z) has three factors of the form (1 — 2z-1 cos 6k + z-2) because it also has
three pairs of complex conjugate zeros on the unit circle. As a result P1(z)
is symmetric rather than antisymmetric. More generally whenever HO(z) is
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a Butterworth, Chebyshev or elliptic lowpass filter of even order, the above
conclusion remains true. That is, the numerators of HO(z) and H1(z) are
both symmetric. So, the conditions of Theorem 3.6.1 are not satisfied.

In this case it can be shown [Vaidyanathan, et. al., 1987] that we can
still express HO(z) as 0.5[A0(z)+AlL(z)], where A0(z) and Al(z) are complex-
coefficient allpass filters, and the coefficients of A1(z) are conjugates of those
of AO(z). Finally, note that if HO(z) is bandpass or bandstop, then it can
often be implemented in terms of real allpass filters, even if its order is even.
(Example: start from an odd order elliptic lowpass filter and replace z with
z2 or —-z2.)

TABLE 3.7.1 Comparison of four techniques for lowpass filter design.
The specifications are wp = 0.15m, wS = 0.20m, 81 = 0.01 and &2 = 0.001.

Method IR IR FIR FIR
elliptic Butterworth equiripple Kaiser window
Special ~ Optimal Maximally Linear phase. Linear phase.
features in minimax flat at Also optimal Very easy to
sense w=0n in minimax sense design
Required 7 28 101 146
order N
Complexity of 11 mul* 28 mul, 51 mul, 74 mul,
Implementation 14 add 56 add 101 add 146 add

(direct form)  (direct form)

* 7 mul and 22 add, if the allpass based structure is used (with one-multiplier lattice sections).

3.7 CONCLUDING REMARKS

In Sec. 3.1 to 3.3 we reviewed many techniques for digital filter design. A
summary and comparison of many of the earlier methods can be found in Ra-
biner and Gold [1975]. In Table 3.7.1 we have compared the filter orders and
computational complexities of several methods, for a given set of specifica-
tions on the magnitude response. It is clear that the IIR elliptic design is the
least expensive, but it introduces phase distortion. The FIR filters, on the
other hand, have exact linear phase, but are more expensive. As explained
at the beginning of Sec. 3.3, the complexity in terms of multiplications and
additions is not always a fair measure of comparison. One should take into
account the architecture of the implementation and, if possible, use more
efficient FIR implementations (e.g., multistage implementations, Sec. 4.4).
The following Chapters will show that in the context of multirate signal
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processing, some of the methods we described are particularly suitable, for
example, window techniques, eigenfilter techniques and IIR elliptic designs.
For this reason, we have elaborated them in this chapter. We will see later
(Sec. 5.3) that IIR filters based on a sum of two allpass functions (Sec. 3.6)
are particulary useful in filter bank designs.
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3.1.

3.2.

3.3.

3.4.

PROBLEMS

Let H(z) = =Nn=0 h(n)z-n be a Type 1 linear phase FIR filter and let G(z) =
> Nn=0g(n)z-n with

(P3-1)

Prove that G(z) is also a linear phase filter. Assuming that the amplitude
response of H(z) is as in Fig. 3.2-7, give a qualitative plot of the amplitude
response of G(z). Clearly indicate the bandedges and ripple sizes in terms of
the known quantities wp,wS, 61,62. What sort of filter is G(z) (i.e., lowpass or
highpass or ...)?

Let G(z) be an ideal transfer function such that G(ejw) =1 for0 < w < w4
and zero elsewhere.

a) Consider the new system H(z) = G(z2). Plot H(ejw) for0 <w < T
b) Consider the system constructed according to the following flowgraph:

Figure P3-2

Plot the magnitude response of this new system for 0 < 0w < . What kind of
a filter is this (i.e., lowpass or highpass or ...)?

Let H(z) and H(z) be two lowpass filters. Let 6! and &2 be the peak passband
and stopband ripples for H(z), and &1 and &2 the corresponding ripples for
H(z). Assume that all these ripples are very small compared to unity. The
cascaded filter H(z)H(z) is clearly lowpass. Show that its peak passband
ripple < 31 + 61, and peak stopband ripple < max(52,62).

Consider a zero phase FIR lowpass filter H(z) with the frequency response
shown in Fig. P3-4(a). Here 6! and 62 represent the peak ripple sizes. Our
aim is to generate a better filter by making multiple use of the filter H(z). In
Fig. P3-4(b)-(d) we have shown three structures which attempt to do this.

a) In each case give a qualitative plot of the amplitude response and ver-
ify that the resulting filter continues to be lowpass with (nearly) same
bandedges as H(z).

b) In each case find the peak to peak passband and stopband ripple. Assum-
ing 81 = 0.0025 and 32 = 0.002, compute all these ripple sizes, and present
them in the form of a neat table.

c) If you wish to design a filter which is better than H(z) in the passband,
which of the three methods would you choose?

d) If you wish to design a filter which is better than H(z) in the stopband,
which of the three methods would you choose?

e) If you wish to design a filter which is better than H(z) in the passband
and stopband, which of the three methods would you choose?
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3.5.
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f) Show how these three structures should be modified if H(z) is not zero-
phase, but Type 1 linear-phase with order N (with Fig. P3-4(a) repre-
senting the amplitude response).

Figure P3-4

Note. You can assume that 6! and 42 are 'sufficiently small' in order to make
wise engineering simplification of your expressions.
Let

(P3.5a)

where ®k(w) is a set of orthonormal functions in the range a < ® < b, that is,
Jhok(w)dm (w)dw = 8(k — m). In other words, F(w) is a linear combination
of an orthonormal set of basis functions ®k(w) in the interval a < w < b. The
most common example is when

(P3.5b)
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In this case, the above summation reduces to the familiar Fourier transform of
the sequence f(k).

a)Suppose we wish to approximate F(w) with the finite summation

(P3.5¢)

in the region a < w < b. We wish the approximation to be "best in the
least squares sense", that is, e fhaF(w)—FM(w)|2dw must be minimized.
Show that the choice f(k) = f(k),-M < k < M achieves this.

b) With f(k) = f(k), what is the minimized error e? Simplify as best as you
can.

c) Consider the window design procedure for zero-phase FIR lowpass filters.
Show that, if we use the rectangular window, the resulting filter is optimal
in the least square sense.

3.6. In Sec. 3.2.2 we stated that the matrix P in the real-coefficient optimal window
design problem is real, symmetric, positive definite and Toeplitz, with a unique
eigenvector (up to scale) for each eigenvalue. In this problem we use some or
all of these properties to derive two useful conclusions.

a) Prove that the optimal window is symmetric, that is, v(n) = v(N — n).
(Note: You can ignore the possibility of an antisymmetric window, as
that would imply a zero at @ = 0, which in turn conflicts the energy
maximization requirement.)

b) Prove that the z-transform V(z) of the optimal window v(n) has all zeros
on the unit circle.

Note: Part (b) was stated in text without proof. Evidently (b) implies (a).
However, an independent proof of (a) is easier than (b).

3.7. Shown in the following figure is an example of a typical bandpass response.

Figure P3-7

Here w0 is the center (or reference) frequency and wl,w2,w3,w4 represent the
bandedges. In Sec. 3.2.3 we described how to design lowpass eigenfilters, which
are optimal in the sense of minimizing the stopband and passband errors in a
certain least square sense. Describe how this can be extended for the design of
bandpass filters of the above form. Assume the filter to be Type 1 linear phase
FIR for simplicity.
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3.8.

3.9.

3.10.

3.11.

3.12.

3.13.
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Consider the method of Sec. 3.2.3 for design of lowpass eigenfilters. It is clear
from the definition of Es that it cannot be zero as long as ws # m. Similarly
Ep cannot be negative. Based on these physical considerations prove that the
Hermitian matrices P and R are positive definite (as long as a is restricted to
0<a<l).

Let H{z) be a Type 3 linear phase FIR filter, with passband in the range
0<wl <w < w2 <1 Suppose x(n) is a real signal with no energy outside the
passband of H(z). It is obvious that the output y(n) is real because h(n) and
X(n) are real. However, we also know that H(ejw) = ce-joN/2HR(w), where ¢
is a complex constant (c = j). Assuming that H(ejw) has a “good passband”,
that is, very small passband ripple, do you still think that y(n) has the form
y(n) = ax(n — M) where a is a real constant? {Hint: Try x(n) = cos(w0n + 6)
where w0 belongs to the passband and 8 is real.)

Find the coefficients of a second order digital lowpass Butterworth filter with
3 dB point at w = 0.2m.

Consider the Butterworth response (3.3.6). Show that the first 2N — 1 deriva-
tives are zero at Q = 0.

Suppose we wish to transform an analog filter Ha(s) into digital filter H(z).
Assume that the following transformation has been used: s = 1 — z-1. This is
called the backward difference approach. (The motivation for this substitution
is that s represents differentiation and 1 — z-1 represents a first difference.)
a) Suppose Ha(s) has all poles in Re[s] < 0. Does it necessarily mean that
H(z) has all poles inside the unit circle?
b) Suppose H{z) has all poles inside the unit circle. Does it mean that Ha(s)
has all poles in Re[s] < 0?
c) Instead of the above mapping assume that we use the mapping s =z —1
(forward difference approach). Repeat parts (a) and (b).

In this problem we shall give an overview of Chebyshev polynomials. Recall
that the hyperbolic cosine function is defined as cosh8 = (ef + e-@2. Let us
denote this as x, that is,

(P3.13a)

Here 6 could be real or complex. If x is real then either 8 is real or ef is the
conjugate of e-6.
a) For real 8 show that x = 1. Also justify that —1 < x < 1 if, and only if,
8 = jo where w is real.
b) Show that

(P3.13Db)

Hence, prove the recursion

(P3.13c)

where CN(x) = cosh(NB) = cosh(Ncosh-1 x). For example C1(x) —
cosh § = x.
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c) Evidently, CO(x) = 1 and C1(xX) = x. Prove by use of the recursion
(P3.13c) that CN(x) is a polynomial for any x. CN(x) is called the
Nth order Chebyshev polynomial. Give qualitative plots of CN(x) for
N =0,1,2,3,4.

d) Prove that CN(x) is an even polynomial (i.e., has only even powers of x)
for even N, and odd polynomial for odd N. Also show that CN(1) = 1
and that the highest power xN has coefficient 2N-1 for N = 1.

e) Show that all the N zeros of CN(x) are real and lie in the range —1 < x < 1.
(Hint. CN(x) = cosh(N8) = cos(Nw) for 8 = jw, w real.) So, in the region
X > 1, the behavior is monotone as demonstrated below.

Figure P3-13

f) Let CN(X) = cN(0) + cN(1)x + ...cN(N)xN. Let P(x) = p(0) + p(1)x +
.. + p(N)XN be some real coefficient polynomial with p(N) = cN(N).
Prove that

(P3.13d)

This shows that among all polynomials of order N with highest coefficient
equal to that of CN(x), the Chebyshev polynomial has the smallest peak
value in —1 < x < 1. So, the polynomial has the minimax property (i.e.,
maximum magnitude in—1=x=1is minimized).

3.14. Consider the response

(P3.14a)

where Qp > 0. This is called the Chebyshev response and a stable tranfer
function Ha(s) with this response is called a Chebyshev filter.

a) Justify that the magnitude response has the behavior shown in Fig. P3-
14, when N = 7. The quantity Qp is the passband edge, and e directly
controls the passband ripple size. The passband is equiripple. All the 2N
zeros of (P3.14a) are at Q = co.

b) By making wise engineering assumptions show that the required order N
(for a given set of specifications) can be estimated from

(P3.14b)
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3.15.

3.16.

3.17.

3.18.
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c) Plot the response Ga(jQ) 2 = 1— HagQ) 2. This should be lowpass with
equiripple stopband and monotone passband. A stable transfer function
Ga(s) with this behavior is called an inverse Chebyshev filter.

Figure P3-14

d) Suppose H(z) is obtained by use of bilinear transformation on Ha(s).
Specify any special feature that the numerator of H(z) might have.

For an analog elliptic lowpass flter Ha(s), assume that the bandedges are
related as QpQS = 1. Let Ga(s) be a stable filter such that Ga(jQ) 2 =
1 - Ha@grQ) 2
a) Qualitatively plot the responses Ha(jQ) 2 and Ga(jQ) 2 for N = 5.
b) Give a simple argument to justify that the reflection and transmission
zeros (ak's and BK's in Fig. 3.3-2) satisfy ak = 1Bk

Suppose we wish to design a digital lowpass filter with specifications wp,wS, !
and 82 as in Table 3.7.1. Verify that the required order N is as in the table,
for the two FIR cases and for the IIR Butterworth case.

In the continuous-time world a rational transfer function G(s) of degree N > 0
with real coefficients is said to be a reactance if it satisfies the following two
properties: (a) Re[G(jQ)] = 0 for all frequencies Q and (b) Re[G(s)] > 0 for
all s in the right half plane, that is, for all s such that Re[s] > 0. Now define a
discrete-time transfer function H(z) as follows:

(P3.17)

Show then that H(z) represents an allpass function with all poles strictly inside
the unit circle. (Note. It turns out that G(s) is a reactance if and only if
it is the input impedance of a lossless electrical network (LC network with
positive elements). This establishes the link between digital allpass functions
and continuous-time LC networks.)

Allpass functions have played an important role in continuous-time filter theory
also. Consider a causal system with transfer function

(P3.18)
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Here a and —a* are the pole and zero respectively.
a) Prove that this is allpass, that is, H(jQ) = 1.
b) Assuming Re[a] < 0 (that is, H(S) stable) prove by explicitly writing down
H(s) that H(s) < 1 for Re[s] > 0 and H(s) > 1 for Re[s] < 0.
c) Consider the following pole-zero diagram for H(s).

Figure P3-18

Show that the phase response at frequency Q is the angle 6(Q) indicated in
the figure. This shows, essentially by inspection, that this is a monotone
decreasing function of Q.
An Nth order unit-magnitude allpass function is a product of N first order func-
tions of the form (P3.18). So ifall the poles are in the left half plane, properties
(b) and (c) continue to hold. Since any discrete-time stable allpass function
can be derived from a continuous-time counterpart using bilinear transform,
this gives a second proof of these same properties for the discrete-time case.

3.19. Consider Fig. 3.4-7, and assume km < 1. Assume Gm-1(z) has all poles inside
the unit circle, and let Gm-1(ejw) = 1 for all w.
a) Show that Gm(ejw) = 1 for all w, and that all its poles are inside the unit

circle.

b) Consider the lattice structure of Fig. 3.4-8. Let GO = 1, and km < !
for all m. Show that the transfer function GN(z) has all poles inside the
unit circle, and that |GN(ejw)] = 1.

3.20. Generalization of allpass decomposition. Let HO(z) = PO(zyD(z) and H1(z) =
P1(zyD(z) be two stable transfer functions (with possibly complex coefficients)
of order N with

Assume that the following properties are true. (a) PO(z) is Hermitian, (b)
P1(z) is generalized-Hermitian (i.e., P1(z) = czN P1(z) for some ¢ with ¢ = 1)
and (c) HO(ejw) 2 + Hl(ejw) 2 = 1, (i.e., power complementarity). Prove that
HO(z) and H1(z) can be expressed as

where AQ(z) and Al(z) are stable unit-magnitude allpass of orders n0 and n!
with n0 + nl = N and where f = d =1

3.21. Let G(z) = A0(z) +Al(z), where A0(z) and Al(z) are allpass. Show that G(z)
is allpass if, and only if, Al(z) = cA0(z) for some constant c.
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4.0

4.1

Funmndarmentals of Multirate

Swvsterms

INTRODUCTION

This chapter is basic to the study of multirate systems and filter banks.
Section 4.1 introduces decimation, interpolation, and filter bank systems,
and Sec. 4.2 discusses interconnections of building blocks. The polyphase
decomposition is introduced in Sec. 4.3, along With some applications. Mul-
tistage filter design is discussed in Sec. 4.4. Several applications of multirate
systems are described in Sec. 4.5. Many special types of filters such as half-
band filters and Nyquist filters, and complementary filter banks are discussed
in Sec. 4.6. Finally, Sec. 4.7 introduces multigrid techniques which are Well
known in the literature on numerical computation.

Some of these topics have also been covered in various chapters of
Crochiere and Rabiner [1983]. However, a number of new topics are also
introduced here, for example, complementary filters (power complementary,
Euclidean complementary, etc.), and multigrid methods.

BASIC MULTIRATE OPERATIONS

4.1.1 Decimation and interpolation

The most basic operations in multirate digital signal processing are decima-
tion and interpolation. In order to describe these, two new building blocks
are introduced, called the decimator and the expander.

The M-fold decimator. Figure 4.1-1(a) shows the M-fold decimator,
which takes an input sequence x(n) and produces the output sequence

(4.1.1)

where M is an integer. Only those samples of x(n) which occur at time
equal to multiples of M are retained by the decimator. Figure 4.1-2 demon-
strates the idea for M = 2. The decimator is also called a downsampler,
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subsampler, sampling rate compressor, or merely a compressor. We will use
the term "decimator" consistently. As Will be mathematically substantiated,
decimation results in aliasing unless x(n) is bandlimited in a certain Way. In
general, therefore, it may not be possible to recover x(n) from yD(n) because
of loss of information.

Figure 4.1-1 The decimator and expander.

Figure 4.1-2 Demonstration of decimation for M = 2. The samples of x(n)
shown by heavy lines are retained.

The L-fold expander. Figure 4.1-1(b) shows a building block which
is commonly called an L-fold expander. This device takes an input x(n) and
produces an output sequence

(4.1.2)

Here L is an integer. Figure 4.1-3 is a demonstration of this operation for
L = 2. It is evident that the expander does not cause loss of information.
We can recover the input x(n) from yE(n) by L-fold decimation.

Other names for the expander are: sampling rate expander, upsampler,
and interpolator. Of these, the term 'interpolator’ is really a misnomer. We
will consistently use the term ‘expander' in this text. The expander is used
in interpolation, but a filter is required to complete the process; we will
see how the zero-valued samples are converted into interpolated samples by
using a lowpass filter at the output of the expander.
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Transform Domain Analysis of Decimators and Expanders

First consider the expander which is easier to analyze. We have

(4.1.3)

So YE(ejw) = X(ejwl). This means that YE(ejw) is an L-fold com-
pressed version of X(ejw) as demonstrated in Figs. 4.1-4(a),(b). The mul-
tiple copies of the compressed spectrum are called images, and we say that
the expander creates an imaging effect. [The quantity X(ejw) in the figure
is taken to be nonsymmetric With respect to w = 0, to improve clarity and
generality.]

For the M-fold decimator (4.1.1), we now derive an expression for the
output YD(ejw) in terms of X(ejw). We will show that

(4.1.4)

This can be graphically interpreted as follows: (a) stretch X(ejw) by a factor
M to obtain X(ejw/M), (b) create M - 1 copies of this stretched version by
shifting it uniformly in successive amounts of 21, and (c) add all these shifted
stretched versions to the unshifted stretched version X(ejw/M), and divide

by M. The stretched quantity X(ejw/M) does not have period 2m, but after
adding the shifted versions the result is periodic with period 2mt (which is a
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requirement for the Fourier transform of a sequence). See Figs. 4.1-4(c) and
4.1-5 which demonstrate these for M = 2, and 3.

Figure 4.1-4 Transform-domain effects of the expander and decimator. The
Fourier transforms of (a) the input signal x(n), (b) the expanded signal (L = 5),
and (c) the decimated signal (M = 2).

Proof of (4.1.4). The z-transform of yD(n) can be Written as

Define an intermediate sequence

(4.1.5)

so that yD(n) = xX(Mn) = x1(Mn). Now

(4.1.6)

This step is valid because x1(K) is zero unless k is a multiple of M. So

4.1.7)
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It only remains to express X1(z) in terms of X(z). For this note that (4.1.5)
can be Written as

(4.1.8)
where CM(n) is the ‘comb' sequence defined as

(4.1.9)
We can express the comb sequence as

(4.1.10)
where Wm is the Mth root of unity defined as

(4.1.112)

Figure 4.1-5 Demonstrating the frequency-domain effect of decimation with
M =3
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The subscript M on W is usually deleted, unless there is room for confusion.
We can now obtain

(4.1.12)
The inner summation above is equal to X(zWKk) so that from (4.1.7)

(4.1.13)

In terms of the frequency variable w this becomes (4.1.4) indeed.
We often use the following notation to indicate the relation (4.1.13):

(4.1.14)

This notation means that yD(n) is the M-fold decimated version of x(n).

Aliasing Created by Decimation

From Fig. 4.1-4(c), which demonstrates the effect of decimation for
M = 2, we see that the stretched version X(ejw/M) can in general overlap
with its shifted replicas. If this happens, we cannot recover x(n) from the
decimated version yD(n). This overlap effect is called aliasing.

Avoiding aliasing. It is clear that aliasing can be avoided if x(n)
is a lowpass signal bandlimited to the region w < mWM. The example in
Fig. 4.1-5 demonstrates this for M = 3. In this case we can recover X(n)
from the decimated version by use of an expander, followed by filtering,
as demonstrated in Fig. 4.1-6. This recovery scheme Works as follows: in
the frequency domain, the output V(ejw) of the expander is a compressed
version of YD(ejw) [part (c)]. By using a lowpass filter H(ejw) [part(d)] we
can therefore eliminate the images and extract the original spectrum X(ejw)
[part (e)].

The above condition on bandwidth is, however, not necessary to avoid
aliasing. For example if X(ejw) is zero everywhere in 0 < w < 21 except in
w!l < w < wl + 2-M for some wl, then there is no overlap between any pair
of terms in (4.1.4). Also see Problem 4.3. The most general condition for
alias-free decimation can be found in [Sathe and Vaidyanathan, 1993].

It can be verified (Problem 4.4) that the decimator and expander are
linear but time-varying (LTV) systems.

Decimation Filters and Interpolation Filters.

In most applications, the decimator is preceded by a lowpass digital
filter called the decimation filter [Fig. 4.1-7(a)]. The filter ensures that the
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signal being decimated is bandlimited. The exact bandedges of the filter
depend on how much aliasing is permitted. For example, in QMF banks
(Chapters 5-8), a certain degree of aliasing is usually permitted because this
can eventually be canceled off. The simplest form of lowpass decimation
filter has magnitude response as sketched in Fig. 4.1-7(b).

Figure 4.1-6 Recovering bandlimited x(n) from its decimated version.

Next, an interpolation filter (Fig. 4.1-8) is a digital filter that follows
an expander. The typical purpose is to suppress all the images. Thus, it
retains only the shaded portion of the compressed spectrum YE(ejw) in Fig.
4.1-4(b). Typically the interpolation filter is lowpass with cutoff frequency
L. In the time domain, y(n) is a convolution of yE(n) with the impulse
response h(n). The effect is that the zero-valued samples introduced by the
expander are filled with ‘interpolated’ values [Fig. 4.1-8(c)].
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Figure 4.1-7 (a) The complete decimation circuit, and (b) typical response of
the decimation filter.

Figure 4.1-8 (a) The complete interpolation circuit, (b) typical response of the
interpolation filter, and (c) examples of the sequence x(n), the filter h(n), and the
interpolated signal y(n).
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Figure 4.1-9 Demonstrating several possible choices for the interpolation filter.

More generally, it is possible to make other choices of the interpolation
filter, as demonstrated in Fig. 4.1-9 for L = 10. Here YE(ejw) has nine images
(unshaded copies in Fig. 4.1-9(a)). If the filter is chosen as in part (b), the
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filter output is as in part (c), and contains all information about X(ejw)
[which is the 10-fold stretched version of the shaded portion in part (a)]. If
the filter is as in part (d), then two images are retained. This is analogous
to cosine modulation of the shaded portion in part (a). See Problem 4.5 for
precise relation between cosine modulation and interpolation-filtering. Both
filtering schemes in this figure are such that the filter coefficients are real [so
that the filter output is real if x(n) is].

Fractional Sampling Rate Alteration

Figure 4.1-10 Pertaining to fractional decimation.

The above techniques permit us to alter the sampling rate of a signal
by an integer factor (such as L or M). In some applications, however, it is
necessary to change the rate by a rational fraction (such as L/M). For ex-
ample consider Fig. 4.1-10(a) which shows the transform X(ejw) of a signal
bandlimited to w < 2m-3. We cannot decimate the signal by two because
that Would create aliasing error. It appears to be possible to decimate by
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the factor 1.5 (so that the Fourier Transform gets stretched as shown by
broken lines). One procedure for this would be to convert the signal into a
continuous-time signal and resample at the lower rate. It is however simpler
to perform the fractional rate-alterations directly in the digital domain, by
judicious combination of interpolation and decimation.

Figure 4.1-10(b) shows a simple technique which can be used for this
purpose. For the example under consideration, we will take L = 2,M = 3 so
that the overall reduction of sampling rate is by the factor M/L = 3/2. The
quantity X1(ejw) = X(ej2w) is shown in part (c). If we design H(z) to be a
zero-phase lowpass filter with response as in part (d), then the filter output
X2(ejw) is the shaded part in part (c). Decimation by 3 finally results in
y(n) whose transform Y(ejw) is as shown by broken lines in part (a)

It is clear that this technique can be generalized to reduce the sampling
rate by any rational number M/L. In practice the quality of the filter H(z)
[i.e., passband and stopband ripples] determines the quality of the result [i.e.,
the degree to which Y(ejw) agrees with the stretched version in
the region 0 < w < 2m.] Fig. 4.1-11 demonstrates the time-domain meaning
of decimation by a factor of 3/2. The samples numbered 1,3,... are the
newly generated (interpolated) samples.

Notice that the permissible transition bandwidth of H(z) is not unduly
narrow. In the above example it can be as large as 11/3 (equal to the passband
width!). As a quick example, suppose we wish to be a linear phase
equiripple filter with peak ripples 81 = 82 = 0.01 (so that As = 40 dB). The
normalized transition bandwidth is Af = (- 3y21 = 1/6. The estimated
order from Sec. 3.2.4 is then N = 11 which requires only 6 multipliers and
11 adders for implementation.

Figure 4.1-11 A signal x(n) and the fractionally decimated version y(n). The
decimation factor is 3/2.

More generally the transition bandwidth of the filter is Af = (Tt-a}TIL
[where x(n) is bandlimited to w < o]. So, for a given g, the filter order is
proportional to L. In Sec. 4.3 we see how this system can be implemented
with even fewer computations per input sample, using a technique called
the polyphase approach. We will show that even though the filter order
goes up as L increases, the number of computations per output sample is
independent of L.
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The scheme of Fig. 4.1-10(b) also works when L > M. In this case, there
is an overall increase of sampling rate by L M. There exist other methods
for fractional sampling rate alteration. These combine filtering techniques
with polynomial fitting, and are more suitable when L M is a ratio of very
large integers. See Lagadec et al. [1982] and Ramstad [1984a].

The Physical Time Scale.

In the above we defined decimators and expanders purely as devices
which work on sequences of numbers x(n) to produce a related sequence
of numbers. Upon reflection, these definitions are somewhat strange. For
example, an M-fold decimator is a noncausal device, that is, output sample
yD(n) in general depends on x(m),m > n. (Thus, with M = 2, the sample
yD(1) = x(2).) The L-fold expander is also a noncausal device. To see this,
let L = 2 and think of negative values of n. The sample yE(—2) = x(—1)
which implies noncausality.

Figure 4.1-12 The physical time and frequency scales associated with a deci-
mator.
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Figure 4.1-13 Demonstration of various real-time dimensions that go with a
decimator.

Figure 4.1-14 Demonstration of real-time dimensions that go with an expander.
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However, when these devices are operated in real time, noncausality
does not arise. Figure 4.1-12 shows a sampled analog waveform xs(t) with
sampling instants labeled in multiples of T (sampling interval). The output
signal ys(t) is an undersampled version with samples spaced apart by 2T.
No physical noncausality is really involved. Typical Fourier transforms are
also shown in the figure.t Here Q is the real-time frequency variable in
radians/second, and Qs = 2T is the sampling rate for xs(t). There is no
physical stretching of the Q variable. Only the repetition rate of the basic
spectrum is changed by a factor of 2 (consistent with decimation factor = 2).

In Fig. 4.1-13 we indicate the various real-time frequencies for the
example of a 50-fold decimator with input sampling frequency of 8 kHz and
output sampling frequency 160 Hz. So the ‘digital' frequency 1 for the input
sequence corresponds to 4 kHz.The lowpass filter H(z) now has stopband
edge at ®50 (= 2r~100) which corresponds to 8,000/100 = 80 Hz. In other
words, the signal has to be bandlimited to 80 Hz before the sampling rate
can be cut down to 160 Hz.

The operation of the expander in real time is demonstrated in Fig. 4.1-
14 for L = 2, along with frequency domain quantities. In the frequency
domain there is really no fundamental difference between the input Xs(jQ)
and the output Ys(jQ). If we think of the plot of Xs(jQ) as a discrete-time
Fourier transform, we would label Qs as 2m whereas for Ys(jQ) we would
label 2Qs as 2.

4.1.2 Digital Filter Banks

A digital filter bank is a collection of digital filters, with a common input
or a common output. Both of these cases are shown in Fig. 4.1-15. The
system in Fig. 4.1-15(a) is called an analysis bank, and the filters Hk(z)
the analysis filters. The system splits a signal x(n) into M signals xk(n)
typically called subband signals. The system in Fig. 4.1-15(b) is called a
synthesis bank, and Fk(z) are the synthesis filters. These filters combine
the M subband signals into a single signal x(n). Figure 4.1-15(c)-(e) shows
typical frequency responses for the analysis filters. These could be marginally
overlapping, non overlapping, or very much overlapping, depending on the
application.

Example 4.1.1: The DFT Filter Bank

We will present a filter bank based on the DFT matrix (Sec. A.6, Ap-
pendix A). The M x M DFT matrix W has elements [W]km = Wkm
where W = e-j21/M. Now consider Fig. 4.1-16(a). Here x(n) is a
sequence from which we generate M sequences si(n) by passing x(n)
through a delay chain, so that si(n) = x(n — i). The matrix YW repre-t

t Frequency domain effects of sampling were reviewed in Sec. 2.1.4.
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sents the conjugate of W. t From the definition of W we, therefore,
have

(4.1.15)

Figure 4.1-15 Digital filter banks and typical filter responses.

In other words, for every value of time index n, we compute the set of
M signals xk(n) from the set of M signals si(n) according to the above

I Since WT = W, the quantity W* is same as W,
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equation which is exactly the inverse DFT (IDFT) relation given in Sec.
A.6 (Appendix A), except for a scale factor 1/M. From (4.1.15) we have

(4.1.16)

Figure 4.1-16 The simplest example of a uniform-DFT filter bank.

So we can write Xk(z) = Hk(z)X(z) where
(4.1.17)

with
(4.1.18)

Summarizing, the system is equivalent to an analysis bank with analysis
filters Hk(z) as above. Let us take a closer look at these filters. Equation
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(4.1.18) implies HO(ejw) = sin(Mw2) sin(w?2) , which is plotted in
part (b) of the figure. The filter Hk(z) has response

(4.1.19)

which is a shifted version of HO(ejw). So we have a bank of M filters,
and these are uniformly shifted versions of HO(z) (part(c) in the figure).
The responses evidently have large amount of overlap. Each analysis
filter in this example has order M, and offers about 13 dB of minimum
stopband attenuation (with respect to zero-frequency gain).

Uniform DFT banks. A filter bank in which the filters are related
as in (4.1.17) is called a uniform DFT filter bank, even though the matrix
appearing in Fig. 4.1-16(a) is W* rather than W.

Can we attach a physical meaning to xk(n) which are outputs of the
analysis filters? Like x(n), these are time-domain quantities (assuming that
n represents time). For convenience let us talk about the shifted version
xk(n + M - 1). For fixed n we have

(4.1.20)

after making a change of variables £ = M — 1 - i and using WM = 1. So,
xk(n+M — 1) is Wk times the kth point of the DFT of the M-point sequence

(4.1.21)

This sequence is nothing but a M-point segment of the input sequence x(n),
starting from time n. So the magnitude of xk(n + M — 1) represents the
magnitude of the (kth point of the) DFT of the sequence (4.1.21). As time
advances (that is, as n increases), this quantity gets updated that is, recom-
puted for the next segment of M samples. And this goes on for ever.

Summarizing, we can think of the filter bank of Fig. 4.1-16(a) as a
spectrum analyzer. The kth output xk(n) is the 'spectrum’ (i.e., kth point
of the DFT except for scale factor Wk) computed based on the most recent
M samples of the sequence x(n). Since xk(n) is the output of Hk(ejw), it
dominantly represents the portion of X(ejw) around the region w = 21tk~M.
Actually xk(n) represents some kind of averaged version of the exact spec-
trum X(ejw) at this frequency, because the filter actually permits a range
of frequencies to pass. The resolution of the spectrum analyzer can be im-
proved by increasing M. In any case, the overlapping nature of the filter
responses ensures that xk(n) tends to represent an averaged effect around
21tk/M.

Figure 4.1-17 explains the operation in a pictorial way. In practice
one can multiply x(m) with a window as indicated, in order to reduce the
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sidelobe level of the frequency response. This is equivalent to inserting the
multipliers ai just after the delay chain in Fig. 4.1-16(a). As time advances,
the window in Fig. 4.1-17 merely slides past the data, computing the M
DFT coefficients afresh for each increment of n. Thus, the window helps to
localize the time domain data, before computation of the Fourier transform.

Figure 4.1-17 The sliding
window interpretation of the
uniform DFT bank.

This sliding window mechanism gives rise to the idea of short-time
Fourier transform (STFT), discussed in Chap. 11. A generalization of this,
called the wavelet transform is also discussed in that chapter.

Reducing Overlap by Improving the Filters

In Example 4.1.1, the M analysis filters are obtained from a single filter
HO(z) (which we call the prototype filter) by uniformly shifting the response
according to the relation Hk(z) = HO(zWK). The filters themselves are not
very good (they had wide transition bands, and stopband attenuation of
only 13 dB) because the prototype (4.1.18) itselfis a very simple filter.

Now suppose that we use a higher order prototype HO(z) with a sharper
response, for example, as in Fig. 4.1-15(c). Then, the shifted versions have
reduced amount of overlap. Such systems with marginal overlap are used in
quadrature mirror filter banks (Chap. 5). In Sec. 4.3.2 we will show how
the DFT bank can be modified to implement these M filters at the cost of
(almost) one filter.

4.1.3 Time Domain Descriptions of Multirate Filters

So far we have seen three types of multirate filters: decimation filters, in-
terpolation filters, and fractional decimation filters [Figs. 4.1-7, 4.1-8, and
a0(b)]. For each of these, we give below the input-output relation in the
time domain:

(4.1.22)
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4.2

Note that the relation for decimation filter can be written in two ways:

(4.1.23)

INTERCONNECTION OF BUILDING BLOCKS

We now consider some interconnections of building blocks which occur com-
monly in multirate systems. Figure 4.2-1 shows a humber of interconnections
and equivalences which can be easily verified.

Figure 4.2-1 Simple identities for interconnected systems. All of these hold if
the decimators are replaced with expanders.

Decimator-expander cascades. Figure 4.2-2 shows two common in-
terconnections of a decimator with an expander. The two structures in the
figure are in general not equivalent (i.e., the decimator and expander do not
commute). For example, if L = M then we can verify that y2(n) = x(n)
whereas y1(n) = x(n)CM(n) where CM(n) is the comb sequence (4.1.9).

The two systems in Fig. 4.2-2 are equivalent [i.e., yl(n) = y2(n) for
every possible input x(n)] if, and only if, L and M are relatively prime
integers (i.e., greatest common divisor = 1). To prove this, note first that

(4.2.1)

We know that the set S! of numbers WkM, 0 < k < M — 1 are the M distinct
Mth roots of unity. The set S2 of numbers WKIM, 0 < k < M - 1 is equal to

118 Chap. 4. Multirate system fundamentals



the set Sl if and only if L and M are relatively prime (Problem 4.7). As a
result, for arbitrary X(z), the set of M terms in Y1(z) is same as the set of
M terms in Y2(z) if, and only if, L and M are relatively prime.

A time-domain proof of the above result (which is perhaps more appeal-
ing) is requested in Problem 4.8.

Figure 4.2-2  Two popular interconnections of decimators with expanders.
These are equivalent if and only if L and M are relatively prime.

The Noble Identities

We have already seen cascades of decimators and expanders with LTI
systems [e.g., Figs. 4.1-7(a) and 4.1-8(a)]. A different type of cascade is
shown in Fig. 4.2-3(a) where a filter G(z) follows a decimator, and in Fig.
3(2r where a filter G(z) precedes an expander. Such interconnections arise
when we try to use the polyphase representation (Sec. 4.3) for decimation
and interpolation filters. If the function G(z) is rational (i.e., a ratio of
polynomials in z or z-1) then we can redraw Fig. 4.2-3(a) as in Fig. 4.2-
3(b) and Fig. 4.2-3(c) as in Fig. 4.2-3(d). These are called noble identities
and are very useful in the theory and implementation of multirate systems.

Figure 4.2-3 The noble identitites for multirate systems.

Before proving these identities, note that they may not work if G(z)
is irrational, for example, G(z) = z-1/2. Thus, consider the system of Fig.
4.2-4(a). If the identities were applicable, this could be redrawn as in Fig.
4.2-4(c). But it is easy to verify that these are not equivalent. For example,
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4.3

if the input x(n) is such that x(2n) = 0 for all n, then y2(n) is zero for all
n, but y1(n) is not necessarily so.
To prove the noble identities note that

(4.2.2)
which is the same as Y1(z). Also

(4.2.3)

which agrees with Y3(z), completing the proof.

Figure 4.2-4 Demonstrat-
ing incorrect use of the noble
identities.

THE POLYPHASE REPRESENTATION

An important advancement in multirate signal processing is the invention
of the polyphase representation [Bellanger, et al., 1976], [Vary, 1979]. This
permits great simplification of theoretical results and also leads to compu-
tationally efficient implementations of decimation/interpolation filters, as
well as filter banks (both single and multifate). These applications will be
elaborated in Sec. 4.3.1-4.3.3, and used throughout the book.

To explain the basic idea, consider afilter H(z) = = on=-0 h(n)z-n. By
separating the even numbered coefficients of h(n) from the odd numbered
ones, we can write

(4.3.1)
Defining

4.3.2)
we can, therefore, write H(z) as

(4.3.3)
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Note that these representations hold whether H(z) is FIR or HR; causal or
noncausal. As an example if H(z) = 1 + 2z-1 + 3z-2 + 4z-3 then

(4.3.4)

For an IR example, let H(z) = {1 —az-1). By using the identity (1-x) =
(1 — x2¥11 + x) we can write

(4.3.5)

so that EO(z) = {1 - a2z-1) and E1(z) = o~ {1 — 02z-1).
Extending this idea further, suppose we are given any integer M. We
can always decompose H(z) as

(4.3.6)
This can be compactly written as
(4.3.7)
where
(4.3.8a)
with
(4.3.8b)

Equation (4.3.7) is called the Type 1 polyphase representation (with respect
to M) and E&(z) the polyphase components of H(z). Figure 4.3-1 summa-
rizes the generation of e€(n) from h(n). Notice that E£(z) depends on choice
of M. So a notation such as E(M)€(z) would have been more logical, but
is avoided here for simplicity. Normally the value of M is clear from the
context.
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Figure 4.3-1 Schematic
of the relation between h(n)
and its €th polyphase com-
ponent.

A variation of (4.3.7) is given by

(4.3.9)

The Type 2 polyphase components Re(z) are permutations of E€(z), that is,
Re€(z) = Em-1-£(z).

The reader who is curious about the origin of the term ‘polyphase’
should see Sec. 4.6.5.

4.3.1 Efficient Structures for Decimation and Interpolation Filters

Consider the decimation filter (Fig. 4.1-7) with M = 2. If we represent
H(z) as in (4.3.3) then we can redraw the system as in Fig. 4.3-2(a). By
invoking noble identity 1, this can be redrawn as in Fig. 4.3-2(b). This
implementation is more efficient than a direct implementation of H(z) as
explained next.

Figure 4.3-2 The decimation filter. (a) Polyphase implementation, (b) moving
the polyphase components, and (c) direct implementation.

Let H(z) be Nth order FIR. Its traditional direct form implementation
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is shown in Fig. 4.3-2(c).+ Only the even numbered output samples y(2n)
are computed. This computation requires N + 1 multiplications and N
additions. As time changes from 2n to 2n + 1, the stored signals in the
delays change, so that the above computation must be completed in one
unit of time. The speed of operation should therefore correspond to N + 1
multiplications and N additions per unit time. However, during the odd
instants of time, the structure is merely resting. This is inefficient resource
utilization.

Next consider the polyphase implementation of Fig. 4.3-2(b). Let n0
and nl be the orders of EO(z) and E1(z) (so that N + 1 = n0 + nl + 2).
So EeL(z) requires nt + 1 multiplications and nf additions. The total cost
[including the extra adder in Fig. 4.3-2(b)] is again N + 1 multipliers and
N adders. However, since E£(z) operates at the lower rate, only a total
of (N + 1Ly2 multiplications per unit time (abbreviated MPUs), and N/2
additions per unit time (APUSs) are required. The multipliers and adders in
each of the filters EO(z) and E1(z) now have two units of time available for
doing their work, and they are continually operative (i.e., no resting time).

Interpolation Filters

Now consider an interpolation filter (Fig. 4.1-8) with L = 2. A direct-
form implementation of H(z) is again inefficient because, at most 50% of
the input samples to H(z) are nonzero, which means that at any point in
time, only 50% of the multipliers h(n) have nonzero input. So the remaining
multipliers are resting. And those multipliers which are not resting are
expected to complete their job in half unit of time because the outputs of
the delay elements will change by that time. A more efficient structure can
again be obtained by using the Type 2 polyphase decomposition

(4.3.10)

This is shown in Fig. 4.3-3. Here R{(z) are operating at the input rate, and
none of the multipliers is resting. Each multiplier gets one unit of time to
finish its task. The complexity of the system is (N + 1) MPUs and N — 1
APUs. Note that the extra adder following the expander is not counted
because, the signal y(n) is obtained merely by interlacing yO(n) and y1(n),
that is, y(n) is

which is a time-multiplexed version of the outputs of RO(z) and R1(z).
More generally, an M-fold decimation filter can be implemented with

approximately M-fold reduction in the number of MPUs and APUs by using

the polyphase structure of Fig. 4.3-4(a). To see this note that the number of

i In all discussions, the input sample spacing is taken to be one unit of
time.
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multipliers and adders required to implement the M polyphase components
independently is equal to N +1 and N - M —+1 respectively. This is followed
by M — 1 additions (to combine the outputs of polyphase components) so
that we have a total of N + 1 multiplications and N additions. All of these
are performed at 1/Mth of the input rate. In other words, M units of time
are available to perform this computation once. The polyphase structure
has complexity (N + LM MPUs and N/M APUs.

Figure 4.3-3 The polyphase implementation of an interpolation filter.

Figure 4.3-4 Polyphase implementations of (a) M-fold decimation filter and
(b) L-fold interpolation flter.
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Similar comments hold for L-fold interpolation filters [Fig. 4.3-4(b)],
which require (N + 1) MPUs and (N — L + 1) APUs.

Case of Linear Phase FIR Decimation Fitters

Suppose H(z) = =Nn=0 h(n)z-n where h(n) = h(N — n). Let us see
how the symmetry of h(n) reflects into the polyphase components EO(z)
and E1(z). For example, let N = 4 and

Then,

So each of the filters EO(z) and E1(z) has symmetric impulse response. Now
consider odd N, say N = 5. Let

Now

So EO(z) and E1(z) do not have symmetric impulse responses, but the im-
pulse response el(n) is the mirror image of e0(n).

These facts can be generalized as follows: Let H(z) = =Nn=0 h(n)z-n
with h(n) = h(N — n). Let EO(z) and E1(z) be the Type 1 polyphase com-
ponents. If N is even, then eO(n) and el(n) are symmetric sequences. If N
is odd then e0(n) is the mirror image of el(n).

Impact on computational complexity. Consider Fig. 4.3-2(b).
When N is even (so that eO(n) and el(n) are symmetric), we obtain a factor
of two saving in multiplication rate (in addition to the factor of two saving
due to decimation). On the other hand if N is odd, then e0(n) and el(n)
are not symmetric, but el(n) is the mirror image of e0(n). This fact can be
exploited to obtain a factor of two saving in multiplication rate (see Problem
4.17).

Summarizing, the polyphase structure for a two fold decimation fil-
ter (symmetric impulse response with order N) requires about N/4 MPUs
whether N is even or odd. See Problem 4.22 for the case of linear phase
M-fold decimation filters.

4.3.2 Polyphase Implementation of Uniform DFT Filter Banks

Recall that a set of M filters is said to be a uniform-DFT filter bank if they
are related as in (4.1.17), where W = e-j2n/M . The polyphase decomposi-
tion can be used to implement such a filter bank in a very efficient manner.
Assume that the prototype HO(z) has been expressed as in (4.3.7). The kth
filter can now be expressed as

(4.3.11a)

Sec. 4.3 Polyphase representation 125



because (zWK)M = zM. With Xk(z) denoting the output of Hk(z), we obtain

(4.3.11b)

This shows that the M filters can be implemented by using the structure
shown in Fig. 4.3-5(a). If HO(z) is FIR with order N, we require N +
1 multiplications and N — M + 1 additions to implement the polyphase
components. Add to this the DFT cost, and this gives the total cost for
implementing the M filters.

If we set E¢(z) = 1 for all £, Fig. 4.3-5(a) gives rise to the special case
of Fig. 4.1-16(a). The presence of E£(z) permits the use of a prototype
HO(z) with larger length as compared to Fig. 4.1-16(a), where the filter
length was limited to M. Thus the prototype (and hence all the M filters)
can have sharper cutoff and higher stopband attenuation [Fig. 4.3-5(b)].
As in Fig. 4.1-17, we can once again interpret the filter bank system as a
DFT computation with a sliding window. But now the window is longer
[with length equal to the length of the filter HO(z)], even though the DFT is
still M x M. A more elaborate discussion of this can be found in Sec. 11.2
(short-time Fourier transform).

Figure 4.3-5 (a) Implementation of the uniform DFT bank using polyphase
decomposition, and (b) typical magnitude responses of filters. Here Hk(z) =

Xk(zyX(2).

For composite M (for example M = 2m) the DFT can be performed
efficiently using fast Fourier Transform (FFT) techniques [Rabiner and Gold,
1975]. For example, let M = 32 and N = 50. A standard 32-point radix-2
FFT requires (approximately) 136 real multiplications. So the total number
of multiplications is 136 + 51 = 187. If each of the 32 filters were implemented
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indepedently, the number of multiplications would have been 32 x 51 = 1,632
which is about nine times larger! [In fact it is even worse because most of
the filters Hk(z) have complex multipliers even if HO(z) has real coefficients.]
The polyphase implementation of Fig. 4.3-5(a) is, therefore, very efficient
indeed.

Decimated uniform DFT banks. In many applications (such as
QOMF banks, Chap. 8,9), we are interested in decimating the outputs of
Hk(z) by the factor M. This is logical because each of these outputs has
a bandwidth which is approximately M times narrower than that of x(n).
By using noble identity 1, the polyphase uniform-DFT filter bank structure
with decimators can be redrawn as in Fig. 4.3-6. This structure requires
M times fewer MPUs and APUs than Fig. 4.3-5(a) so that it is even more
efficient.

Figure 4.3-6 Redrawing Fig. 4.3-5(a) when xk(n) have to be decimated by M.

For the above numerical example, the total number of real MPUs is
only about 6. So for 6 multiplications per unit time (i.e., per input sample)
we are able to implement 32 filters, each of order 50.

4.3.3 Efficient Structures for Fractional Decimation

Recall that Fig. 4.1-10(b) is a technique for decimating a sequence by a
rational number M/L. Implementing H(z) directly (i.e., no polyphase) is
inefficient because of two reasons: first, at any point in time, L — 1 out of
L multipliers have input equal to zero. Second, only one out of M output
samples is being retained. Neither of these facts has been exploited in the
implementation.

To obtain a more efficient implementation, we begin by considering the
M = 3,L = 2 example again. By using the Type 1 polyphase representation
and rearranging we obtain the implementation of Fig. 4.3-7(a). On the
other hand if we use the Type 2 decomposition and rearrange, we get Fig.
4.3-7(b). Clearly these are more efficient than a direct implementation by
factors of M and L respectively. Notice that Fig. 4.3-7(a) exploits the
presence of the decimator, whereas Fig. 4.3-7(b) exploits the presence of the
expander. But we have not exploited both yet. For example in Fig. 4.3-7(a)
the inputs to Ek(z) still have some zero-valued samples. In Fig. 4.3-7(b),
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some of the outputs computed by Rk(z) are discarded by the decimator.
Can we rearrange the structure so that we can take full advantage of both
the decimator and the expander?

Figure 4.3-7 Two ways to improve the efficiency of the fractional-decimation
filter. (© Adopted from 1990 IEEE.)

The answer is in the affirmative [Crochiere and Rabiner, 1981, p. 311],
and [Hsiao, 1987]. We now outline the technique reported by Hsiao, which
is based on the z-domain formulation and polyphase decomposition. First
notice that we are stuck in Fig. 4.3-7 mainly because we cannot move the
expander any more to the right (and decimator any more to the left). This
is because, the noble identities simply cannot be applied anymore!

However, here is the nice trick which comes to our rescue: we can write
z-1 = z-3z2 so that Fig. 4.3-7(b) can be redrawn as in Fig. 4.3-8(a). With
the help of the noble identities this becomes Fig. 4.3-8(b). Next we can
interchange the decimator with the expander (which is valid because 2 and
3 are relatively prime; see Sec. 4.2) to obtain Fig. 4.3-8(c). Finally we can
perform a Type 1 polyphase decomposition of the polyphase components
RO(z) and R1(z) as follows:

(4.3.12)

so that Fig. 4.3-8(c) can be redrawn as in Fig. 4.3-8(d). So Fig. 4.3-8(d) is
equivalent to Fig. 4.3-8(a)!

If H(z) = =Nn=0h(n)z-n, then we still have only N + 1 multipliers
in Fig. 4.3-8(d). However, each multiplier operates at the lowest possible
rate, which is one-third of the input rate. This trick works for arbitrary
M, L as long as they are relatively prime because in that case, two things
are true: (a) there exist integers n0 and n! satisfying —nOL + n1M = 1
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(Euclid’s theorem, [see Sec. 2.3 in Bose, 1985]) so that we can replace each
z-1 with znOLz-n1M, and (b) the decimator and expander in cascade can
be interchanged.

The above polyphase implementation requires only (N + 1)/M MPUs
and (N + 1 — Ly»™M APUs. Note that the 'additions' which follow expanders
are not counted, as these represent time-domain interlace operations. (The
reduction of MPUs obtainable due to linear-phase symmetry has not been
accounted here.) The structure is most efficient because, the decimators have
been moved to the left of all the computational units, and the interpolators
moved to the right of these computational units.

Figure 4.3-8  Successive redrawings of the fractional decimation circuit, to
maximize computational efficiency. (© Adopted from 1990 IEEE.)
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Computations per output sample. It is instructive to estimate the
complexity per computed output sample y(n). Since there are L/M output
samples per unit time, we have (M/L) x (N + DM — (N + LyT multi-
plications per output sample. Similarly, there are (N + 1 — LT additions
per output sample. In Sec. 4.1 we saw that for a given set of specifications
on in-band ripples, and for a given o, the order N of H(z) is proportional
to L. So the number of multiplications and additions per output sample are
essentially independent of L!

4.3.4 Commutator models

A very appealing conceptual tool to visualize the operation of polyphase
implementations is the commutator model. To understand this note that any
polyphase implementation is characterized either by a delay chain followed
by a set of decimators, or by a set of expanders followed by a delay chain
(e.qg., Fig. 4.3-4).

Figure 4.3-9 demonstrates a commutator-model equivalent circuit (with
M = 3) which is useful for Type 1 polyphase implementations. The model
is almost self-explanatory but the following comments are in order. We have
a switch (shown by a heavy line) which can assume one of three possible
positions. The switch position shown in the figure corresponds to n = 0
(because of the label 'n = O' attached to the switch). The switch rotates
at uniform speed and takes on the three postions in the manner indicated.
Thus whenever n mod 3 = -2, the switch is at the bottom position; when
n mod 3 = -1, the switch is at the middle position; and when n mod 3 = 0,
the switch returns to the top position. The switch keeps rotating in this
way in a counter clockwise direction. Figure 4.3-10 shows the polyphase
implementation of the decimation filter, redrawn using the counterclockwise
commutator model. It is explicitly clear that each polyphase component has
only to operate at three-fold lower rate.

A second type of commutator model, useful for Type 2 polyphase im-
plementations, is shown in Fig. 4.3-11. This is called the clockwise model,
as the switch rotates in a clockwise direction. The label 'n = 0" in the figure
means that the switch is in this particular position (i.e., bottom position)
for n mod 3 = 0. The switch is in the middle position for n mod 3 = 1 and
in the top position for n mod 3 = 2.

4.3.5 Further Applications of the Polyphase Concept
Periodically Time Varying Property

Some of the multirate systems introduced in this chapter can be consid-
ered to be linear periodically time varying (LPTV) systems. The simplest
example is the cascade shown in Fig. 4.2-2(a) with L = M. We then have
the input output relation

if nis mul. of M,

. (4.3.13)
otherwise.
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Figure 4.3-9 The counterclockwise commutator model for a delay chain followed
by decimators. (a) Example with M = 3, and (b) operation of the commutator
switch.

Figure 4.3-10 The polyphase implementation of a decimation filter (M = 3)
using a counterclockwise commutator model.

Figure 4.3-11 The clockwise commutator model for a set of expanders followed
by a delay chain.
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This system is equivalent to a multiplier, whose value is unity when n is a
multiple of M and zero otherwise. So, this is a linear system, with periodi-
cally time varying coefficient (period M).

A second example is the interpolation filter (Fig. 4.3-3). Denoting the
impulse responses of the polyphase filters Rk(z) by rk(n), the output is given

by

(4.3.14)

In other words, the even numbered samples of y(n) are obtained by filter-
ing x(n) with R1(z), and odd numbered samples obtained by filtering x(n)
with RO(z). The rate of y(n) is two times that of x(n), unlike the previous
example. Strictly speaking, this system does not fall under the category of
LPTV systems (which should have the same input and output rates).

A third example is the quadrature mirror filter (QMF) bank, (shown in
Fig. 4.5-3 later). In Chap. 5 we will see that this is an LPTV system (with
same input and output rates), and reduces to an LTI system when aliasing
is completely eliminated.

Perfect Reconstruction (PR) Systems

Figure 4.3-12  An analysis/synthesis system with the perfect reconstruction
property.

In this text we will see many applications where the analysis bank and
synthesis bank of Fig. 4.1-15 are connected back to back, that is, yk(n) is
taken to be equal to xk(n). [Most of these applications are, in fact, such that
there are decimators following xk(n) and expanders preceding yk(n), but let
us ignore them for this discussion.] Such a system is said to be a perfect
reconstruction (PR) system if x(n) = cx(n — n0) for some ¢ # 0 and integer
no.

A simple PR system is shown in Fig. 4.3-12 where the analysis bank is
the same as the uniform DFT bank of Fig. 4.1-16(a). The analysis filters
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are Hk(z) = =M-U=0 z-8W-k®. The synthesis filters Fk(z) for this system are
given by (Problem 4.20)
(4.3.15)

So the synthesis filters form a uniform DFT bank except for the scale fac-
tors W-k. Since WW?* = MI, the system of Fig. 4.3-12 has the perfect
reconstruction property, that is, x(n) = M2x(n — M + 1).

The Polyphase Identity.

Consider the structure of Fig. 4.3-13(a) which is a cascade of an ex-
pander followed by a filter H(z), which in turn is followed by a decimator.
This is similar to the fractional decimation scheme of Fig. 4.1-10(b), but
with L = M. Such a strange interconnection arises in many applications
(e.g., transmultiplexers to be discussed in Sec. 4.5.4).

Even though the decimator and expander are time-varying building
blocks, the above cascaded system happens to be time-invariant. To see
this note that the input to the decimator has z-transform X(zM)H(z). The
decimated version therefore has the z-transform

(4.3.16)

Figure 4.3-13 The polyphase identity. (a) An unusual cascade, and (b) its
equivalent circuit.

where EO(z) is the Oth polyphase component of H(z). The remaining poly
phase components of H(z) are irrelevant here! Thus Fig. 4.3-13(a) represents
a linear time invariant system with transfer function EO(z).

Figure 4.3-14 An application of the polyphase identity.

As an interesting application of this, suppose H(z) = z-k, with 0 <
k < M — 1. We then have

(4.3.17)
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Fig. 4.3-14 shows this equivalence.

4.4 MULTISTAGE IMPLEMENTATIONS

In many applications, it is necessary to decimate by a large integer factor.
Even though this can be done by designing a filter H(z) and using polyphase
structures, it is even more efficient (in terms of number of computations per
unit time) to design the decimation filter in multiple stages. Figure 4.4-1
shows an example where M = 16. Since 16 = 4 x 2 x 2, it is possible to
implement the system in three stages as shown.

This proposal raises several questions: What is the best way to split
M into factors? In what order should these factors be arranged? These
questions are not easy to answer. However, the fact that multistage imple-
mentations result in more efficient systems can be demonstrated very easily.

Our discussion relies on the fact that a linear phase FIR lowpass filter
meeting specifications as in Fig. 3.1-1 has order

(4.4.1)

where D(51,82) is a function of the peak passband ripple 8! and peak stop
ripple 32. A formula of this type holds for equiripple designs [Eq. (3.2.32)]
as well as Kaiser-window based designs [Eq. (3.2.8)], even though D(81,62)
depends on the method. Note that for fixed ripple size, the order varies as
L7\f.

Figure 4.4-1 A multistage implementation of a 16-fold decimator.

4.4.1 The Interpolated FIR (IFIR) Approach

Multistage techniques for decimation and interpolation filters are best mo-
tivated by first presenting an efficient technique for the design (and imple-
mentation) of narrow band lowpass filters called the Interpolated FIR (IFIR)
technique [Neuvo, et al., 1984]. This technique, by itself, has nothing to do
with decimators and expanders, and is applicable for any narrowband filter.
In the context of decimation and interpolation filtering, it also shows how
multistage structures arise naturally. Independent treatement of multistage
structures can also be found in Crochiere and Rabiner [1983].

To explain the basic idea, consider Fig. 4.4-2(a) which shows a lowpass
specification (with ripples not shown). Let N denote the required filter
order. Now, instead of meeting these specifications, suppose we try to meet
a two-fold stretched specification (Fig. 4.4-2(b)). The stretched filter G(z)
has transition bandwidth 2ATf so that its order is 2. This means that the
number of multiplications and additions are reduced by a factor of two.
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Figure 4.4-2(c) shows the magnitude response of G(z2). This filter has
two passbands. One of these is similar to the desired passband, whereas the
other passband (centered around ) is unwanted. The unwanted passband
can be suppressed by cascading G(z2) with a new filter 1(z) [Fig. 4.4-2(d)].
For small wS, this filter has a very wide transition band so that it requires
very low order.

Figure 4.4-2 The IFIR technique for efficient design of narrowband filters.

Figure 4.4-2(e) shows the complete system. Denoting the orders of G(z)
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Figure 4.4-3 Design example 4.4.1. Magnitude response plots for various filters.
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and I(z) by Ng and Ni, the system requires a total of (Ng + 1) + (Ni + 1)
multipliers and Ng + Ni adders. This is much less than the complexity
required to implement a filter designed directly to meet the specifications of
Fig. 4.4-2(a).

Adjusting ripple sizes. Notice that the passband of the overall re-
sponse G(z2)I(z) can have ripples larger than the ripples of G(z2) and 1(z).
To meet the desired specifications, we can take the peak passband ripples
of G(z) and 1(z) to be 3812 so that the peak passband ripple of the overall
system G(z2)I(z) is no greater than d1. (Review Problem 3.3). If the peak
stopband ripples of G(z) and I(z) are 382, then the system G(z2)I(z) has
stopband ripple no larger than 82. The order of G(z) is somewhat larger
than N/2 because of the more stringent passband requirement.

Terminology. The filter G(z) is called the model filter. The purpose
of 1(z) is to suppress the extra copy (image) of the basic passband. 1(z)
was originally called an interpolator [Neuvo, et al., 1984] because the odd-
numbered impulse response coefficients of G(z2), which are zero-valued, get
“filled in” when we cascade G(z2) with I(z). In this text, since an interpo-
lator has a different meaning, we will call 1(z) an image suppressor.

Design Example 4.4.1: IFIR Design

As a specific example, let wp = 0.091,wS = 0.111,81 = 0.02, and &2 =
0.001. Then a direct equiripple design using the McClellan-Parks algorithm
would require an order N = 233.

If we use the IFIR method, the filter G(z) has specifications wp =
0.18m,wS = 0.22m,06!l = 0.01 and 42 = 0.001. The filter 1(z) has speci-
fications wp = 0.09m,wS = 0.89m,01 = 0.01 and 82 = 0.001. If G(z) and
I(z) are designed using the McClellan-Parks algorithm, then the filter or-
ders Ng = 131 and Ni = 6 are found to be sufficient. So, G(z) [hence G(z2)]
requires 66 multipliers and 131 adders, whereas 1(z) requires 4 multipliers
and 6 adders. The total complexities of the IFIR method and the direct
method are summarized in Table 4.4.1. The filter 1(z) is very inexpensive,
whereas the cost of G(z2) is little more than half the cost of the direct de-
sign. Notice finally that the system G(z2)I(z) has linear phase since G(z)
and 1(z) have this property. Fig. 4.4-3 shows plots of appropriate frequency
responses.

In addition to the computational advantage, the IFIR approach also
offers advantages during the filter design phase: a direct equiripple design of
a filter with as high an order as 233 can result in humerical inaccuracies, and
convergence-difficulties. The IFIR technique allows us to design two filters
G(z) and I(z) of much lower order, which can be used to eventually meet
the same specifications.

Extensions. Several extensions of this idea can be found in Neuvo, et
al. [1984]. For example, instead of stretching the specifications by two, it is
possible to stretch by an amount M1 > 2. In principle M! can be as large
as the integer-part of /wS. (So, in the above example, a much larger M1 is
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possible.) If G(z) is the filter which meets the stretched specifications, then
the system which meets the original specifications is given by G(zM1)I(z).
The filter G(zM1) has M! — 1 unwanted passbands (images) in addition to
the desired passband centered around w = 0. The image-suppressor 1(z)
eliminates these unwanted passbands.

The transition bandwidth of 1(z) depends on wS (the original desired
stopband edge) and M! (see Fig. 4.4-4). If ML is too large (i.e., if the
given specifications are stretched too much), then the transition band of
I(z) becomes very narrow [so that I(z) dominates the cost], and we begin to
get decreasing returns. (Essentially we have “stretched our luck” too far!)
Summarizing, as M! increases the cost of G(z) decreases and that of 1(z)
increases. There is some M! which minimizes the cost.

Extensions of the IFIR technique for wideband lowpass filters, and gen-
eral bandpass filters have been made. Also see Problem 4.25.

Figure 4.4-4 Extension of the IFIR technique for stretching factor ML > 2.

4.4.2 Multistage Design of Decimation and Interpolation Filters

Suppose the lowpass filter H(z) in Fig. 4.1-7 has stopband edge near =M.
If M is large, then H(z) is a narrow-band lowpass and can be implemented
using the IFIR technique, to reduce computations. Suppose we take the
stretch factor Ml to be a factor of M, that is, M = M1M2. Then, the
system is as in Fig. 4.4-5(a). This can be rearranged as in Fig. 4.4-5(b)
using a noble identity. Thus, we perform the decimation in two stages: first
by M! and then by M2. So, the IFIR approach naturally leads to the two-

stage implementation. We can, in fact, repeat this process by factorizing M!
and M2 further.
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TABLE 4.4.1 Design example 4.4.1. Comparison of
direct method with the IFIR method.

IFIR Method
Quantity Conventional
Compared Method G(2) 1(z2) Total
Filter order 233 131 6 268
Number of Mul. 117 66 4 70
Number of Add. 233 131 6 137

TABLE 4.4.2 Design example 4.4.2. Complexity comparison
between direct design and multistage design.

Multistage Design

Direct design

H(z) G(2) I(z) Total
Filter order 2,028 90 139 2,389
MPUs =21 0.92 2.8 3.72
APUs =41 1.8 5.56 7.36
Mul per sec 168,000 29,760
(8 kHz)
Add per sec 328,000 58,880
(8 kHz)
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Figure 4.4-5 The two-stage decimator, developed from the IFIR decimation
filter.

Figure 4.4-6 Pertaining to Design example 4.4.2. (IFIR design of a 50-fold
decimation filter.)
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Design Example 4.4.2: Multistage Decimation Filter

Consider the 50-fold decimation of an 8 KHz signal as in Fig. 4.1-13.
Assume the passband and stopband ripples for the filter H(z) are 81 =
0.01,482 = 0.001. If the decimation filter has band edges at 70 Hz and
80 Hz, then the normalized transition bandwidth for the digital filter is
AT = 1/800. A direct equiripple design using the McClellan-Parks algorithm
would require an order N = 2,028.

Now consider using the IFIR approach to design the same filter with
M1 = 25. Figure 4.4-6(a) shows the multistage system. The desired filter
response is as in Fig. 4.4-6(b). The response of G(z) is as in Fig. 4.4-6(c),
with Af = 25 x (1/800). The specifications are: wp = 0.4375m, wS = 0.5,
0l = 0.005, 42 = 0.001 as explained earlier, so that the order of G(z) is 90.
The image suppressor 1(z) has appearance as in Fig. 4.4-6(e). This has
NA\f = 17/800. The specifications are wp = 0.01751, wS = 0.061, 6! = 0.005,
and 32 = 0.001. An equiripple filter of order Ni = 139 is sufficient to meet
these specifications. Notice that I(z) has higher order than G(z). Fig. 4.4-7
gives various frequency response plots for the resulting design.

Table 4.4.2 summarizes the details, comparing the conventional ap-
proach to the IFIR approach. By using a polyphase structure [Fig. 4.3-
4(a) with M = 50] and exploiting the linear-phase symmetry, we obtain
the MPU and APU count shown in Table 4.4.2. For the multistage design,
the APU count is obtained as follows: 1(z) requires 139 additions. By us-
ing the polyphase structure, we can reduce the complexity to 139/25 APU.
Next, G(z) which has order 90 requires 90 additions. By using appropriate
polyphase decomposition, we can peform this at 1-50th of the input rate.
So we have 90/50 = 1.8 APUs only. The MPU counts shown in the Table
can be verified similarly.

The improvement obtainable using the multistage approach is therefore
by a factor of almost six. The table also indicates the computations per
second with 8 KHz sampling rate prior to decimation.

From the above discussions, we see that the order of G(z) in terms of
the specifications 81,62,wp, and wS can be written as

(4.4.2)
The image suppressor has order

(4.4.3)
The number of MPUs is approximately

(4.4.4)
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Figure 4.4-7 Design example 4.4.2. Magnitude response plots for various filters.
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4.5

The factor '2' appears in the denominator because we can save a factor of
two due to linear-phase symmetry. For fixed M, the tradeoff is, therefore,
clear. As MLI increases, the first term decreases whereas the second term
increases. Among all integer factors of M, there is an optimal factor Ml
which minimizes (4.4.4).

For interpolation filters, the multistage idea still works. Figure 4.4-
8 demonstrates the required manipulations with an example. We now see
that interpolation by 25 follows [rather than precedes, as in Fig. 4.4-6(a)]
interpolation by 2.

Figure 4.4-8 Multistage design of interpolation filters.

SOME APPLICATIONS OF MULTIRATE SYSTEMS

We now review a number of applications of multirate filters and filter banks.
More applications are outlined in Sec. 4.6.4.

4.5.1 Digital Audio Systems

In the digital audio industry, it is a common requirement to change the
sampling rates of bandlimited sequences [Digital audio, 1985]. This arises
for example when an analog music waveform xa(t) is to be digitized [Bloom,
1985]. Assuming that the significant information is in the band 0 <= Q21 <
22kHz, a minimum sampling rate of 44kHz is suggested [Fig. 4.5-1(a)]. It is,
however, necessary to perform analog filtering before sampling to eliminate
aliasing of out-of-band noise. Now the requirements on the analog filter
Ha(jQ) [Fig. 4.5-1(b)] are strigent: it should have a fairly flat passband [so
that Xa(jQ) is not distorted] and a narrow transition band. Optimal filters
for this purpose (such as elliptic filters which are optimal in the minimax
sense) have a very nonlinear phase response around the bandedge, that is,
around 22kHz. [See Design Example 3.3.2.] In high quality music this is
considered to be objectionable.

A common strategy to solve this problem is to oversample xa(t) by a
factor of two (and often four). The filter Ha(jQQ) now has a much wider
transition band (Fig. 4.5-1(c)), so that the phase-response nonlinearity is
acceptably low. In fact it is possible to use an analog filter with approxi-

Sec. 4.5 Some applications 143



mately linear phase in the passband (such as the Bessel filter, [p. 129, An-
toniou, 1979]). Such filters are sufficient to provide the required stopband
attenuation to avoid aliasing.

The sequence x1(n) obtained by the above oversampling method is then
lowpass filtered (Fig. 4.5-1(d)) by a digital filter H(z) and then decimated
by the same factor of two, to obtain the final digital signal x(n). The crucial
point is that since H(z) is digital, it can be designed to have linear phase
while at the same time providing the desired degree of sharpness.

Figure 4.5-1 (a) Spectrum of xa(t); (b) Antialiasing filter response for sampling
at 44 kHz; (c) Antialiasing filter response for sampling at 88 kHz; (d) Improved
scheme for A/D stage of a digital audio system.

A similar problem arises after the D/A conversion stage, where the
digital music signal y(n) should be converted to an analog signal by lowpass
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filtering. To eliminate the images of Y(ejw) in the region outside 22kHz, a
sharp cutoff (hence nonlinear phase) analog lowpass filter is required. This
problem is avoided by using an expander and a digital interpolation filter.
After this D/A conversion is performed, and is followed by analog filtering.
The interpolation filter H(z) is once again a linear-phase FIR lowpass filter,
and introduces no phase distortion.

The obvious price paid in these systems is the increased internal rate of
computation. However, by using the polyphase framework (Sec. 4.3) the ef-
ficiency of decimation and interpolation filters can be significantly improved.

Fractional Sampling Rate Alterations

In digital audio, there are several applications which require fractional
sampling rate alterations. This is because at least three sampling rates
coexist. Thus for most studio work the sampling rate is 48 kHz, whereas for
CD mastering (both digital tape and compact discs) the rate is 44.1 kHz.
For broadcasting of digital audio, a sampling rate of 32 kHz is expected to
become the standard. To convert from studio frequency to CD mastering
standards, one would, therefore, use the arrangement of Fig. 4.1-10(b) with
L = 441 and M = 480. Such large values of L normally imply that H(z) has
very high order. A multistage design (Sec. 4.4) is more convenient (as well
as computationally efficient) in such cases.

Further applications of multirate filter banks in digital audio can be
found in Sec. 4.6.4.

4.5.2 Subband Coding of Speech and Image Signals

In practice one often encounters signals with energy dominantly concentrated
in a particular region of frequency. An extreme example was considered
earlier where all the energy is in 0 < ®w < 2@-3. In that case it was possible
to compress the signal simply by decimating it by a factor of 3/2, or less.

It is more common, however, to encounter signals that are not band
limited, but still have dominant frequency bands. An example is shown in
Fig. 4.5-2(a). The information in ®w > @2 is not small enough to be
discarded. And we cannot decimate x(n) without causing aliasing either. It
does seem unfortunate that a small (but not negligible) fraction of energy
in the high frequency region should prevent us from obtaining any kind of
signal compression at all.

But there is a way to get around this difficulty: we can split the signal
into two frequency bands by using an analysis bank with responses as in Fig.
2(b)- The subband signal x1(n) has less energy than x0(n) and so can
be encoded with fewer bits than x0(n). As an example, let x(n) be a 10kHz
signal (10,000 samples/sec) normally requiring 16 bits per sample so that
the data rate is 160 kilo bits/sec. Let us assume that the subband signals
x0(n) and x1(n) can be represented with 16 bits and 8 bits per sample,
respectively. Because these signals are also decimated by two, the data rate
now works out to be 80 + 40 = 120 kilo bits/sec, which is a compression
by 4/3. This is the basic principle of subband coding: split the signal into
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two or more subbands, decimate each subband signal, and allocate bits for
samples in each subband depending on the energy content. This strategy is
clearly a generalization of the simple decimation process (which works only
for strictly bandlimited signals). In Appendix C the theoretical basis for the
bit allocation strategy is studied, by making certain simplifying assumptions
on the statistics of the input x(n). In speech coding practice the number of
subbands, filter bandwidths and bit allocations are chosen to further exploit
the perceptual properties of human hearing.

Figure 4.5-2 Splitting a signal into subband signals x0(n) and x1(n).

Figure 4.5-3 The analysis/synthesis system for subband coding. (Also called
the two band QMF bank; see text.)

The reconstruction of the full band signal is done using the expanders
and synthesis filters as in Fig. 4.5-3. The expanders restore the original
sampling rate, and the filters Fk(z) eliminate the images. Further general-
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izations follow immediately: the signal can be split into M subbands with
each subband signal decimated by M and independently quantized. The
complete analysis synthesis system in Fig. 4.5-3 is called the quadrature
mirror filter (QMF) bank, and is the topic of Chap. 5 to 8.

For details on subband coding, see Crochiere, et al. [1976], Crochiere
[1977 and 1981], and Woods [1991]. The coding in each subband is typically
more sophisticated than just quantization. For example, techniques such
as DPCM and ADPCM are commonly used [Jayant and Noll, 1984]. The
specific properties of speech signals and their relation to human perception
are carefully exploited in the coding process; the appropriate number of
subbands and the coding accuracy in each subband are judged based on
the articulation index. The quality of subband coders is usually judged
by what is called the mean opinion score (MOS). This score is obtained
by performing listening tests with the help of a wide variety of unbiased
listeners, and asking them to assign a score for the quality of the reproduced
signal x(n) [in comparison to x(n)]. The maximum score is normalized to
5 by convention. Subband-coded speech with an average bit rate of 16 kilo
bits/sec can typically achieve a MOS of 3.1, whereas at 32 kilo bits/sec a
score of 4.3 has been achieved [Chap. 11, Jayant and Noll, 1984]. Note
that, if x(n) is obtained by 8 kHz sampling (typical for speech), then 16 kilo
bits/sec corresponds to 2 bits per sample, and 32 kilo bits/sec corresponds
to 4 bits per sample. These are much lower than the typical precisions used
in digital filtering (e.g., in the implementation of the subband filters). Thus,
any new technique which further reduces the bit rate by a small amount (such
as one bit per sample) could still qualify as a "significant contribution"".

Image compression. Two dimensional multirate filter banks for im-
age processing were first introduced by Vetterli [1984]. Subband coding
has been applied for image compression by several authors [Safranek, et al.,
1988], [Woods and O’Neil, 1986], [Smith and Eddins, 1990]. (See Sec. 12.0
for further references.) Coded images with only 0.48 bits per pixel (the
original uncoded picture being a 8 bits per pixel image), have been found
to give “acceptable” quality. Again, this statement does not give complete
information, without comparing the detailed picture qualities before and af-
ter coding. Further details can be found in Woods [1991], and references
therein. Multirate filter banks have been used in image processing applica-
tions in various other forms, for example, multiresolution systems, and the
Laplacian pyramid (Sec. 5.8).

Music signals. Subband coding has also been applied for compression
of digitized music, e.g., the discrete compact cassete (DCC) [Veldhuis, et al.,
1989], [pp. 3597-3620, ICASSP, 1991], [Fettweis, et al., 1990]. A judgement
on quality of the ‘compressed’ music depends on the nature of the waveform,
as well as the threshold of acceptability imposed by the listener. It has been
shown that a great deal of compression can be achieved in many cases.

General remarks on subband coding. Several comments are now
in order: first, in order for subband coding to work, it is necessary to have
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some knowledge about the energy distribution of X(ejw). Such knowledge is
usually obtainable by means of adaptive estimation of energy in various sub-
bands [Jayant and Noll, 1984]. The bit allocation strategy depends crucially
upon this energy information (Sec. C.2.1, Appendix C). Second, the band
splitting and decimation operation inevitably results in aliasing because the
filters Hk(z) are not ideal. The filters Fk(z) should be chosen carefully in
such a way that aliasing is actually canceled. These details are the topic of
Chap. 5.

4.5.3 Analog Voice Privacy Systems

These systems are intended to communicate speech over standard analog
telephone links, while at the same time ensuring voice privacy. The main
idea is to split a signal x(n) into M subband signals xk(n) and then divide
each subband signal into segments in the time domain. The time segments
as well as the subbands are then permuted and recombined to generate an
encrypted signal y(n), which can then be transmitted (after D/A conversion).
Unless an eavesdropper is aware of the details of the permutation (i.e., unless
he has the 'key"), he will be unable to eavesdrop. The aims of the designer of
such a privacy system are: the encrypted message should be unintelligible,
decryption without a key should be very difficult, and the decrypted signal
should be of good quality retaining naturalness and voice characteristics.
Some of these goals have been accomplished [Cox, et al., 1987].

At the receiver end, y(n) is again split into subbands, and the time seg-
ments of the subbands unshuffled to get xk(n) which can then be interpolated
and recombined through the synthesis filters.

4.5.4 Transmultiplexers

In digital telephone networks, it is sometimes necessary to convert between
two formats called the time-division multiplexed (TDM) format and the
frequency-division multiplexed (FDM) format.

To describe the TDM format consider Fig. 4.5-4(a) where three signals
are passed through 3-fold expanders and added through a delay chain. It
can be shown that y(n) is an interleaved version of the three signals, that is,
it has the form

This is the TDM version of the three signals. We can recover the three signals
from y(n) by using the time-domain demultiplexer shown in Fig. 4.5-4(b).
Note that X0(z),X1(z) and X2(z) are polyphase components of Y(z).

To explain the FDM operation, consider Fig. 4.5-5 where transforms
of three signals x0(n),x1(n), and x2(n) are shown. The FDM signal y(n) is
a single composite signal, whose transform Y(ejw) is obtained by “pasting”
the transforms of the individual signals next to each other. Note that each
individual spectrum has to be compressed by 3 to make enough room for all
three signals in the range 0 < w < 2m. The FDM operation can be performed
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using the circuit shown in the figure. Each individual signal is first passed
through an expander to obtain a 3-fold compression of the transform. The
interpolation filter Fk(z) (assumed ideal for this discussion) retains one out
of the three images which appear in Xk(ej3w). The shaded portions in Fig.
8.5- (d), (e) and (f) are the retained images from each signal. The filter
responses (which pass the shaded regions of the respective signals) are shifted
with respect to each other so that the retained images from Xk(ej3w) do not
overlap with the retained images from Xm(ej3w), m # k. If we add the
outputs of the three filters, the result is the FDM signal Y(ejw).

Figure 4.5-4 (a) Time domain multiplexing and (b) time domain demultiplex-
ing, represented using multirate building blocks.

Since the shaded areas in the figure are not symmetric with respect to
w = 0, the filters have complex coefficients, and y(n) is complex (even if
the individual signals might be real). If xk(n) are real, we can avoid this
by judicious choice of responses Fk(ejw) so that there is symmetry with
respect to w = 0. Each filter then has one passband in the region 0 < w < 1
and one in the conjugate region ™ < w < 2TI.

Figure 4.5-6 shows the complete transmultiplexer. The components
xk(n) of the TDM version can be recovered by separating the consecutive
regions of Y(ejw) (which are the M message signals) with the help of an
analysis bank and then decimating the outputs. Now, if the synthesis filters
Fk(z) are non ideal, the adjacent spectra in Fig. 4.5-5(g) will actually tend
to overlap. Similarly if the analysis filters Hk(z) are non ideal then the
outputs of Hk(z) have contributions from Xk(ejw) as well as X£(ejw), £ # k.
So in general each of the reconstructed signals xk(n) has contribution from
the desired signal xk(n) as well as the 'cross-talk' terms x£€(n), £ # k. An
obvious approach to reduce the extent of cross talk is to design Hk(z) and
Fk(z) to be very sharp cutoff filters, that is, practically non overlapping
frequency responses. To obtain acceptable cross talk reduction this requires
filters of very high order (e.g., exceeding 2,000; see [Bellanger, 1982]).

A novel approach to transmultiplexing was proposed by Vetterli [1986b].
In this approach, cross-talk is permitted in TDM - FDM converter and then
canceled by the FDM - TDM converter stage. It can be shown that the cross-
talk terms can be completely eliminated by careful choice of the relation
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Figure 4.5-5 Operation of a frequency-division multiplexer circuit.
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4.6

between the analysis and synthesis filters. In Sec. 5.9 we will derive the
conditions for this and show that the set of M original signals xk(n) can
be recovered by the TDM - FDM - TDM system with no distortion. Since
cross talk is permitted (and then canceled), the filters Hk(z) and Fk(z) are
more economical than in conventional designs which tend to suppress cross
talk altogether.

Figure 4.5-6 The complete transmultiplexer structure.

4.5.5 Multirate adaptive filters

The subject of adaptive filtering Has been treated well in many texts, for
example, Widrow and Stearns [1985], and Haykin [1991]. We can not get
into the details here without spending several pages. We merely wish to
draw attention to the fact that the concepts of decimation, interpolation,
and subband decomposition have been used to obtain ‘improved' adaptive
filters. The ‘improvement' is typically in terms of reduced filter lengths,
faster convergence, and/or lower implementation complexity. Some of the
references in this context are: Gilloire [1987], Gilloire and Vetterli [1992],
and [Sathe and Vaidyanathan, 1990,1991 and 1993]. The reference Shynk
[1992] provides an excellent introduction and overview of this topic.

SPECIAL FILTERS AND FILTER BANKS

A number of multirate applications employ special types of systems such as
half-band filters, Mth band filters, and power complementary filter-banks.
We now review these systems, and indicate some applications.

4.6.1 M-th Band Filters or Nyquist(M) Filters

For an M-fold interpolation filter (Fig. 4.1-8 with L = M), the output y(n)
has z-transform Y (z) = X(zM)H(z). Consider the polyphase decomposition
(4.3.7) for H(z). Suppose the Oth polyphase component EO(z) is a constant
c, that is,

(4.6.1)
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Then

(4.6.2)

This means that y(Mn) = cx(n). In practice we can scale the filter such
that ¢ = 1. Thus, even though the interpolation filter inserts new samples,
the existing samples themselves are communicated to the output without
distortion.

A filter with the above property is said to be a Nyquist [or Nyquist(M)]
filter [Mueller, 1973], or an Mth band filter [Mintzer, 1982]. We see that the
impulse response h(n) satisfies

(4.6.3)

In other words, h(n) has periodic zero-crossings separated by M samples
[except that h(0) = c]. Figure 4.6-1(a) demonstrates this for M = 3. In Fig.
4.6-1(b) we show typical appearance of yE(n). If these two sequences are
convolved, then the nonzero samples of yE(n) are unaffected (except for a
scale factor c).

Generalized definition. We generalize the above definition so that
any delayed version of an Mth band filter is also an Mth band filter. We
will say that H(z) is a Mth band filter or Nyquist(M) filter, if any one of
the M polyphase components, say Ek(z), has the form Ek(z) = cz-nk. Thus

(4.6.4a)
In terms of the impulse response, the above property is equivalent to

(4.6.4b)

Fig. 4.6-2 demonstrates this for M = 3,k = 2 and nk = 1. [If k = nk = 0,
we obtain the special case (4.6.3).]

Figure 4.6-1 Mth band or Nyquist(M) filters. (a) Example of impulse response
(M = 3), and (b) typical input to the filter if used as a 3-fold interpolation filter
(see Fig. 4.1-8(a)).
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The output of the above Mth band interpolation filter is

(4.6.5a)

This means that the input samples x(n) are communicated, without distor-
tion, to the output according to the rule

(4.6.5b)

Figure 4.6-2 Example of a Mth band filter with M =3, k =2, and nk = 1.

Figure 4.6-3 For an Mth band filter H(z), the responses H(gjjw-(2rk)/M)}) add up
to a constant.

Manifestation in frequency domain. If H(z) satisfies (4.6.1), we
can show that

(4.6.6)

where W = e-j21t/M. The frequency response of H(zWkK) is the shifted ver-
sion H(ej(w-(2rk/M))) of H(ejw). So we conclude that all these M uniformly
shifted versions of H(ejw) add up to a constant (see Fig. 4.6-3).

The definition of Nyquist filters can be extended to the continuous-time
case as well. If the impulse response ha(t) is such that ha(tn) = 0 for any
integer n # 0, we say that ha(t) is Nyquist(t). Here T need not be an integer.

Half-Band Filters

A half-band filter H(z) is an Mth band filter with M = 2. For the
simple case where k = nk = 0, we, therefore, have

(4.6.73)
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In terms of the impulse response h(n) this means
(4.6.7b)

The condition (4.6.6) reduces to
(4.6.7c)

Here are some examples, with ¢ = 1 and various choices of E1(z).

Notice from these examples that a half-band filter may or may not be causal;
it may or may not have real coefficients or linear-phase.
If H(z) has real coefficients, then H(—ejw) = H(ej(m-w)), and this
becomes
(4.6.7d)

This shows that H(ej(1/2-6)) and H(ej(n/2+6)) add up to unity for all 8. In
other words, we have a symmetry with respect to the half-band frequency
11/2, justifying the name "half-band filters™. Figure 4.6-4 demonstrates the
effect of this symmetry for a lowpass filter: the peak passband and stopband
errors 0l and 02 are equal, and the bandedges wp and wS are equally away
from 2.

Zero-phase FIR half-band filters. Half-band (more generally Mth
band) filters can be FIR or IIR. In the FIR case, it is possible to design them
to have linear phase property, and this is the most commonly used case. In
particular suppose a half-band filter is zero-phase so that h(n) = ch*(-n),
with ¢ = 1. Let the highest nonzero coefficient be h(K). Then, K is odd
[except in the trivial case K = 0], in view of (4.6.7b). So K = 2J + 1 for
some integer J. Thus, the length of the impulse response is restricted to be
of the form 4J + 2 + 1 (unless H(z) is a constant).

Figure 4.6-4 Frequency response of a zero-phase half band filter.
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Design of Zero-Phase FIR Half-Band and M-th Band Filters

Techniques for the design of zero-phase FIR half-band and Mth band
filters are discussed in Mintzer [1982] and Vaidyanathan and Nguyen [1987b].
Problem 4.30 takes the reader through all the detailed steps of an efficient
method for the half-band case. The problem also shows how the response can
be made to satisfy H(ejw) = 0, which is required in perfect reconstruction
filter-bank design (Sec. 5.3.6).

Window designs. The simplest way to design a good lowpass FIR
Nyquist(M) filter with cutoff wc = @w~M would be to use the windowing
technique, that is, design h(n) as

where v(n) is a suitable window, say the Kaiser window. Since sin(ttorM) =
0 for n = nonzero multiple of M, (4.6.3) is indeed satisfied. Design exam-
ple 3.2.1, which was presented in Chap. 3, already satisfies the Nyquist(4)
property, since wc = w4. As explained in Sec. 3.2.1, any desired stopband
attenuation and transition bandwidth can be obtained by using an appropri-
ate Kaiser window. We know, however, that window methods do not result
in filters that are optimal in any way (except rectangular windows; Problem
3.5).

Eigenfilter designs. A technique to design Mth band filters which
are optimal in the least squares sense is provided by the eigenfilter approach

described in Sec. 3.2.3. Here the design problem is formulated in terms of
the coefficients bn [Eq. (3.2.21)]. The Mth band condition can be satisfied

by forcing

In the eigenfilter approach we minimize an objective function ¢ [Eq. (3.2.30)]
which represents a linear combination of passband and stopband accuracies.
The optimum filter vector b is equal to the eigenvector of the matrix R
corresponding to its smallest eigenvalue AO. Now if we want to impose the
Mth band constraint, we can do so very easily by modifying the objective

function as follows: define a new vector b by deleting the components bMn
(n # 0). For example with M = 3 we have

Having defined b like this, we replace the matrix R with a reduced matrix

R, obtained by deleting from R all the rows and columns whose indices are
multiples of M (except the Oth row and column).

We now compute b such that the quantity btRb is minimized under the
constraint btb = 1. (The matrix R continues to be positive definite.) The
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solution b is the eigenvector of R corresponding to the smallest eigenvalue.
This represents the optimal [in the sense of minimizing (3.2.30)] Mth band
linear-phase filter.

Design Example 4.6.1: Nyquist(5) Eigenfilters

Figure 4.6-5 Design example 4.6.1. Design of 5th band (i.e., Nyquist(5))
lowpass filter. Order N = 38. (a) Frequency response magnitude, and (b) impulse
response.

Figure 4.6-5(a) shows the magnitude response plot of a 5th band low-
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pass eigenfilter of order 38 designed in this manner. The band edges are
wp = 0.151 and wS = 0.251. The impulse response is shown in Fig. 4.6-5(b).
Design procedures which seek to obtain approximately equiripple (i.e., op-
timal in the minimax sense) FIR Mth band filters can also be found in the
above references.

4.6.2 Complementary Transfer Functions

A. Strictly Complementary (SC) Funtions

A set of transfer functions [HO(z), H1(z),..., Hm-1(z)] is said to be
strictly complementary (abbreviated SC) if they add up to a delay, that is,

(4.6.8)

If we split a signal x(n) into M subband signals using the SC analysis filters
Hk(z), then we can just add the subband signals to get back the original
signal x(n) with no distortion, except a delay.

When M = 2, we can design an SC pair easily as follows: let HO(z)

be a Type ! linear phase FIR filter. Then HO(ejw) = e—jwN/2HR(w), where
HR(w) is real. Here N/2 is an integer (since the order N is even for Type

1). Define H1(z) = z-N/2 - HO(z). Then

Figure 4.6-6 shows a typical response HR(w) which can be obtained using
the McClellan-Parks algorithm. The response 1 - HR(w) is also shown.
Thus HO(z) and H1(z) are lowpass and highpass filters, and satisfy the SC
property HO(z) + H1(z) = z-N/2 by construction.

Figure 4.6-6 Example of a strictly complementary (SC) pair.

For arbitrary M we can generate an example as follows: define
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where H(z) is an Mth band filter satisfying (4.6.3). Then (4.6.6) holds,
which means that (4.6.8) is satisfied! If the filter H(z) is lowpass with ap-
propriate passband width, then the set of M filters has response resembling
Fig. 4.1-15(c).

B. Power Complementary (PC) Functions

A set of M transfer functions is said to be power-complementary (ab-
breviated PC) if

(4.6.9a)

where ¢ > 0 is constant. This property is equivalent to = M-k=0 Hk(z)Hk(z) —

c for all z, by analytic continuation. [The notation Hk(z) was explained in
Section 2.3.] Such a property is useful in analysis/synthesis systems [that
is, in systems where Fig. 4.1-15(b) is cascaded to Fig. 4.1-15(a)]. If the
synthesis filters are chosen as Fk(z) = Hk(z), then we have x(n) = cx(n)
which implies perfect recovery of x(n). In practice, the noncausality of Hk(z)
is avoided by insertion of a delay z-n0 so that x(n) = cx(n — n0).

Given an FIR HO(z) with HO(ejw) < 1, it is easy to find an FIR filter
H1(z) such that [HO(z), H1(z)] is PC. For this note that PC property is
equivalent to

(4.6.9b)

In other words, H1(z) is a spectral factor of the quantity 1 - HO(ejw) 2. The
coefficients of such a spectral factor can be calculated as described earlier in
Sec. 3.2.5.

C. Allpass Complementary (AC) Functions

A set of transfer functions is said to be allpass-complementary (abbre-
viated AC) if

(4.6.10)

where A(z) is allpass (Sec. 3.4). If such a set is used in an analysis bank,
and if the subband signals xk(n) are recombined by adding, the result x(n)
satisfies X(ejw) = X(ejw) . So the reconstructed signal is free from magni-
tude distortion. Note that strictly complementary functions are also allpass
complementary but not necessarily power complementary.

D. Doubly Complementary (DC) Functions

A set of transfer functions is said to be doubly complementary (DC)
if it is allpass complementary as well as power complementary. There are
several applications of this (including digital audio; see below).

From the results of Sec. 3.6 we obtain a simple technique to design dou-
bly complementary filters. Recall that many standard IIR filters (including
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odd order Butterworth, Chebyshev and elliptic lowpass filters) can be writ-
ten as in (3.6.4) where A0(z) and Al(z) are real-coefficient allpass. Recall
also that H1(z) defined by (3.6.5) is power complementary to HO(z). Clearly
HO(z) + H1(z) = AO(z) which is allpass, so that the pair [HO(z),H1(z)] is
both AC and PC, that is, doubly complementry!

E. Euclidean Complementary (EC) Functions

A pair of FIR transfer functions [HO(z), H1(z)] is said to be Euclidean
complementary (abbreviated EC) if the polynomials HO(z) and H1(z) are
relatively prime [that is, do not share a common factor of the form (B-az-1)
with 0 < a < oo]. It is well known (Euclid’'s theorem [see Sec. 2.3, Bose,
1985]) that if HO(z) and H1(z) are relatively prime, there exist polynomials
FO(z) and F1(z) such that

(4.6.11)

This means that we can combine the outputs of HO(z) and H1(z) to repro-
duce x(n) with no delay even when the filters HO(z), H1(z), FO(z), F1(z) are
causal FIR!

Here is a simple example which helps to remove the initial surprise which
accompanies this result: let HO(z) = 1 + z-1 and H1(z) = 1 — z-1. Then
the choice FO(z) = F1(z) = 0.5 results in x(n) = x(n). Given the relatively
prime pair [HO(z),H1(z)], there exists a unique pair [FO(z),F1(z)] (up to a
scale factor) of lowest degree which can be solved using Euclid’s algorithm.

An example is shown in Figure 4.6-7. The magnitude response plots of
the four filters satisfying (4.6.11) are shown in the figure. The filter orders
are 39 for Hk(z) and 38 for Fk(z).

A warning is appropriate in this context. Suppose the relatively prime
polynomials HO(z) and H1(z) are causal lowpass and highpass filters with

HO(ejw) , Hl(ejw) < 1. Then the unique lowest degree pair [FO(z),F1(z)]
turns out to be highpass and lowpass respectively! So with FO(z) and F1(z)
normalized so that FO(ejw), Fl(ejw) < 1, the constant c in (4.6.11) can be
very small. This means, quantization errors in the design and implementa-
tion of the filters can dominate c, rendering this scheme impractical.

More generally, a set of M FIR functions [HO(z),H1(z),-.. ,HM-1(z)]
is said to be EC if there is no factor (B — az-1) with 0 < o < oo common
to all of these. Under this condition, there exists a set of M FIR filters
[FO(z2),F1(=2),--. ,FM-1(z)] such that >M-1k=0 Hk(z)Fk(z) = 1. In particular,
if the filters Hk(z) are causal then so are Fk(z).

4.6.3 Relation Between Nyquist(M) Filters and Power Complementary
Filters

There is a relation between Mth band filters and power-complementary fil-
ters, which can be stated as follows: Consider a transfer function H(z) rep-
resented in the M-component polyphase form (4.3.7). Define the new trans-
fer function G(z) = H(z)H(z). Then the set [E0(z),E1(Z2),-.. ,EM-1(2)] is
power complementary if, and only if, G(z) is an Mth band filter.
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Figure 4.6-7 Example of a Eucidean complementary (EC) pair [H0(z), H1(z)]
and its synthesis counterpart [FO(z), F1(z)]. Note that F0(z) is highpass, and F1(z)
lowpass!
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To prove this, define

(4.6.12)

for0 < n< M —1, where W = e—j2n/M. This set of M transfer functions
can be represented in vector form as

(4.6.13)

where W is the M x M DFT matrix satisfying W1W = MlI. If the set
[EO(2),E1(Z2),-.. ,EM-1(2)] is power complementary then E(z)E(z) = c so
that

(4.6.14)

This in turn means that the set Hk(z), O=k=M — lis power comple-
mentary. In other words, if we define G(z)=H(z)H(z), then G(z) satisfies

> M-Ik=0 G(zW-Kk) = Mc, so that it is an Mth band filter.

Conversely, assuming that G(z) is an Mth band filter, we can prove
that the set of polyphase components [EQ(z),E1(Z),... ,EM-1(z)] is power
complementary simply by inverting the matrices in (4.6.13) and carrying out
a similar argument as above.

4.6.4 Applications of Special Transfer Functions

From the above discussions it is clear that Mth band filters and comple-
mentary filters have applications in the exact reconstruction of a signal x(n)
after it has been split into M subbands (provided the subband signals are
not decimated; decimation would cause aliasing error, which is a major issue
discussed in Chap. 5). A second application of Mth band filters is in the
design of interpolation filters, as explained earlier. Some applications are
also described in Mitra, et al. [1985] and Regalia and Mitra, [1987].

Doubly complementary Filters in Digital Audio

The loudspeaker system in most audio equipment typically has differ-
ent subspeakers for different frequency ranges such as the tweeter (high fre-
quency) and woofer (low frequency). In a digital audio system it is desirable
to split the audio signal y(n) (before D/A conversion) into the lowpass sig-
nal yO(n) and highpass signal y1(n) using an anlaysis bank [HO(z), H1(z)].
The analysis bank is more commonly called a crossover network in the au-
dio industry [Bullock, 111, 1986]. These subband signals can then be D/A
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converted and fed into the speakers (Fig. 4.6-8). Assuming that the loud-
speaker introduces negligible distortion (which in general is not true), the
human ear eventually perceives an analog version of yO(n) + y1(n). In the
transform domain, this is [HO(z) + H1(z)]Y(z). To avoid any distortion in
the reconstruction, it is desirable to design HO(z) and H1(z) to be a strictly
complementary pair. As elaborated earlier this can be done by using a Type
1 FIR linear phase filter for HO(z), but this is more expensive than IR filters.

With IIR filters it is possible to force the allpass complementarity. This
means that [HO(z) + H1(2)]Y(z) = A(2)Y(z) where A(z) is allpass, so that
the reconstructed signal represents Y(z) faithfully except for phase distor-
tion. If necessary, phase distortion can be equalized using an allpass filter.

It is desirable to design HO(z) and H1(z) to be good lowpass and
highpass filters so that the speakers are not damaged by out-of-band en-
ergy. Notice, however, that if HO(z) is a good lowpass filter and if the pair
[HO(z),H1(z)] is allpass complementary, this does not necessarily mean that
H1(z) is a good highpass filter. This is because the responses HO(ejw) and
H1(ejw) are in general complex. For example, it is possible at some frequency
w0 to have HO(ejw0) = ejn/3 and Hl(ejwl0) = e-jn/3 so that the sum is
2cos(m3) = 1 consistent with the AC requirement HO(ejw) + H! (ejw) = 1.

For this reason a doubly complementary pair [HO(z),H1(z)] is most suit-
able: the PC property ensures that H1(z) is a good highpass filter (if HO(z)
is lowpass) and the AC property eliminates amplitude distortion. Such IIR
filters can be implemented much more efficiently than FIR filters, as elab-
orated earlier in Sec. 3.6. For systems with several subband speakers, an
M-band AC filter bank can be used; see Renfors and Saraméki [1987] for
design of such filters.

Figure 4.6-8 Splitting the digital audio signal into woofer and tweeter compo-
nents.

Digital/Analog Hybrid QMF Banks in Digital Audio

A second potential approach to split the audio signal for loudspeaker
driving is shown in Fig. 4.6-9. Here, the digital audio signal y(n) is first
split into lowpass and highpass versions by using digital analysis filters. Then
D/A conversion is performed at the lower rate, on the decimated subband
signals vO(n) and v1(n). The analog subband signals are then passed through
analog synthesis filters Fa,0(s) and Fa,1(s) before feeding the speakers. The
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aim here is to choose the filters such that aliasing is canceled and ampli-
tude and phase distortion are reduced to the desired extent. The frequency
response characteristics of the speakers should be taken into consideration
in such a design. The advantage of this hybrid digital/analog QMF bank
is that the D/A conversion is performed at half the sampling rate. At this
point in time, no results are available on the design of such hybrid QMF
banks, but the idea appears promising.

Figure 4.6-9 A digital/analog hybrid QMF bank with potential application in
digital audio.

Figure 4.6-10 An analog/digital hybrid QMF bank.

Analog/Digital Hybrid QMF Banks in A/D Conversion

An immediate dual of the above idea is the use of analog analysis filters
and digital synthesis filters. Such systems can have applications in A/D
conversion, where a high sampling rate A/D converter can be designed by
using M converters operating at M fold lower rate. Figure 4.6-10 depicts
the basic idea where the analog signal xa(t) is split into subband signals by
the analog filters Ha,0(s) and Ha,1(s). These signals are then sampled at
half the intended rate fs, and converted into digital format. The digitized
subband signals are then passed through expanders (to get back the desired
sampling rate) and recombined through the synthesis filters FO(z) and F1(z)
to obtain x(n). The aim here is to design the filters such that x(n) represents,
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as closely as possible, the signal x(n) which would have been obtained by
direct A/D conversion of xa(t) at the rate fs. Again, since the analog filters
are not ideal, there is aliasing at the output of the analysis bank. The
synthesis filters should be chosen to minimize the effect of aliasing, as well
as amplitude and phase distortions.

High speed A/D conversion using filter banks is also discussed in Pe-
traglia and Mitra [1990]. More applications of special transfer functions are
scattered throughout this text in various forms.

4.6.5 Adjustable Multilevel Filters and Tunable Filters

A multilevel filter has typical response as shown in Fig. 4.6-11. Basically,
the frequency axis is divided into a number of regions, and the response
has some constant value in each region. There are transition bands between
these regions so that the filter is realizable. The levels 3k are real or com-
plex numbers. The multilevel response is a generalization of lowpass and
bandpass responses.

Figure 4.6-11 A typical response of a multilevel filter. (© Adopted from 1990
IEEE.)

Figure 4.6-12 (a) A typical splitting of the frequency axis into M divisions
and (b) a prototype lowpass response, which can be used to generate a multilevel
response.

We will consider the example where the multilevel filter G(z) has M

164 Chap. 4. Multirate system fundamentals



regions with equal width 2mM, as shown in Fig. 4.6-12(a). t Suppose
H(z) is a Mth band zero-phase filter with response as shown in Fig. 4.6-
12(b). It is clear that we can obtain the multilevel filter G(z) as

(4.6.15)

because the response of H(zWK) is obtained by shifting H(ejw) to the right
by 21tk~M. We know that the M responses H(zWk) can be realized in terms
of the polyphase components of H(z) as in Fig. 4.3-5(a). This means that
the multilevel filter can be implemented as in Fig. 4.6-13. The levels Bk
appear in the structure as independent multipliers, and can be separately
tuned. Similarly by changing H(z) [i.e., the polyphase components E£(z)]
we can adjust the sharpness of the level transitions without affecting the
levels.

In a practical implementation of this idea, we have to be more careful.
When the M responses are added as in (4.6.15), we have no difficulty in
obtaining the in-band levels, but the transition bands may exhibit dips or
bumps depending on the degree of overlap between adjacent responses [such
as H(zWk) and H(zWk+1)]. As explained below, a very simple way to avoid
these dips and bumps is to take H(z) to be an Mth band [i.e., Nyquist(M)]
filter satisfying (4.6.6).

Figure 4.6-13 Polyphase implementation of an adjustable multilevel filter. Here
Bk represents the ‘response level' in the kth band. (© Adopted from 1990 IEEE.)

Ifwe assume that in the region of overlap of H(zWKk) and H(zWk+1) the
remaining terms of (4.6.6) are negligible, we have H(zWk) + H(zWk+1) = 1.

t By permitting adjacent levels to be equal if necessary, and taking M to
be sufficiently large, we can in practice cover less restricted responses as in
Fig. 4.6-11 also.
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This implies
(4.6.16)

This is plotted in Fig. 4.6-14 in the neighbourhood of the transition from
Bk to Bk+1 and is monotone (i.e., free from bumps and dips).

Figure 4.6-14 Behavior of (4.6.16) in the neighborhood of transition.

Summarizing, we can design multilevel filters very efficiently by the
structure of Fig. 4.6-13 where E£(z) are the polyphase components of a zero
phase Mth band filter. The Mth band property ensures smooth transition
from band to band.

Design Example 4.6.2: Multilevel Filters

Figure 4.6-15 shows the response of a 5th band lowpass filter (order
58) designed using the Kaiser window approach, and two examples of mul-
tilevel responses derived from it. The values of the parameters 3k are
(0.4,1.0,0.7,0.1,0.9) and (1.0,0.5,0.0, 0.7,0.7), respectively.

The reader will notice that in the above example, the multilevel filter
does not have real coefficients even though the prototype H(z) does.

Tunable filters.

We can use the structure of Fig. 4.6-13 to obtain a lowpass filter whose
cutoff frequency is tunable. Consider, for example, real coefficient filters so
that the magnitude response is symmetric with respect to zero frequency.
If we set B0 = 1, and Bk = 0 otherwise, the 'cutoff is =M. If we set
B0 = Bl = BM-1 = 1 and Bk = 0 otherwise, then the cutoff frequency is
3~M. [Refer to Fig. 4.6-12(a).] By making M sufficiently large, we can
thus tune the cutoff frequency in very fine (discrete) steps.

Why the Name "Polyphase” Decomposition?

This seems to be the best place to explain the reason for use of the
term “polyphase” decomposition. Suppose we have a Mth band filter with
response as in Fig. 4.6-12(b). We know that the impulse response ef(n)
of the polyphase component E£(z) is obtained by decimating h(n + €) (Fig.
4.3-1). This means that the polyphase component Ef(ejw) is an aliased
version of ejwlH(ejw), so that it has the appearance of an allpass function
with magnitude 1/M (except around w = =T because of aliasing). This is
demonstrated in Fig. 4.6-16. Now let us see how the summation
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Figure 4.6-15 Design example 4.6.2. Multilevel filters. (a) Prototype 5th band
filter, and (b) two multilevel examples. (© Adopted from 1990 IEEE.)

works in the passband region in Fig. 4.6-12(b). There are M terms, each
with magnitude = 1/M. These add up to nearly unity which shows that the
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4.7

M terms z-LE£(zM) are almost in phase. But for an Mth band filter, EO(z)
is constant. This shows that the phase responses of z-8E£(zm) are nearly
zero in the passband. In other words, Ef(ejw) tries to approximate ejw€/M.
So the phase response @f(w) of the £th polyphase component is trying to
approximate w-M, for each €. This is the motivation for use of the term
"polyphase” [Bellanger, et al., 1976].

Figure 4.6-16 Typical behaviors of Ef(ejw) when H(ejw) is as in Fig. 4.6-
12(b).

MULTIGRID METHODS

The term “multigrid methods” represents a wide range of techniques used
in iterative numerical computations. These are used to solve large sets of
linear or nonlinear equations (thousands of unknowns) which in turn may be
discretized versions of (partial) differential equations. Multigrid techniques
improve the speed/accuracy of solutions, in some cases dramatically. This
is a discipline with vast amount of literature, and the reader wishing to
pursue the literature should begin with Briggs [1987], and Brandt [1977].
Our goal here is to describe the philosophy with simple examples (ordinary
linear differential equations), and show the connection to multirate signal
processing. The discussion in this section is intended to convey the idea
with emphasis on concepts rather than rigor.

4.7.1 Discretizing a Continuous-Time Problem

Matrix equations arise either directly, or by discretization of continuous
problems. To demonstrate, consider the second order differential equation

(4.7.1)

to be solved in the time range 0 < t < 1, with boundary conditions ya(0) =
ya(1) = 0. This is a linear constant-coefficient differential equation. Here
ua(t) is the continuous-time input to the differential equation, and ya(t) is
the output.

When attempting to solve this [i.e., find ya(t)] on a computer, we dis-
cretize the problem. We first define a uniform "grid" G(A) of the domain
0 <t< 1 (Fig. 4.7-1), and try to find (approximate value of) ya(t) on the
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grid, that is, at points t = nA, where n is an integer with 1 < n < N. If
we define y(n) = ya(nA), and u(n) = ua(nA) and approximate the second
derivative with the second difference, we obtain from (4.7.1)

4.7.2)

Figure 4.7-1 A uniform grid defined on 0 < t < 1. The spacing A is called
fineness.

The aim is to solve this for 1 < n < N, under the boundary conditions
y(0) = y(N + 1) = 0. We can write the equations (4.7.2) in matrix form

(4.7.3)
where

(4.7.4)
and A is N x N. For example with N = 5,

(4.7.5)

Summarizing, we have converted our problem into a problem in linear al-
gebra. The original problem (4.7.1) has been reformulated on a grid G(A),
where the supercript A denotes the "fineness” of the grid. The solution y
of the equation (4.7.3) is an approximation to the sampled version of the
solution ya(t) of (4.7.1).

Notice that A is symmetric and Toeplitz (Appendix A). Furthermore,
it is “banded.” For a banded matrix all elements sufficiently away from the
main diagonal are zero. The banded nature is a consequence of discretizing
a differential equation.

Sec. 4.7 Multigrid methods 169



4.7.2 Traditional Techniques to Solve Ay=u

Assume that A is nonsingular. There exist many techniques to find the ex-
act solution y to (4.7.3) (subject only to finite precision errors), in a finite
amount of time. This includes Gauss-elimination and its variations [Golub
and Van Loan, 1989]. These have O(N3) complexity [i.e., the computational
time is cN3 where c is independent of N]. If A has special structure (sym-
metry, positive definiteness and so on, Appendix A) the methods can be
made more efficient, but are still O(N3). If A is Toeplitz then there exist
O(N2) techniques (see Blahut [1985] and references therein).

Iterative Techniques

In many applications, however, iterative techniques are used. Instead
of finding the exact solution, these methods attempt to find an approximate
solution yk, whose accuracy improves with iteration number k. These have
some computational advantages when the matrix is banded, with the matrix
size N much larger than the number of nonzero elements per row. Iterative
techniques can also be applied to more general situations (such as nonlinear
equations). Finally there are some applications where the matrix A grows
in real time (such as in real time recursive estimation); iterative techniques
can incorporate a mechanism to update the approximations efficiently.

A typical iteration has the form

(4.7.6)

where P is related to A (details depending on the particular iterative tech-
nique), and g depends on A as well as u. Ideally this converges to the exact
solution y for any initial estimate y0 as long as P is stable (i.e., has eigen-
values strictly inside unit circle; Sec. 13.4.3).

For fixed A, the choice of P is not unique. To see how P is related to
A, note that upon convergence (4.7.6) implies

(4.7.7)

that is, (I - P)y = g. So we can choose | - P = TA,q = Tu, for any
nonsingular T. For our discussion the choice of T is irrelevant, as long as
P is stable. We shall assume T = ol where a is a nonzero scalar. So
P =I1l-aA.

The error vector and the residual vector. Suppose y is an ap-
proximation to the solution y. Then Ay = u # u. Define

(4.7.8)

As the exact solution y is not known, we do not know the error e. On the
contrary, the residual r can be computed from the approximate solution y.
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It is easily verified that the error and residual are related as Ae = r, so
that, at the kth iteration we have the relation

(4.7.9)
where ek and rk are the error and residual at the kth iteration, that is,
(4.7.10)

where uk = Ayk. The iteration (4.7.6) can be rewritten in terms of the
residual rk as
(4.7.11)
Thus, the solution yk+! is obtained by adding a correction term to yk,
proportional to the residual rk.
More insight can be gained by subtracting (4.7.6) from (4.7.7) and
rewriting in terms of ek. This gives
(4.7.12)
by using P = 1 - aA.
Thus, as long as P is stable, rk and ek eventually become zero. We see
below that the speed of convergence has to do with the eigenvalues of P.
Choice of a (which affects eigenvalues of P) is therefore crucial.

4.7.3 The Stalling Phenomenon

We see that the convergence of the residual is governed by
(4.7.13)

We can judge the rate of convergence by considering the behavior of the
residual energy
(4.7.14)

Figure 4.7-2 shows a typical behavior of this quantity, which arises in many
practical situations: initially the energy decreases rapidly, and then there is a
phase of slower decrease, and then even slower, and so on. (The iteration gets
into “slower and slower” modes.) At some stage the rate of decrease becomes
very small. This phenomenon is called stalling. Under this condition, it takes
several iterations (i.e., prohibitive amount of computations) to reduce the
energy 6k by a significant amount.

Figure 4.7-2 Reduction of
residual energy as k increases.
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An “obvious” way to overcome the stalling problem is suggested by
(4.7.13). Since rk+L = PLrk, we can replace P with PL for some large inte-
ger L and perform the iteration. The convergence is speeded up in proportion
to L, that is, the slow modes will appear to be faster. The disadvantage is
that the evaluation of PL itself requires O(LN3) computations, far in excess
of Gaussian elimination!

In this situation, multigrid processing comes to our rescue. Broadly
speaking, as soon as the iteration begins to stall, we reformulate a new
problem by “decimating” the original problem into a problem of smaller
dimension (as described below). The iterations for the problem proceed at
a much faster rate. We then use an interpolation scheme on the result, to
obtain a correction term for the original (larger) problem. Before describing
the details, we study the reason for the stalling behavior (Fig. 4.7-2) more
quantitatively.

Why Does Stalling Occur?

To explain stalling, first note that rk = Pkr0. Assume for simplicity
that P is diagonalizable with a unitary matrix (Sec. A.6, Appendix A), that
is, can be written as P = UAUT, where (i) A is a diagonal matrix with
diagonal elements Ai equal to the eigenvalues of P, and (ii) UtU = I. We
then have Pk = UAkUTt so that rk = UAKUTr0. Denoting the elements of
the column vector Utr0 as vO, ... vN-1, we can write

(4.7.15)
where ui are the columns of U. Since utuf = &(i — £), we get

(4.7.16)
To visualize the idea clearly, assume A0 < Al < ... < AN-1. Referring

now to Fig. 4.7-2, it is clear that the initial steep decrease of 6k is due to
v0 2 A0 2k (assuming this term is nonzero) and that stalling is created by the
slowest-decaying term VvN-1|2|]AN-1 2k (assuming VN-1 # 0). This slowest
mode corresponds to the eigenvalue AN-1 with largest magnitude. As long
as AN-1] < 1, the residual rk (hence the error ek) eventually decreases to
zero as k - oo.

In Problem 4.31 we consider some additional details for the case where
A is positive definite. We derive the condition on a for stability of P, and
also the value of a that maximizes convergence rate.

4.7.4 Basic ldea of Multigrid Approach

In what follows, the residual rk and error ek upon staffing will be denoted
as r(A) and e(A). Also, we use A(A) in place of A. Thus (4.7.9) is equivalent
to

(4.7.17a)
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The superscript indicates that these quantities pertain to the grid G(A) of
fineness A (Fig. 4.7-1). In problems where the equation (4.7.3) is obtained
by discretization of differential equations, the iteration (4.7.6) often exhibits
an extremely interesting behavior upon stalling, viz., the residual vector
r(A) has a smooth appearance. In other words, if r(A)(n) denotes the nth
component of r(A), then the plot of r(A)(n) as a function of n is 'smooth".
Figure 4.7-3 demonstrates the meaning of “smooth”. For comparison, we
have also shown a “nonsmooth” or “oscillatory” function.

Figure 4.7-3 Demonstrating smooth and oscillating vectors.

Before explaining the reason for this behavior, let us explore the conse-
guences. At the end of the kth iteration we know r(A). If we can solve for
e(A) from (4.7.17a), we can obtain the exact solution y since

This might appear to be as involved as the original problem (4.7.3), but the
smooth nature of r(A) can be exploited now. Since the sequence r(A)(n)
appears to have only low-frequency components, we can “decimate it”, say
by a factor of 2, and consider the following equation

(4.7.17b)

In this equation r(2A) is a decimated version of the residual r(A), and has
about half as many elements. The matrix A(24) is a “decimated version” of
A, and is approximately N2 x N/2. Essentially, it is obtainable by discretizing
the original differential equation with a coarser grid, but we shall fill these
mathematical details later.

Equation (4.7.17b) is the analog of (4.7.17a), but on a coarser grid. The
basic idea is that we can now solve for the error e(2A) using this smaller sys-
tem. We then perform an ‘interpolation operation’ to find an approximation
to the error e(A) on the original fine grid. The solution yk on the fine grid
can now be corrected by adding this estimate e(A) to it. This idea can of
course be carried to deeper levels. Thus, if the iterative process for (4.7.17b)
stalls, we can repeat the decimation process, and so on. We now turn to
quantitative details of the various components of this idea.
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Why Does the Residual Look ""Smooth"” Upon Stalling?

There is no law which says that this will always happen. However,
with proper choice of a, this can usually be made to happen. First refer
to the example where (4.7.1) was discretized, and consider the case where
p = 0. The differentiator d2y(ty~dt2 was replaced by a second order difference
operator c(z- 2+ z-1) = cz(1 - z-1)2, which is a zero-phase highpass filter.
If we now look at the matrix A given in (4.7.5), we see that all rows have
the form

(4.7.18)

except the Oth and last rows. (We assume that the matrix size N is large,
so that these border effects can be ignored.) Moreover, each row is a shifted
version of the preceding row. As a result, the product Av approximates
a convolution of the sequence v(n) with the highpass filter (—z + 2 — z-1)
(where v(n) is the nth element of v).

Now consider the iteration matrix P = I — aA. This has all the prop-
erties of A except that it represents a convolution with the filter

(4.7.19)

For proper choice of a this filter has lowpass behavior. For example let
a = 1/3, then H(z) = (z + 1 + z-1)3. This has response

(4.7.20)

which is plotted in Fig. 4.7-4(a). Thus the operation Pv resembles lowpass
filtering of the sequence v(n). Summarizing, the effect of the iteration (4.7.13)
is that of a lowpass filter. For large k therefore, this has a smoothing effect
on the residual as mentioned above.

If we choose a = 1/2, then the filter has response H(ejw) = cosw [Fig.
4.7-4(b)] which is not lowpass. In this case, the iteration does not result in
smoothing.

Relation to eigenvector viewpoint. In Sec. 4.7.3 we saw that
the iteration stalls when rk is close to an eigenvector corresponding to the
eigenvalue AN-1 with largest magnitude. In the above discussion, however,
we see that stalling typically occurs when rk has been smoothed out. The
latter observation is a special case of the former, when P can be interpreted
as a lowpass filtering operator.

Thus when P approximates a filter operator, vectors of the form

(4.7.21)
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are approximately eigenvectors, with eigenvalues H(ejw). (This is because
ejwn, and more generally an, are eigenfunctions of discrete time LTI systems;
see Sec. 2.1.2.) If H(ejw) is a lowpass response, then the eigenvalues with
large magnitude correspond to low frequencies w. This means that, after
several iterations, only the low frequency components of the initial vector r0
survive. So the residual vector rk appears to be smooth upon stalling.

Figure 4.7-4 Explaining the smoothing effect created by the iteration matrix.
The response H(ejw) is shown. (a) a = 1/3 causes smoothing and (b) a = 1/2
does not cause smoothing.

The fact that the response H(ejw) is real and symmetric in the above
example implies that if we replace w with -w in (4.7.21), the eigenvalue
does not change. This means that we can find a smooth eigenvector with
real elements cos wn.

Decimation of the Residual, and Interpolation of the Error

Decimation operation is needed to transfer the residual r(A) from the
grid G(A) to the grid G(24). Denote the nth component of r(2A) as r(2A)(n).
The simplest decimation scheme is to take r(2A)(n) = r(A)(2n). A more so-
phisticated scheme would be to define r(2A)(n) as the output of a decimation
filter (Fig. 4.7-5). The most commonly used decimation filter in multigrid
literature is GD(z) = (z+2+z-1y4. This is lowpass with frequency response
GD(ejw) = cos2(w2).

Similarly, when we transfer the error e(2A) to the finer grid to obtain an
approximation of e(A), we use an interpolation filter. A common example is
Gl(z) = (z+ 2+ z-1y2.

Matrix representation. To be consistent with the rest of the problem,
it is convenient to express the decimation and interpolation filters in matrix
form. We do this by taking the above examples for GD(z) and GI(z). Figure
4.7-6 shows the grids G(A) and G(24) for N = 7. Assuming the boundary
conditions

(4.7.22)
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we compute the decimated samples as

(4.7.23)

For example, we use a transformation of this type to obtain r(24) from r(A).
Similarly when we convert from the coarse to the dense grid (interpolation)
we use the matrix transformation

(4.7.24)

We use this to obtain the approximation of e(A) from e(2A).

Finding the Matrix A(2A) for the Coarse Grid

In the example of Fig. 4.7-6, the matrix A(4) is 7 x 7, whereas A(24)
would be 3 x 3. It remains to show how to find the elements of this smaller
matrix. In multigrid literature, the following formula is used:

(4.7.25)
where MD and MI are the decimator and interpolator matrices indicated
above. The reason for the above choice of A(2A) can be understood as fol-
lows: suppose the error vector e(A) can be obtained exactly by interpolation
of e(2A). That is suppose

(4.7.26)
Since r(2A) = MDr(A), the above equation implies
(4.7.27)
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Comparing with (4.7.17b) we see that the above choice of A(24) is well-
motivated. Detailed numerical examples of the use of multigrid techniques
can be found in Brandt [1977].

Figure 4.7-5 Transfer of information between two grids, with the help of deci-
mation and interpolation filters.

Figure 4.7-6  Demonstration of dense grid and coarse grid (N = 7 and 3
respectively).
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PROBLEMS

4.1. Consider the structures shown in Fig. P4-1, with input transforms and

4.2.

4.3.

4.4.
4.5.

178

responses as indicated.

Figure P4-1

Sketch the quantities YO(ejw) and Y1(ejw).

For the system in Fig. P+2, find an expression for y(n) in terms of x(n).

Figure P4-2

Simplify the expression as best as you can.

Consider a sequence x(n) with X(ejw) as shown in Fig. P4-3.

Figure P4-3
Let y(n) = x(2n). Show how we can recover x(n) from y(n) using filters and
multirate building blocks.
Show that the decimator and expander are linear time varying systems.

Show that the two systems shown in Fig. P4-5(a) (where k is some integer)
are equivalent (that is, yo(n) = y1(n)) when hk(n) = h0(n) cos(2rtkp-1).
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4.6.

4.7.

4.8.

4.9.

Figure P4-5(a)

This is a structure where filtering followed by cosine modulation has the same
effect as filtering with the cosine modulated impulse response. (This is not true
in all situations; see next problem). Now consider the example where L = 5,
and k = 1. Let X(ejw) and HO(ejw) be as sketched in Fig. P4-5(b).

Figure P4-5(b)

Give sketches of Y(ejw), YO(ejw) and U(ejw).

Show that the two systems shown in Fig. P4-6 are not equivalent, that is, yO(n)
and y1(n) are not necessarily the same, even if hk(n) = h0(n) cos(2rtkn-L).

Figure P4-6

Consider the two sets of M numbers given by Wk, 0 < k < M — 1 and WKL,
0 <k <M —1where W = e-j2n/M. Show that these sets are identical if and
only if L and M are relatively prime.

For the two systems in Fig. 4.2-2 we can write down y1(n) and y2(n) in terms
of x(n), M and L. For example

a) Similarly write an expression for y2(n).
b) Verify that these two expressions yield the same result (i.e., y1(n) = y2(n)
for any sequence x(n)), if, and only if, L and M are relatively prime.

The jumping painter problem. Consider a circular arrangement of objects as
shown in Fig. P4-9.
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4.10.

4.11.
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Figure P4-9

There are N objects numbered as indicated. A painter is requested to paint
these one at a time. To avoid a boring job, he decides to paint the objects in
nonconsecutive order as: 0, M,2M,... Now there are two possibilities:

a) either all the objects get painted,

b) or the painter returns to an object already painted, before all objects are
covered. This means that he will never be able to paint a subset of objects.

Find a set of necessary and sufficient conditions so that the first possibility
takes place.

Let x(n) be periodic with period N, that is, N is the smallest integer such that
Xx(n) = x(n+ N) for all n. Let y(n) be the M-fold decimated version, that is,
y(n) = x(Mn). Show that y(n) is periodic, that is, there exists L < oo such

that y(n) = y(n+ L) for all n. Assuming no further knowledge about the input,
what is the smallest value of L in terms of M and N?

Consider a sequence x(n) with X(ejw) as shown in Fig. P4-11(a).

Figure P4-11(a)

Suppose we generate the sequences y(n) and s(n) from x(n) as in Fig. P+11(b)

Figure P4-11(b)
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4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

where

Plot the quantities Y(ejw) and S(ejw).

In this problem, the term ‘polyphase components' stands for the Type 1 com-
ponents with M = 2.

a) Let H(z) represent an FIR filter of length 10 with impulse response coeffi-
cients h(n) = (1/2)n for 0 < n < 9 and zero otherwise. Find the polyphase
components EO(z) and E1(z).

b) Let H(z) be IIR with h(n) = (2)nU(n) + (*3)nU(n - 3). Find the
polyphase components EO(z) and E1(z). Give simplified, closed form ex-
pressions.

Let H(z) = (a + z-1{1 + az-1). Write down expressions for the Type !
polyphase components (with M = 2). For real a, notice that H(z) is allpass.
Are the polyphase components allpass as well?

Let H(z) = {1 — 2RcosBz-1 + R2z-2), with R > 0 and 6 real. This is
a system with a pair of complex conjugate poles at Rexj6. Find the Type !
polyphase components for M = 2.

Consider the fractional decimation circuit of Fig. 4.1-10(b) with L = 3, M = 4.
Suppose H(z) is a linear phase FIR filter with length 60. Assume that x(n)
has a sampling rate of 100 KHz. (a) If H{z") is implemented directly (i.e., no
polyphase forms) what is the time available for each multiplier to perform one
multiplication? (b) Suppose the structure is implemented in the best possible
way (i.e., using polyphase form similar to Fig. 4.3-8). Then what is the time
available for each multiplier to perform one multiplication? (c) Find the number
of multiplications and additions per second in part (b).

Is the following statement true or false? Justify. "Let h(n) be the impulse

response of an allpass filter. Let g(n)=h(2n). Suppose the filter G(z) [whose
impulse response is g(n)] is allpass as well. Then h(n) must be an impulse (i.e.,
h(n) = ¢d(n — n0) where n0 is some integer, and c is some constant)."

Consider the systems shown in Fig. P4-17

Figure P4-17

where G0(z) = =Nn=0g(n)z-n and G1(z) = >=N=0g(N - n)z-n. The impulse
response of G1(z) is the mirror image of that of GO(z). Draw a structure for
the system in Fig. P4-17(a), using only N + 1 multipliers. (Hint. Draw one
set of multipliers, and two sets of delay chains running in opposite directions).
Repeat for the system in Fig. P4-17(b).
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4.18. Consider the uniform DFT analysis bank [Fig. 4.3-5(a)] with M = 4. Assume
EO(z) = 1+z-1,E1(z) = 1+22z-1,E2(z) = 2+z-2 and E3(z) = 0.5+ 2z-1. Find
explicit expressions for Hk(z), 0 < k < 3, working out the numerical values of
these filter coefficients.

4.19. Consider the structure shown in Fig. P4-19(a), where W is the 3 x 3 DFT
matrix.

Figure P4-19(a)

This is a three channel synthesis bank with three filters FO(z), F1(z) and F2(z).
(For example FO(z) = Y(zy~Y0(z) with y1(n) and y2(n) set to zero.)
a) Assuming RO(z) = 1+ z-1, R1(z) = 1 — z-2 and R2(z) = 2 + 3z-1, find
expressions for the three synthesis filters F0(z), F1(z), F2(2).
b) Let the magnitude response of F1(z) be as shown in Fig. 4-19(b).

Figure P4-19(b)

Plot the responses FO(ejw) and F2(ejw) .

4.20. For the structure of Fig. 4.3-12, prove that the synthesis filters are indeed given
by (4.3.15).

4.21. Let HO(z) = 1 + 2z-1 + 4z-2 + 22-3 + z-4 and let H1(z) = HO(-z). Draw
an implementation for the pair [H0(z), H1(z)] in the form of a uniform DFT
analysis bank, explicitly showing the polyphase components, the 2 x 2 IDFT
box, and other relevant details.

4.22. Let H(z) — =N=0 h(n)z-n with h(n) = h(N — n). Consider the polyphase
decomposition (4.3.7). The symmetry of h(n) reflects into the coefficients of
E£(z) in some way. To be more specific, we can make the following statement:
there exists an integer m0 (with 0 < m0 < M — 1) such that ek(n) is the
image of em0-k(n) for 0 < k < m0, and ek(n) is the image of eM+m0-k(n) for
ml + 1=k=M—1
a) Take an example of 7th order H(z), and verify the above statement for
M = 3. What is m0? Repeat for M = 4.
b) Prove the above statement. How is m0 related to N and M?
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This problem shows that if h(n) is symmetric (as in linear phase filters), then
we can implement pairs of polyphase components [such as Ek(z) and Em0-k(z)]
using one set of multipliers. This gives rise to an additional saving (by two) on
the number of MPUs in the implementation of a decimation filter.

4.23. Consider the design of real coefficient narrow band lowpass filters using the
IFIR method. We know that the savings depends on the stretching factor
M1 used. We assume that the image suppressor 1(z) and model filter G(z)
are designed using McClellan-Parks equiripple technique. For a given set of
specifications 81,02,0p and wS, we will design G(z) and I(z) to have peak
passband ripples 0.581 and stopband ripples &2 (for reasons explained in text).
Let Ng and Ni denote the orders of G(z) and 1(z).

a) Write down the orders Ng and Ni in terms of 81,62,wp,®S, and M1. Show
that as M! increases, Ng decreases whereas Ni increases. Evidently there
is some ‘best' M1 for a given set of specifications.

b) For wp = 0.18m,wS = 0.2m, 6! = 0.01 and 62 = 0.001, estimate the orders
Ng and Ni for all permissible values of M1, and plot the multiplier count
against M1 What is the value of M! that minimizes the multiplier count?

4.24. Suppose we wish to design alinear phase FIR filter with specifications 8! = 42 =
0.001, wp = 0.015m and wS = 0.02m. (a) For direct equiripple design, estimate
the filter order, and number of multiplications and additions required. (b) If
we use the IFIR approach with stretching factor of 25, what are the orders of
equiripple G(z) and 1(z)? What is the total number of multiplications and
additions? What is the order of the overall filter? (c) Repeat part (b) with
stretching factor = 45.

4.25. We know that the IFIR technique can be used to design narrow band filters in
two stages, thereby improving the computational efficiency. Now suppose that
we are interested in designing a real-coefficient wide band lowpass filter with
magnitude response as in Fig. P4-25(a).

Evidently, we cannot stretch the response by an integer factor to obtain a
model response G(ejw) as in the IFIR approach. Consider the modified lowpass
specification shown in Fig. P+25(b).

a) Let H1(z) be a Type 1 Nth order linear phase filter (Table 2.4.1) meeting
this specification. Define H2(z) = z-N/2 — H1(z) and H(z) = H2(-z).
Sketch the magnitude responses of H2(ejw) and H(ejw). Note that H(z)
is lowpass, and has same band edges as the desired wideband filter.
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Figure P4-25(b)

b) Suppose the specifications for H(z) are wp = 0.85m,wS = 0.9m, 8! = 0.01,
02 = 0.001. What is the total number of multipliers required if we design
linear-phase equiripple H(z) directly?

c) Suppose we meet the specifications of part (b) by proceeding as in part
(a) where H1(z) is designed using the IFIR approach (stretching factor 2).
What are the specifications for H1(z)? What is the required number of
multipliers for implementing the wideband filter H(z)? (Take the model
filter and image suppressor to be equiripple.)

4.26. Suppose we wish to design a 25-fold lowpass linear-phase interpolation filter
(i.e., L = 25). Let the input signal x(n) be bandlimited to ® < 0.957. Assume
that the ripple specifications are 8! = 0.01,82 = 0.002. (a) Find reasonable
band edges wp and wS for H(z). (b) What is the filter order if a direct design
is used? (c) Suppose the filter is designed using a two stage approach. What are
the orders of G(z) and 1(z)? (d) What are the total number of multiplications
and additions in the direct design and how do these compare with the two-stage
design? (e) Assuming an input sampling rate of 8 KHz, what is the number of
multiplications and additions per second in the two-stage design?

4.27. For a uniform DFT analysis bank, we know that the filters are related by
Hk(z) = HO(zWK), O<k <M - 1, with W = e-j2n/M. Let M = 5 and define
two new transfer functions G1(z) = H1(z) + H4(z) and G2(z) = H2(z) + H3(2).
Let hO(n) denote the impulse response of HO(z), assumed to be real for all n.

a) Are hk(n), 1 < k < 4 real for all n?

b) Express the impulse responses g1(n) and g2(n) of G1(z) and G2(z) in terms of
hO(n). Are gl(n) and g2(n) real for all n?

c) Let HO(ejw) be as shown in Fig. P4-27.

Plot the responses Gl(ejw) and G2(ejw), for 0 < w < 2m. Does G2(ejw)
necessarily look 'good' in its passband?

4.28. Consider the analysis/synthesis system in Fig. P4-28.
a) Let the analysis filters be HO(z) = 1 + 3z-1 + 0.5z-2 + z-3 and H1(z) =
HO(-z). Find causal stable IIR filters FO(z) and F1(z) such that x(n)
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4.29.

4.30.

agrees with x(n) except for a possible delay and (nonzero) scale factor.

b) Let HO(z) = 1 + 2z-1 + 3z-2 + 27-3 + z-4, and H1(z) = H0(-z). Find
causal FIR filters FO(z) and F1(z) such that x(n) agrees with x(n) except
for a possible delay and (nonzero) scale factor.

Figure P4-28

(Hint. This is perhaps tricky, but not tedious or difficult. It helps to use
polyphase decomposition. Review of complementary filters might help.)

Let HO(z) = (1 + z-L¥2. Find real-coefficient causal FIR H1(z) such that
the pair H0(z),H1(z) is power complementary. Are these filters also allpass
complementary? Euclidean complementary? Doubly complementary?

A trick for the design of zero-phase FIR equiripple half-band filters. Suppose
G(z) = =Nn=0g(n)z-n is a Type 2 linear phase filter (Sec. 2.4.2). This means
that N is odd and g(n) is real, with g(n) = g(N — n). This also means that
there is a zero at w = 1. We know we can write G(ejw) = e-joN/2GR(w) where
GR(w) real. Suppose we have designed G(z) such that the response GR(w) is
as shown in Fig. P4-30.

This design can be done by defining the passband to be 0 < w < 6p and
transition band to be 6p < w < m. There is no stopband. Such filters with
one equiripple passband and no stopband can indeed be designed using the
McClellan-Parks algorithm (Section 3.2.4). Now define the transfer function
F(z) = [z-N + G(z2)}2. This is a Type 1 linear phase filter.
a) Show that F(ejw) = e-jwNFR(w), where FR(w) is real. Express FR(w) in
terms of GR(w).
b) Plot the amplitude response FR(w) in 0 < w < m. Verify that it resembles
Fig. 4.6-4. What are the values of d,0p, and wS in terms of e and 6p?

c) Let f(n) and g(n) denote the impulse responses of F(z) and G(z). Show
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4.31.

4.32.
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that

(P4.30a)

This also verifies that F(z) is a half-band filter.

d) Suppose we define H(z) = zNF(z). Then H(z) is a zero-phase half-band
filter. Its length is 2N +1, and since N is odd, we have 2N +1 = 4]+ 2+1
for some integer J. Clearly H(ejw) is real. Define H(z) = 0.5¢ + H(z), i.e.,

(P4.30b)

Show that H(ejw) = 0 for all w.

This shows how we can design a zero-phase equiripple half-band filter H(z)
(with H(ejw) = 0) just by designing a Type 2 one-band filter G(z) of half the
order, and making minor changes to its coefficients!

Let A be N x N Hermitian positive definite with eigenvalues0 < A0 < Al... <
AN-1 Define P =1 — aA, with a > 0.
a) Show that P is stable (i.e., eigenvalues strictly inside the unit circle) if and
only if a < 2/AN-1
b) In general P is not positive definite even though Hermitian. Show that the
maximum eigenvalue-magnitude is minimized by the choice a = 2-{A\0 +
AN-1). This choice therefore gives the fastest decrease of ok after ‘stalling'
has set in (Fig. 4.7-2).

The matrix in (4.7.5) is a demonstration, for N = 5, of the N x N matrix A
in (4.7.3). In this problem we consider this matrix and assume N is arbitrary.
Let p = 0 for simplicity.

a) Show that any vector of the form

(P4.32)

is an eigenvector, with eigenvalue Ak = 4sin2 Rm#1). Here Kk is an integer
in the range 1 < k < N.

b) Thus the elements vk(n) of the vector vk can be written as vk(n) =
sin(kmN+1). This sequence is "smooth” for small k and "oscillatory" for large
k. To demonstrate this, let N = 4, and plot this sequence for 1 < k < 4.
Also plot the eigenvalue Ak, as a function of k for 1 < k < 4.

c) The above exercise demonstrates that the eigenvectors corresponding to
large eigenvalues are more “oscillatory”. In other words, the matrix A
acts like a highpass filtering operator (Sec. 4.7.4). Suppose we define

P = 1 — aA. The eigenvalues of this matrix are pk 1 — aAk, and the
eigenvectors continue to be vk Give example of a choice of a such that
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p% decreases as k increases in the range 1 < k < N. The matrix P would
now resemble a lowpass filtering operator.

4.33. Recall the matrix A in (4.7.3), demonstrated in (4.7.5) for N = 5. In this
problem, A(A) stands for this matrix, with y — 0 and N = 7. With MD
and MI as in (4.7.23) and (4.7.24), compute the elements of A(2A) defined in
(4.7.25)
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50

PART 2 Multirate Filter Banks

NMa<imrmally Decirmated

Filter Banks

INTRODUCTION

The basic philosophy of subband coding was explained in Chap. 4. The
analysis/synthesis system used for this purpose is the maximally decimated
filter bank. Figure 5.1-1(a) shows the two channel version, popularly called
the Quadrature Mirror Filter (QMF) bank. This system was introduced in
the mid seventies [Croisier, et al., 1976], and has since then been studied by
many other researchers, as we cite at the appropriate sections. The input
signal x(n) is first filtered by two filters HO(z) and H1(z), typically lowpass
and highpass as shown in part (b). Each signal xk(n) (subband signal) is
therefore approximately bandlimited to a total width of m (in the frequency
region 0 < w < 2[]). The subband signals are decimated by a factor of 2 to
produce vk(n).

Each decimated signal vk(n) is then coded in such a way that the special
properties of the subband (such as energy level, perceptive importance and
so on) are exploited. At the receiver end, the received signals are decoded
to produce (approximations of) the signals vO(n) and v1(n) which are then
passed through two-fold expanders. The output signals yO(n) and yl(n)
are then passed through the filters FO(z) and F1(z) (whose purpose we will
explain) to produce the output signal x(n).

HO(z) and H1(z) are called analysis filters, and the pair [HO(z), H1(z)]
the analysis bank. This pair followed by the two decimators is the decimated
analysis bank. Similarly FO(z) and F1(z) are the synthesis (or reconstruction)
filters, and the pair [FO(z), F1(z)] the synthesis bank. In this chapter we will
see that the reconstructed signal x(n) differs from x(n) due to three reasons:
aliasing, amplitude distortion, phase distortion, It will be shown that the
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filters can be designed in such a Way that some or all of these distortions are
eliminated. These results will then be extended to the case of M channel
filter banks.

There is a fourth reason why the reconstructed signal differs from x(n).
This is due to the coding or quantization of the subband signals. The effect
of this cannot be corrected, but can only be analyzed. This is done in
Appendix C.

Figure 5.1-1 (a) The quadrature mirror filter bank and (b) typical magnitude
responses.

5.0.1 A Brief History

For the two channel case, it was shown in Croisier, et al. [1976] that aliasing
can be completely eliminated by a simple choice of the synthesis filters.
Design techniques were later developed by other authors to minimize the
remaining distortions [Johnston, 1980], [Jain and Crochiere, 1984], [Fettweis,
et al., 1985] and efficient structures developed [Galand and Nussbaumer,
1984]. It was shown by Smith and Barnwell [1984] and Mintzer [1985] that
all the three distortions mentioned above can be eliminated (i.e., perfect
reconstruction achieved) in a two channel QMF bank with properly designed
FIR filters, and further optimization techniques Were developed [Grenez,
1988].

For the case of M channel filter banks, the conditions for alias cance-
lation and perfect reconstruction are much more complicated. The pseudo
QMF technique was introduced [Nussbaumer, 1981], as a means of obtaining
approximate alias cancelation in this case, and has since been developed by a
number of authors [Rothweiler, 1983], [Chu, 1985], [Masson and Picel, 1985],
and [Cox, 1986]. The general theory of perfect reconstruction in the M chan-
nel case Was developed by a number of authors [Ramstad, 1984b], [Smith
and Barnwell, 1985], [Vetterli, 1985], [Princen and Bradley, 1986], [Wack-
ershruther, 1986b], [Vaidyanathan, 1987a,b], [Nguyen and Vaidyanathan,
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1988], and [Viscito and Allebach, 1988a]. Vetterli and Vaidyanathan showed
independently that the use of polyphase components leads to considerable
simplification of the theory. A technique for the design of M channel per-
fect reconstruction systems was developed [Vaidyanathan, 1987a,b], based
on polyphase matrices with the so-called paraunitary property. It has since
been shown that the two channel perfect reconstruction system developed in
Smith and Barnwell [1984] and Mintzer [1985] satisfy the paraunitary prop-
erty. (This same property also finds application in the theory of orthonormal
Wavelet transforms, which we Will study in Chap. 11.)

A particular class of M-channel perfect reconstruction systems was sub-
sequently developed, with the property that all the analysis filters are derived
starting from a prototype, by modulation. This has the advantage of econ-
omy during the design as Well as implementation phases. The theory Was
developed by Malvar [1990b], Koilpillai and Vaidyanathan [1991 and 1992],
and Ramstad [1991] independently. It turns out that these systems can
be regarded as the generalization of the so-called lapped orthogonal trans-
forms independently devloped by Cassreau [1985] and studied in Malvar and
Staelin [1989], and Malvar [1990a].

Further advancement in the theory and design of filter banks have been
made by several authors, but these will not be covered in our limited ex-
posure here. This includes time domain design techniques, [Nayebi, et al.,
1990], nonuniform filter banks, and filter banks with noninteger decimation
ratios [Hoang and Vaidyanathan, 1989], [Kovalevi¢ and Vetterli, 19914],
[Nayebi, et al., 1991a], and filter banks with minimum reconstruction delay
[Nayebi, et al., 1991b]. Also see Padmanabhan and Martin [1992], Horng,
Samueli, and Willson [1991], and Horng and Willson [1992]. In Problems
5.25 and 5.32 we will consider some issues pertaining to nonuniform QMF
banks.

5.0.2 Chapter Outline

In this chapter we present a detailed study of the QMF bank and its M chan -
nel extensions. Section 5.1 analyzes the various errors (aliasing, amplitude
and phase distortions) created by the two channel QMF bank, and develops
conditions for alias cancelation. Section 5.2 describes an alias-free system in
greater detail. Section 5.3 considers a special class of alias free systems called
the power symmetric QMF banks. These systems have very low complexity,
and yet provide freedom from aliasing and amplitude distortion.

In Sec. 5.4 to 5.6 we extend these ideas for the case of M channel filter
banks, and develop the theory of perfect reconstruction based on polyphase
matrices. Section 5.7 develops the general theory of alias-free systems. Tree-
structured filter banks are considered in Sec. 5.8, and Sec. 5.9 develops the
theory of transmultiplexers.

The study of filter banks Will be continued in the next few chapters.
Paraunitary perfect reconstruction systems will be introduced in Chap. 6,
along with several structures for implementing these systems. Some of the
structures have the property that the perfect reconstruction property is re-
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tained in spite of coefficient quantization. Pseudo QMF banks and cosine
modulated perfect reconstruction banks will be studied in Chap. 8.

ERRORS CREATED IN THE QMF BANK

The decimated signals vk(n) are encoded using one of many possible coding
techniques [Jayant and Noll, 1984], and the resulting signals are actually
transmitted. The receiver reconstructs an approximation vk(n) of vk(n)
from these encoded signals. The decoding error vk(n) — vk(n) represents
a nonlinear distortion (like quantization error). This is called the subband
quantization error. It cannot be corrected, that is, there is no Way to exactly
reconstruct vk(n) from vk(n).

The subband quantization error Will be treated in greater detail in Ap-
pendix C. In this chapter will ignore this error, that is, assume vk(n) = vk(n).
The QMF bank still suffers from three fundamental errors, viz., aliasing, am-
plitude distortion, and phase distortion to be described next.

5.1.1 Aliasing and Imaging

In practice, the analysis filters have nonzero transition bandwidth and stop-
band gain. The signals xk(n) are, therefore, not bandlimited, and their dec-
imation results in aliasing. To study this effect further, consider Fig. 5.1-2
where two situations are shown. In Fig. 5.1-2(a), the responses HO(ejw)
and Hl(ejw) do not overlap. Assuming that the stopband attenuations
are sufficiently large, the effect of aliasing is not serious. In Fig. 5.1-2(b),
however, the responses overlap, and each subband signal can in general have
substantial energy for a bandwidth exceeding the ideal passband region.
Decimation of these signals therefore results in aliasing regardless of how
good the stopbands of the filters are.

Figure 5.1-2 Two possible magnitude responses for the analysis filters. (a)
Nonoverlapping, and (b) overlapping.

Sec. 5.1 Errors in the QMF bank 191



In principle it is true that the choice of filters as in Fig. 5.1-2(a) takes
Care of this problem. However, non Overlapping responses imply severe at-
tenuation of the input signal around w = 1/2. Even though this can be
compensenated, in principle, by appropriately boosting this frequency region
[by proper design of FO(z) and F1(z)], it will result in severe amplification
of noise (such as coding noise, channel noise and filter roundoff noise). A
second solution Would be tO make the transition Widths of the responses very
narrOW but this requires very expensive filters. The Overlapping response in
Fig. 5.1-2(b) is therefore the more practical choice. Even though this results
in aliasing, this effect can be canceled by careful choice of the synthesis filters
as we will see.

Expression for the Reconstructed Signal
Using the results developed in Sec. 4.1.1 it is easy to find an expression
for X(z). From Fig. 5.1-1(a) we have
(5.1.2)

The z-transforms of the decimated signals vk(n) are [from (4.1.13) with M =
2]
(5.1.2)

The second term above represents aliasing. The z-transform of Yk(z) is
Vk(z2) so that

(5.1.3)
The reconstructed signal is

(5.1.4)
Substituting from (5.1.3) and rearranging, we finally obtain

(5.1.5)
Or, in matrix-vector notation,

(5.1.6)
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The matrix H(z) is called the alias component (AC) matrix. The term
which contains X(—2z) originates because of the decimation. On the unit
circle, X(—z) = X(ej(w-m)) which is a right-shifted version of X(ejw) by an
amount 1. This term takes into account aliasing due to the decimators and
imaging due to the expanders. We refer to this just as the alias term or alias
component.

Alias Cancelation

From (5.1.5) it is clear that we can cancel aliasing by choosing the
filters such that the quantity HO(-z)FO(z) + H1(-z)F1(z) is zero. Thus the
following choice cancels aliasing:

(5.1.7)

Given HO(z) and H1(z), it is thus possible to completely cancel aliasing
by this choice of synthesis filters. If the analysis filters have large transition
bandwidths and low stopband attenuations, this implies large aliasing errors,
but yet these errors are canceled by the choice (5.1.7).

So, the basic philosophy in the QMF bank is that we permit aliasing in
the analysis bank instead of trying to avoid it. We then choose the synthesis
filters so that the alias component in the upper branch is canceled by that
in the lower branch.

Pictorial viewpoint. It helps to visualize the mechanism of alias
cancelation in terms of frequency response plots. For this refer to Fig. 5.1-
3 which shows an arbitrary input spectrum X(ejw), the lowpass subband
signal X0(ejw), and the decimated signal VO(ejw). The alias component
0.5X0(-ejw/2) overlaps with 0.5X0(ejw/2). The signal YO(ejw) has contri-
butions from X(z) as well as X(—-z). The contribution which arises from
X(—2z) (shaded region) is the alias component, and in general overlaps with
the unshaded area.

In a similar way if we trace through the bottom channel, we can ob-
tain qualitative plots of X1(ejw), V1(ejw) and Y1(ejw). The shaded areas in
YO(ejw) and Yl(ejw) represent aliasing (and imaging) effect(s), and domi-
nantly occupy the highpass and lowpass regions, respectively. The filters
FO(z) and F1(z), which are lowpass and highpass respectively, tend to elimi-
nate these shaded portions. Because of the nonideal nature of these practical
filters, the output of FO(z) still contains some residual shaded area (Fig. 5.1-
3(h)), and so does the output of F1(z) (Fig. 5.1-3(i)). These two residual
alias components can be made to cancel each other, and the choice (5.1.7)
does precisely that.

The LPTYV property. From Chap. 4 we know that the decimator and
expander are linear and time varying (LTV) building blocks. So the QMF
bank is a LTV system. Now (5.1.5) can be written as

(5.1.8)
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Figure 5.1-3 Various internal signals, and alias cancelation mechanic
QMF bank. (© Adopted from 1990 IEEE.)
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Denoting the impulse responses of T(z) and A(z) as t(n) and a(n), we
can rewrite the above as

(5.1.9)

Defining g0(k) = t(k) + (-1)ka(k) and gl(k) = t(k) - (-1)ka(k), we
then have

(5.1.10)

which proves that x(n) is produced by passing x(n) through the systems
GO0(z) and G1(z) in parallel, and taking the output of GO(z) for even n and
that of G1 (z) for odd n (Fig. 5.1-4). So the QMF bank is a linear periodically
time varying (LPTV) system with period two. If aliasing is canceled (i.e.,
A(z) = 0), the system becomes LTI, and has transfer function T(z).

Figure 5.1-4 The QMF
bank viewed as a LPTV sys-
tem.

5.1.2 Amplitude and Phase Distortions

Suppose the choice (5.1.7) is made so that the QMF bank is free from alias-

ing. We then have
(5.1.11)

Thus even after aliasing is canceled, the signal x(n) suffers from a linear
shift-invariant distortion T(z). Here

(5.1.12)

and is called the distortion transfer function, or “overall” transfer function
of the alias-free system. Using (5.1.7) we get

(5.1.13)

Letting T(ejw) = T(ejw) ejp(w), we have

(5.1.14)

Unless T(z) is allpass (i.e., T(ejw) = d # 0 for all w), we say that X(ejw)
suffers from “amplitude distortion.” Similarly unless T(z) has linear phase
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(that is, @(w) = a + bw for constant a,b), X(ejw) suffers from phase distor-
tion.

We will use the following abbreviations for convenience: ALD (aliasing
distortion), AMD (amplitude distortion), PHD (phase distortion).

Periodicity of T(ejw) . From (5.1.13) we see that T(z) has the form
V(z) — V(-z). This means T(z) has only odd powers of z, that is, T(z) =
z-1S(z2). So T(ejw) has period 1 rather than 2m. For the real coefficient
case this implies that T(ejw) is symmetric with respect to 2.

The Perfect Reconstruction (PR) QMF Bank

If a QMF bank is free from aliasing, amplitude distortion, and phase
distortion, it is said to have the perfect reconstruction (abbreviated PR)
property. This is equivalent to the condition T(z) = cz-n0. For a PR QMF
bank we have

(5.1.15)

for all possible inputs x(n). In other words, x(n) is merely a scaled and
delayed version of x(n). This, of course, ignores the coding/decoding error
and filter roundoff noise.

A SIMPLE ALIAS-FREE QMF SYSTEM

In the earliest known QMF banks the analysis filters were related as

(5.2.1)

For the real coefficient case this means H1l(ejw) = HO(ej(mt-w)) . This en-
sures that H1(z) is a good highpass filter if HO(z) is a good lowpass filter. In
fact Hl(ejw) is a mirror image of HO(ejw) with respect to the quadrature
frequency 2w, justifying the name quadrature mirror filters.

With the choice (5.2.1) the alias cancelation constraint (5.1.7) becomes

(5.2.2)

Thus all the four filters are completely determined by a single filter HO(z).
The designer has to concentrate on the design of only this filter. According to
the earliest nomenclatures, the system with the four filters related as above
was known as the '"QMF' bank. But as a matter of convenience, the term
'QMF' has since been used to indicate generalized versions, for example,
M-channel systems.

From (5.2.2) we see that FO(z) and F1(z) are lowpass and highpass
respectively [consistent with the fact that FO(z) attenuates the ‘highpass
image' and F1(z) attenuates the ‘lowpass image' created by the expanders].
With filters chosen as above, the distortion function is

(5.2.3)
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5.2.1 Polyphase Representation

It is often beneficial, both conceptually and computationally, to represent
the analysis and synthesis banks in terms of polyphase components (Section

4.3). Thus let

(5.2.4)

Since H1(z) = HO(-z), we have H1(z) = EO0(z2) - z-1E1(z2), that is,
(5.2.5)

The synthesis filters FO(z) and F1(z), which satisfy (5.2.2), can also be
represented in terms of EO(z) and E1(z) as follows:

(5.2.6)

By using (5.2.5) and (5.2.6) we can draw the analysis and synthesis banks as
in Fig. 5.2-I(a) and (b) respectively, and the complete QMF bank as in Fig.
5.2-2(a). By using the noble identities (Fig. 4.2-3) we can redraw this as in
Fig. 5.2-2(b). The polyphase components are now operating at the lowest
possible rate, so that the number of multiplications and additions per unit

time (MPUs and APUS) is minimizedt.

Figure 5.2-1 The analysis and synthesis banks in polyphase form.

Limitations Imposed by the Constraint H1(z) = HO(-z).

With the analysis filters related as H1(z) = HO(-z) and synthesis filters
chosen to cancel aliasing (egn. (5.1.7)), the distortion function has the form
(5.2.3). This can be written in terms of the polyphase components as

(5.2.7)

t Asin Chap. 4, a unit of time is the separation between adjacent samples
of the input x(n).
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This expression holds for any QMF bank (FIR or HR; linear-phase or non-
linear phase) for which the filters are related by (5.2.1) and (5.2.2). From
this expression we can draw a number of important conclusions.

Figure 5.2-2 (a) The complete QMF bank in polyphase form. (b) Rearrange-
ment using noble identities.

For example, let HO(z) be FIR so that EO(z), E1(z) and T(z) are FIR
as well. From (5.2.7) we note that amplitude distortion can be eliminated in
this case if and only if each of the FIR functions EO0(z) and E1(z) is a delay,
that is, EO(z) = c0z-n0 and E1(z) = clz-nl. This means

(5.2.8)

This conclusion holds whether or not HO(z) has linear phase.

Summarizing, if the analysis filters are related as H1(z) = HO(-2z) and
HO(z) is FIR, we can eliminate amplitude distortion only if HO(z) and H1(z)
have the above form! That is, the filters cannot have sharp cutoff and good
stopband attenuations. We cannot, therefore, obtain useful FIR perfect
reconstruction systems under the constraint H1(z) = HO(-z).

If we choose E1(z) = 1-E0(z), then (5.2.7) becomes a delay, thereby
resulting in perfect reconstruction. But the filters become IIR.

5.2.2 Eliminating Phase Distortion with FIR Filters

A QMF bank in which the analysis and synthesis filters are FIR is said to
be an FIR QMF bank. From Chap. 2 we know that FIR filters with exactly
linear phase can be designed. If HO(z) has linear phase, then T(z) given by
(5.2.3) also has linear phase, thereby eliminating phase distortion.

The residual amplitude distortion T(ejw) can now be analyzed with
the help of (5.2.3). Let HO(z) = =Nn=0 hO(n)z-n, with h0(n) real. The
linear phase constraint requires hO(n) = £h0(N — n). Since HO(z) has to be
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lowpass, the only possibility is hO(n) = hO(N — n) (Section 2.4.2). With this

choice
(5.2.9)

where R(w) is real for all w. Substituting (5.2.9) into (5.2.3) and using the
fact that H(ejw) is an even function, we get

(5.2.10)

Constraint on the order N. If N is even, then the above expression
reduces to zero at w = 2, resulting in severe amplitude distortion. So we
have to chose N to be odd so that

(5.2.11)
(from (5.2.1))

Minimization of Residual Amplitude Distortion

From the previous section we know that if HO(z) is FIR, then the con-
straint H1(z) = HO(-z) rules out perfect reconstruction, unless the filters
have the simple form (5.2.8). Having eliminated aliasing and phase distor-
tion, we can therefore only minimize amplitude distortion, that is, we can
make (5.2.11) only approximately constant.

If HO(z) has good passband and stopband responses, then T(ejw) is
almost constant in the passbands of HO(z) and H1(z). The main difficulty
comes in the transition band region. The degree of overlap of HO(z) and
H1(z) is very crucial in determining this distortion. To demonstrate this,
Fig. 5.2-3 shows responses of three linear phase designs of HO(z). If the
passband edge is too large as in curve 1 (i.e., HO(z) and H1(z) have too
much overlap), T(ejw) exhibits a peaking effect around w2. If the passband
edge is too small (curve 2), then T(ejw) exhibits a dip around ®2. The
third curve, where the passband edge is carefully chosen by trial and error,
produces a much better response of T(ejw) .

The aim, therefore, is to adjust the coefficients of HO(z) so that the
filters satisfy the condition

(5.2.12)

approximately. Systematic computer-aided optimization techniques for this
have been developed [Johnston, 1980], [Jain and Crochiere, 1984]. In John-
ston's technique, an objective function is formulated which reflects two
things: (a) the stopband attenuation of the filter HO(z), and (b) the ex-
tent to which (5.2.12) is satisfied. For example the objective function could

be
(5.2.13)
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Figure 5.2-3 Amplitude distortion as a function of the degree of overlap between
analysis filters. (© Adopted from 1990 IEEE.)
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where

(5.2.14)

and 0 < a < 1. The coefficients hO(n) of HO(z) are then optimized in order
to minimize @. Since T(ejw) has symmetry with respect to 2, we can

replace Jm0 with 2 fn/20. The quantity wS is typically chosen as =2 + e for
some small ¢ > 0.

What controls the passband shape? If the optimized response is
satisfactory, the quantities ¢! and @2 will be very small, and (5.2.12) will
hold approximately. This means that Hl(ejw) (i.e., HO(-ejw) ) is close to
unity in the stopband of HO(z). This is equivalent to saying that HO(ejw)| is
close to unity in its own passband. Summarizing, minimization of ¢ ensures
that HO(z) has good stopband as well as passband responses.

Design Example 5.2.1: Johnston’s Filters

Filters with a wide range of specifications have been designed, and im-
pulse response coefficients tabulated in Johnston [1980]. These tables can
also be found in Crochiere and Rabiner [1983]. Fig. 5.2-4(a) shows the mag-
nitude response plots of the analysis filters for Johnston’s 32D filter. For this
design the filter order N = 31, ws = 0.586m, and the minimum stopband
attenuation is 38 dB. The quantity HO(ejw) 2 + HIl(ejw) 2 (which is twice
the amplitude distortion), is shown in Fig. 5.2-4(b). On a dB scale, this is
close to 0 dB for all w, with peak distortion equal to +0.025 dB.

Computational complexity. With N representing the order of HO(z),
there are N + 1 coefficients hO(n). There are (N + 1}y2 coefficients in each
of EO(z) and E1(z). So from Fig. 5.2-2(b) we see that the analysis bank
requires a total of N + 1 multiplications and additions, that is,

(since these are performed after decimation). The synthesis bank has the

same complexity.

For our design example, we have N = 31 so that the analysis bank can
be implemented using 16 MPUs and 16 APUs. This is an efficient implemen-
tation exploiting two facts: (a) the presence of decimators and expanders,
and (b) the relation H1(z) = HO(-z). Once these are exploited the sym-
metry of hO(n) (due to linear phase) cannot, unfortunately, be exploited

(Problem 5.3).

5.2.3 Eliminating Amplitude Distortion with IIR Filters

The question that arises now is this: is it possible to completely eliminate
amplitude distortion, rather than just minimize it using a computer pro-
gram? We address this now. In order to eliminate amplitude distortion,
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Figure 5.2-4 Design example 5.2.1 (Johnston’'s method). (a) Magnitude re-
sponses of the analysis filters, and (b) amplitude distortion measure.

we have to force T(z) to be allpass. From (5.2.7) we see that this can be
done by forcing EO(z) and E1(z) to be IIR and allpass [Vaidyanathan, et al,
1987], [Ramstad, 1988]. This also results in filters with a more general form
than (5.2.8). Phase distortion still remains, and is governed by the phase
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responses of E0(z) and E1(z). t
To pursue this idea further, let us write the polyphase components as

(5.2.15)
where a0(z) and al(z) are allpass, with aO(ejw) = al(ejw) = 1. The anal-
ysis filter HO(z) now takes the form

(5.2.16)
Since H1(z) = HO(-z), we have

(5.2.17)

The synthesis filters, which are given by (5.2.2), can be expressed as

(5.2.18)

The distortion function, which is allpass, is now given by
(5.2.19)

Figure 5.1-1(a) can now be redrawn as in Fig. 5.2-5, showing the complete
QMF bank. This is free from aliasing and amplitude distortion, regardless
of the details of the allpass functions a0(z) and al(z)!

Figure 5.2-5 QMF bank with allpass polyphase components.

t The allpass constraint on Ek(z) is, however, not necessary. For example,
if EO(z) = 0.5 + z-1 and E1(z) = {1 + 0.5z-1), then also T(z) is allpass,
that is, amplitude distortion is eliminated. However, since HO(z) has band
edge around @2 and since the coefficients Ei(z) are decimated versions of
hO(n + i), it is not counter-intuitive that Ei(z) should be constrained to be

allpass.
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Can We Get Good Filter Responses with (5.2.16)?

The next question is, if we constrain the IR analysis filter HO(z) to be of
the form (5.2.16), is it still possible to have good attenuation characteristics?
The answer is in the affirmative. For example, elliptic lowpass filters are of
this form, if the bandedges and ripple sizes are chosen with appropriate
symmetry (Fig. 5.2-6, to be explained next). With an elliptic filter so
designed, we can easily identify the components a0(z) and al(z) and then
implement the structure of Fig. 5.2-5. It turns out that this technique is
one of the most efficient ways (Sec. 5.3.5) to implement QMF banks free
from aliasing and amplitude distortion. For example, we will see that if
HO(z) is a fifth order elliptic filter, the entire analysis bank requires only one
multiplication and three additions per input sample! In the next section we
justify these claims, and also show how the filter HO(z) can be designed with
the above constraint.

POWER SYMMETRIC QMF BANKS

We begin this section by summarizing the outcome of Sec. 5.2.3, concerning
the IR QMF bank. We assumed that the four filters are related as

This ensures that aliasing is canceled, and the distortion function is T(z) =
27-1E0(z2)E1(z2), where Ei(z) are polyphase components of HO(z), that is,
HO(z) = EO(z2) + z-1E1(z2). If HO(z) is IIR and the polyphase components
Ei(z) are allpass, then T(z) becomes allpass. This, then, is a simple way to
eliminate aliasing and amplitude distortion. The phase responses of EO0(z)
and E1(z) determine the remaining phase distortion.

« Main points of this section. In this section we first study the
properties of filters HO(z) for which EO0(z) and E1(z) are allpass (i.e., filters
which have the form (5.2.16) where a0O(ejw) = al(ejw) = 1) and then show
how to design them.

1. We first show that if HO(z) is of the form (5.2.16), then it satisfies two
symmetry-properties viz., numerator symmetry, and power symmetry
(to be defined).

2. Conversely, we will show that if a transfer function satisfies these sym-
metry properties, it can be expressed as in (5.2.16). A more precise
statement is given in Theorem 5.3.1.

3. As a consequence of the preceding result we will show the following:
Let HO(z) be an odd order elliptic lowpass filter with ripple sizes 61,02
and band edges wp,ws defined as usual [Figure 3.1-1(b)]. Suppose the
response HO(ejw) 2 exhibits symmetry with respect to m?2 as shown in
Fig. 5.2-6. In other words, the ripple curve in the passband is a mirror
image of the ripple curve in the stopband, with respect to the half-band
frequency m2. Mathematically this means 1 - (1 — 281)2 = &2, that is,

(5.3.1a)
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and also
(5.3.1b)

(So if ws and 82 are specified then wp and 3! are determined, and the
filter specifications are complete.) Under this symmetry condition, we
can indeed express HO(z) as in (5.2.16), where a0(z) and al(z) are unit-
magnitude allpass filters. In other words the constraints (5.3.1) on the
specifications ensure that the polyphase components of HO(z) are all-
pass! We will present a modification of the standard elliptic filter design
algorithm [Antoniou, 1979] to obtain the coefficients of a0(z) and al(z),
starting from the specifications ws and d2. o

The reader interested only in the design procedure can proceed directly
to Sec. 5.3.4.

Figure 5.2-6 Square of the magnitude response function for a power symmetric
filter.

5.3.1 Properties Induced by (5.2.16)
Power Symmetric Property
The quantities in (5.2.17) satisfy
(5.3.2)

so that h(z)h(z) = 1. In terms of w this means
(5.3.3)

So H1(z) is related to HO(z) in two ways: first by the constraint H1(z) =
HO(-z), and secondly by the power complementary property (5.3.3). Com-
bining these we obtain the constraint

(5.3.4)
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Now, on the unit circle we have HO(-ejw) = HO(ej(w-11)|. For the real
coefficient case this is the same as HO(ej(m—w)) so that (5.3.4) implies

(5.3.5)

for any real 6. This shows that the magnitude-squared function exhibits
symmetry with respect to 2, as demonstrated in Fig. 5.2-6. For this
reason, (5.3.4) is called the power symmetric property and HO(z) is said to
be power symmetric, even though (5.3.5) holds only for the real coefficient
case. Also the right hand side of (5.3.4) is often permitted to be different
from unity. We can restate (5.3.4) in any one of the following equivalent
ways:

1. HO(z)HO(z) is a half-band filter [i.e., it satisfies (4.6.7¢)].

2. HO(z)HO(z) ji = 0.5. Here the notation A(z) |2 is as defined in Section

4.1.1. See, for example, (4.1.14).
3. HO(z) is power-symmetric.

Symmetry of Numerator of HO(z)

From Sec. 3.4 we know that the allpass functions can be expressed as

(5.3.6)
where ¢cO = c¢1 = 1, and ki = order of di(z). [By convention di(z) is a
polynomial in z-1] Substituting into (5.2.16) we obtain

(5.3.7)

Thus, HO(z) = PO(zyd0(z2)d1(z2), that is, the denominator has only even
powers of z-1. It is easy to verify that the numerator PO(z) is generalized
Hermitian (Sec. 2.3). For the most common case where d0(z) and d1(z) have
real coefficients and c¢0 = cl = 1, this means that P0O(z) is symmetric. More
specifically, PO(z-1) = zN PO(z) where N = 2(k0 + k1) + 1. If pO(n) denotes
the coefficients of PO(z), this property means pO(n) = pO(N — n).

Irreducibility. It can be shown (Problem 5.7) that there are no com-
mon factors between P0(z) and the denominator d0(z2)d1(z2), under the rea-
sonable assumptions that (a) dO(z) and d1(z) have all zeros inside the unit
circle, and (b) dO0(z) and d1(z) do not have common factors. In practical
examples such as Butterworth and elliptic filters, these two assumptions are
true. The second assumption is reasonable because, if (L-az-1) is a common
factor between d0(z) and d1(z) then the allpass factor (—a*+z-2311—-0z-2)
can be extracted from the right hand side of (5.2.16), and does not contribute
to the magnitude response HO(ejw) .
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5.3.2 Power Symmetry and Numerator Symmetry Imply (5.2.16)

Assuming that (5.2.16) holds, we showed that HO(z) satisfies two symmetry
properties. We now consider the converse, restricting our discussion to real
coefficient filters. We show that if HO(z) is power symmetric and PO0(z)
symmetric, then HO(z) can be expressed as (a0(z2) + z-1al(z2)y2. The
theorem below is a more precise statement of this. At this time, recall that
HO(z) is said to be bounded real (BR) if it (a) has real coefficients, (b) is
stable, and (c) satisfies HO(ejw) < 1.

& Theorem 5.3.1. Let HO(z) = PO(zyD(z) be the irreducible repre-
sentation of a BR function with symmetric (or antisymmetric) nhumerator of
odd order N. If HO(z) satisfies the power symmetric condition (5.3.4) then
the following are true:

1. HO(z) can be expressed as in (5.2.16) where a0(z) and al(z) are stable,
real-coefficient, unit-magnitude allpass functions.

2. Moreover the order of HO(z) is N = 2(k0 + k1) +1 where ki is the order
of ai(z). So there are no cancelations in (5.2.16). o

Some practical examples. As a special case, suppose HO(z) is an odd
order elliptic lowpass filter satisfying (5.3.1a) and (5.3.1b). Then, the con-
ditions of the theorem are satisfied. Notice, however, that power symmetric
filters are not restricted to be elliptic. For example, odd order Butterworth
filters can be designed to satisfy (5.3.4). Chebyshev filters, on the other
hand, are not suitable because they are inherently nonsymmetric (the pass-
band is equiripple and stopband monotone, or vice versa).

Proof of Theorem 5.3.1. Substituting HO(z) = PO(zyD(z) into the
power symmetric condition (5.3.4) and rearranging, we obtain

Since PO(zyD(z) is irreducible, there is no common factor of the form
(1 — Bz-1), B # 0 between PO(z) and D(z). Also since PO(z) = zN PO(z)
(by symmetry of P0(z)), there are no such common factors between PO(z)
and D(z) either. As a result, there are no common factors between the
numerator and denominator of the left hand side of the above equation.
The denominators on the two sides should therefore be equal except for
a scale factor. Equating, in particular, the factors of these denominators
which have zeros inside the unit circle, we obtain D(—z) = cD(z). Assuming
that D(z) is normalized such that its constant coefficient is unity, we have
D(z) = D(-z). From this we also see that D(z) has only even powers of
z-1, that is D(z) = d(z2).

Let H1(z) HO(-z). Then
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The power symmetric condition, (5.3.4) means that the function H1(z) is
power complementary to HO(z). Since PO(z) is a odd order symmetric (an-
tisymmetric) polynomial, PO(-z) is, therefore, antisymmetric (symmetric).
Summarizing, HO(z) and H1(z) are a set of stable, real coefficient power
complementary functions with symmetric and antisymmetric numerators.
Moreover they have the same denominator. We can therefore apply Theo-
rem 3.6.1 to conclude

(5.3.8)

where A0(z) and Al(z) are stable unit-magnitude allpass, with orders n0 and
nl such that N = n0 + nl. Notice now that since H1(z) = HO(-z) we can
always write the pair as in (5.2.5). Since the 2 x2 matrix in (5.3.8) is nonsin-
gular, we conclude by comparing (5.2.5) with (5.3.8) that E0(z2) = A0(zy2
and z-1E1(z2) = Al(z}y2. This proves that the polyphase components EO0(z)
and E1(z) are allpass with magnitude 0.5. Thus HO(z) can be expressed as
in (5.2.16), where a0(z) and al(z) are stable unit-magnitude allpass. Since
N =n0 + nl we have N = 2(k0 + k1) + 1.

Even-order filters. The above result is restricted to odd order filters.
Recall from Sec. 3.6 that if HO(z) is an even order elliptic lowpass filter,
then the allpass decomposition can still be done but the allpass filters now
have complex coefficients [even though HO(z) has real coefficients]. Since the
polyphase components evidently have real coefficients, these allpass filters
cannot, therefore, be the polyphase components. In the even order case it
is possible to use a modified HR QMF bank which overcomes this difficulty
(Problem 5.6).

5.3.3 Poles of Power Symmetric Elliptic Filters

Let G(z) be a lowpass (or highpass) power symmetric elliptic filter. Then
all its poles are located on the imaginary axis. Thus the poles have the form
JjBk (with —1 < Bk < 1 due to stability). The rest of this section is devoted
to proving this, and can be skipped without loss of continuity.

Proof of the above claim. From Sec. 3.3.3 we know that for an Nth
order elliptic filter G(z) we can write

(5.3.9)

where R(z) is a rational function of the form

(5.3.10)
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with £ = 1 for odd N and € = 0 for even N. Here mis such that N = 2m +&.
The frequencies 6k are the reflection zeros (i.e., points where G(ejw) attains
the maximum of unity) and wk the transmission zeros [Fig. 5.3-1(a)]. From
(5.3.10) we have the relation

(5.3.11)

The power-symmetric property means

(5.3.12)

Evidently the right hand side of (5.3.12) has reflection zeros at m — wk and
transmission zeros at m - 6k. These, therefore, should agree with 6k and wk
respectively, that is, Tt-6k = wk as demonstrated in Fig. 5.3-1. Substituting
this into (5.3.10) we can show R(-z) = 1¥R(z), that is,

(5.3.13)

Figure 5.3-1 For a power symmetric elliptic lowpass flter G(z), the relation
wk + Bk = 1 holds.
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Now by substituting (5.3.9) into the right hand side of (5.3.12) we get

(5.3.14)

using (5.3.13). By comparing (5.3.9) and (5.3.14) we conclude €2 = 1. For a
power symmetric elliptic filter G(z) we thus have

(5.3.15)

where R(z) is as in (5.3.10), with wk + 6k = 1. If p is a pole then 1 +
R(pP)R(p-1) = 0. In view of (5.3.11) and (5.3.13) this implies

(5.3.16)

From Fig. 5.3-1 we see that wk > w2 and 6k < w2 for all k. So the poles of
the rational function R(z}»R(-z) are restricted to the open left-half of the
z-plane. Moreover, R(zyR(-2z) has unit magnitude on the imaginary axis so
that by maximum modulus theorem (Sec. 3.4.1) we have R(zyR(-z) <1
for Re z > 0. By replacing z with —z and repeating this argument we find
that R(-zyR(z) < 1 for Re z < 0. Summarizing, we have

(5.3.17)

which proves that all the poles of G(z) are indeed on the imaginary axis of
the z plane.

5.3.4 Design of Power Symmetric Filters

By Theorem 5.3.1, elliptic lowpass filters whose specifications satisfy (5.3.1)
have the form (5.2.16). For example, with N = 5, we have n0 = 2,nl = 3,
that is, k0 = kl = 1 so that a fifth order power symmetric elliptic filter can
be expressed as

(5.3.18)

where 0 < a0,al < 1. Similarly a third order power symmetric elliptic filter
can be expressed as

(5.3.19)
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where 0 < a < 1. [Since the zeros of an elliptic filter are on the unit circle,
we have (1/3) < a as well.] The constants c0 and cl in (5.3.6) which are
obviously real in this case, are taken to be unity so that HO(1) = 1 as
required.

Design Procedure (Butterworth and Elliptic Cases)

Our discussions are made easier in terms of analog filters, reviewed in
Sec. 3.3. If we design a Butterworth filter with 3 dB point Qc = 1 and obtain
HO(z) using the bilinear transformation (3.3.1), then HO(z) automatically
satisfies the power symmetric property (Problem 5.8).

We now consider the elliptic case. The design specifications are 61,32,
Qp and QS. The parameter

(5.3.20)

governs the filter sharpness. The analog domain equivalent of the condition
wp + wS = 1 is, in view of the bilinear transform,

(5.3.21)

Since the ripples are constrained as in (5.3.1a), we have only two degrees of
freedom, viz., 82 and r. Given these specifications, if we compute 31 using
(5.3.1a) and then use standard techniques to design the analog elliptic filter,
the estimated filter order may not turn out to be an integer. Ifit is rounded
to the nearest (or next higher) odd integer N, the resulting filter does not
in general satisfy the desired ripple constraint.

It is, however, possible to modify the standard elliptic filter algorithm
such that the condition (5.3.1a) is exactly satisfied after the order has been
rounded up. In this process the value of 82 is readjusted (reduced), such
that N is exactly an integer under the constraint (5.3.1a). Table 5.3.1 shows
the design-algorithm for this, obtained by modifying the procedure given by
Antoniou [1979]. The resulting analog elliptic filter has the desired r, and
usually has smaller ripple size &2 than specified. In any case it satisfies the
power symmetric condition (5.3.1a) exactly. If this is transformed into a
digital filter by use of the bilinear transform, the resulting HO(z) satisfies
(5.2.16). In particular the denominator has only even powers of z-1, and
the poles are all on the imaginary axis of the z-plane.

Identifying the two allpass filters. Since the above algorithm gives
HO(z) in factored form, the poles are already known, so the method described
in Sec. 3.6 can be used to identify aO(z) and al(z). In the elliptic filter
case, the pole interlace property can be used to simplify this identification
(recall Fig. 3.6-5 and associated comments). Fig. 5.3-2 demonstrates this for
N = 7. Once the poles of a0(z2) and z-1al(z2) are identified, the polynomials
d0(z2) and d1(z2) in (5.3.6) are known. By setting c0 = ¢l = 1 and taking
ki = order of di(z), we can identify ai(z). These are summarized in Table
5.3.1.

A second way to identify the allpass filters is as follows. We have
HO(z) = PO(zyd(z2), with the coefficients of PO(z) and d(z) known from
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TABLE 5.3.1 Design of power symmetric elliptic filters

We summarize the procedure to design an odd order, lowpass, power-
symmetric elliptic filter HO(z). Let the filter order be N = 2m + 1.

Specifications.

The given specifications are wS and 82, i.e., the stopband edge and peak
stopband ripple, as in Fig. 3.1-1(b). The minimum stopband attenuation is
then AS = —20logl0 2. The passband edge wp and peak passband ripple 61
are determined according to the halfband symmetry conditions

Also recall Amax = -20logl10(1 - 231).

Order estimation.

Define the quantities r = tan(0.5wp)ytan(0.5wS), r = V1 —r2, 0 =
0.51 - V{1 + V),

Estimate the order N to be the smallest odd integer such that

Readjusting ripple size.

Since N is obtained by rounding-up the right hand side above, the
resulting peak ripple 82 is smaller than specified. To recompute this ripple
first recompute D from

Then find readjusted 82 from D = (1 -32)2-62, and d! from 431(1-01) = 52
Values of AS and Amax are also readjusted accordingly.

Computing the filter coefficients.
Let

and w = (1 + ~/r. For 1 < k < m (where m = (N - 1y2) compute
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Table 5.3.1 continued ...

in the order mentioned. Usually, it is sufficient to retain five or six terms
of the infinite summations above. The quantities ak computed above are
distinct and satisfy 0 < ak < 1. Renumber them so that

Define the polynomials

Let k0 and k! denote the orders of dO(z) and d1(z). Define the allpass func-
tions

Then the lowpass power symmetric elliptic filter is HO(z) = 0.5[a0(z2) +
z-1al(z2)]. Its order is N = 2(k0 + k1) + 1.

the above design. From (5.2.16) we have HO(z) + HO(—2z) = a0(z2), i.e.,
a0(z2) = [PO(z) + PO(-z)}d(z2). After reducing this rational function to its

irreducible form, we can identify d0(z). Thus, a0(z) given by z-k0d0(zy-d0(z)
is found. Similarly, al(z) can be identified from [P0(z) — PO(-z}rd(z2).

Design Example 5.3.1: Power Symmetric Elliptic Filter

Suppose we wish to design a power symmetric elliptic filter HO(z) with
stop band edge wS = 0.608m and stopband attenuation AS = 35dB. This
AS corresponds to 82 = 0.0178. From wS we determine wp = M — wS. The
quantities Qp and QS can now be identified using (3.3.15). From these we
obtain r = Qp~0QS = 0.5. If we compute 4! using (5.3.1a), then the required
filter order N for this combination of 81,62 and r is N = 4.7, which is not
an integer. If this is readjusted to N = 5, the ripples will not satisfy (5.3.1a)
any more.

By using the values of 62 and r in the algorithm of Table 5.3.1, we can
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obtain the readjusted ripple size 2 = 0.0132 (i.e., AS = 37.58dB). If this is
used in (5.3.1a), we get 81 = 4.36 x 10-5. These values of 8! and 32, together
with the specified r (i.e., r = 0.5) imply a filter order N = 5, which is exactly
an integer. This filter, therefore is power symmetric.

Figure 5.3-2 Grouping of poles into those of a0(z2) and z-1al(z2). Here N = 7.

The poles of this power symmetric elliptic filter are at the locations
(5.3.22)

where a0 = 0.226634 and al = 0.703653. See Fig. 5.3-3. So we associate
the poles z = xjval with a0(z2), and the poles z = 0 and z = %£jVal with
z-1al(z2). Thus the elliptic filter HO(z) has the form (5.3.18), with a0 and
al as above. Fig. 5.3-4(a) shows the magnitude response of HO(z).

Phase distortion. The distortion function T(z) is given by

This is allpass with nonlinear phase response (i.e., honconstant group delay).
[The phase response is linear only if a0(z) and al(z) are pure delays, which
is uninteresting]. Figure 5.3-4(b) shows a plot of the group delay of T(z)
for the above example. This exhibits a variation from 3 samples to about
16 samples. Whether this is acceptable or not depends on the application
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in hand, and several subjective considerations come into play. For example,
some amount of phase distortion is acceptable in speech processing, but not
in image processing [Lim, 1990].

Figure 5.3-3 Identifying poles of a0(z2) and z-1al(z2) in Design example 5.3.1.

A Direct Optimization Approach (Non-Elliptic Design)

The fact that the poles of elliptic power symmetric filters are located
on the imaginary axis implies that the denominators dO(z) and d1(z) of the
allpass functions in (5.2.16) are of the form

(5.3.23)

with 0 < qj,i < 1. This gives us the hint that if we wish to optimize the
coefficients of a0(z) and al(z) directly (rather than by designing an elliptic
filter), then we can restrict dO(z) and d1(z) to be of this form. For example,
we can optimize the parameters aj,i in (5.3.23) in order to minimize the
stopband energy

(5.3.24)

Such an optimization is generally fast because in practice we have very few
parameters. A fifth order filter of the form (5.3.18) has only two parameters
to optimize! Note that even though the passband error is not included in
the objective function, it automatically turns out to be small because of the
power symmetric condition ensured by (5.2.16).

Design example 5.3.1. Power symmetric elliptic filter (continuation).

Fig. 5.3-4(c) shows the plot of HO(ejw) designed by optimizing the
function ¢@. Again the filter order is taken to be N = 5, i.e., the power
symmetric filter is as in (5.3.18). In this example wS = 0.6 (the lower
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Figure 5.3-4 Design example 5.3.1. (a) Magnitude of elliptic power symmetric
filter (b) its group delay response, and (c) magnitude of minimum energy power

symmetric filter.
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limit of the integral in (5.3.24)). The first peak ripple in the stopband is
AS = 38 dB. With (5.3.24) used as the objective function, the attenuation
at S is not equal to AS, but typically less. In our example, the lowest
frequency with attenuation equal to AS is 0.614m. The optimized system
has a0 = 0.2121846, and al = 0.689796. The optimized filter response is not
equiripple, since this is not a minimax design. The peak ripple decreases as
w increases. This is desirable in some applications.

Table 5.3.2 gives the values of a0 and al in (5.3.18) which minimize
(5.3.24) for various choices of wS appearing in (5.3.24). These are fifth order
filters (N = 5), and cover a wide range of requirements. The table also shows
the attenuation AS at the location of the first peak-ripple in the stopband.
The table serves as a quick design aid for 1IR power symmetric filters which
can be used to design alias-free QMF banks with freedom from amplitude
distortion. For other combinations of N,wS and AS, the reader can obtain
designs by direct optimization of (5.3.24), or by using the algorithm of Table
5.3.1.

TABLE 5.3.2 Optimal IIR power
symmetric filters with N=5

wS al al AS

0.550t 0.2790 0.7652 28.6
0.575m 0.2401 0.7231 33.2
0.600mt 0.2122 0.6898 37.6
0.625m 0.1910 0.6626 41.7
0.650mt  0.1744 0.6399 46.5
0.675mt 0.1611 0.6206 50.0
0.700mt  0.1502 0.6042 545

5.3.5 Low Complexity of the IR Power Symmetric QMF Bank

We know that the allpass filters aj(z) have denominators of the form (5.3.23).
So aj(z) is a product of kj first order sections of the form

(5.3.25)

with 0 < aj,i < 1. Each of these sections can be implemented with one
multiplier, two adders and two delays as shown in Fig. 3.4-4. So aj(z)
can be implemented by cascading kj such sections, requiring a total of kj
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multipliers, 2kj adders, and 2kj delays. In fact, it is possible to share a delay
between adjacent sections, as demonstrated in Fig. 5.3-5.

The total complexity to implement a0(z) and al(z) is equal to k0 + k!l =
0.5(N — 1) multiplications and (N — 1) additions. The outputs of ai(z) are
added and subtracted, which costs two more adders. These multipliers and
adders operate at the lower rate (see Fig. 5.2-5) so that the analysis bank
requires

(5.3.26)

The complexity of the synthesis bank is the same.

In our design example N = 5, so that the analysis bank requires one
MPU and three APUs. For this cost, the analysis filters provide 37.6 dB
stopband attenuation, and the QMF bank is entirely free from aliasing and
amplitude distortion. This system, therefore, is very efficient indeed!

Figure 5.3-5 A cascade of two sections of the form (5.3.25). Each section is
implemented as in Fig. 3.4-4, but a delay has been shared so that only three
delays are required.

Robustness to Quantization

In any practical implementation, the multiplier coefficients are quan-
tized (Chap. 9). In general this can result in the loss of some or all of the
desirable properties (e.g., alias-cancelation, freedom from amplitude distor-
tion, etc.). It is easy to verify that the allpass based structure of Fig. 5.2-5 is
free from aliasing, as long as ai(z) in the analysis bank is quantized the same
way as ai(z) in the synthesis bank. [This is because the alias cancelation
condition (5.1.7) continues to hold.]

Furthermore, suppose the allpass filters are implemented such that they
remain allpass inspite of multiplier quantization. This is easily ensured since
ai(z) is a product of first order allpass functions which can be implemented
as in Fig. 5.3-5 with real multiplier coefficients aj,i. Under this condition,
the distortion function (5.2.19) continues to be allpass. Summarizing, the
structure can be made free from aliasing as well as amplitude distortion, in
spite of multiplier quantization.

5.3.6 FIR PR System with Power Symmetric Filters

We will now present an FIR perfect reconstruction system by modification
of the above ideas. This system was introduced independently by Smith and
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Barnwell [1984] and Mintzer [1985]. Let the synthesis filters be chosen in
the usual way to cancel aliasing [i.e., as in (5.1.7)]. We have

(5.3.27)

as shown in Section 5.1.2. For perfect reconstruction, we require this to be
a delay. Note that we have not made the assumption H1(z) = HO(-2z) here.
In particular, therefore, the alias-free system need not satisfy (5.2.2).
Assume now that HO(z) is power symmetric, that is, (5.3.4) holds. By
comparing this with (5.3.27), we see that if the filter H1(z) is chosen as

(5.3.28)

for some odd N, then (5.3.27) reduces to X(z) = 0.5z-N X(z), that is, we
have a perfect reconstruction system! In order for this system to be practical,
HO(z) has to be FIR. (Otherwise H1(z) would be unstable for stable HO(z)).
By using (5.3.28) in (5.1.7) we see that the synthesis filters are given by

(5.3.29)

The above choices of filters can be rewritten in the time domain as

(5.3.30)
Assuming that HO(z) is causal, we see that the remaining filters are causal
as long as N = order of HO(z).
We can summarize these results as follows. Let

(5.3.31)

be power symmetric [i.e., satisfies (5.3.4)]. Then the choice of the remaining
three filters according to (5.3.30) results in a perfect reconstruction system
satisfying x(n) = 0.5x(n — N).

Other properties. It is easily verified that the filters chosen as above

satisfy these properties: (a) Fk(ejw) = Hk(ejw), that is, the synthesis
filters have the same magnitude responses as the analysis filters, and (b)
Hl(ejw) = HO(-ejw). In the real coefficient case, the second property

means that if HO(z) is lowpass then H1(z) is highpass, with same ripple
sizes. Note that the relation H1(z) = HO(-2z) is in general not satisfied by
this system.

Design Procedure

Only the filter HO(z) remains to be designed. The power symmetric
property means that the zero-phase filter H(z) = HO(z)HO0(z) is a half-band
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filter. Note that H(ejw) has to be nonnegative. The design steps for the real
coefficient case (hO(n) real) are as follows:

1.

First design a zero-phase FIR half band filter G(z) = =nnig(n)z-n
of order 2N (e.g., by using the McClellan-Parks algorithm). The half-
band property can be achieved by constraining the bandedges to be such
that wp + wS = 1, and the peak ripples in the passband and stopband
to be identical as shown in Fig. 5.3-6(a).

. Then define H(z) = G(z) + 9, where 3 is the peak stopband ripple of

G(ejw). This ensures that H(ejw) = 0, as seen from Fig. 5.3-6(a).
Finally compute a spectral factor HO(z) of the filter H(z). In principle,
this can be done by computing the zeros of H(z) and assigning an
appropriate subset to HO(z) (Sec. 3.2.5). However there exist more
efficient techniques which do not require the computation of zeros. One
of these, due to Mian and Nainer [1982], is described in Appendix D.
Once HO(z) has been computed, the remaining three filters are obtained
using (5.3.30).

Comments.

1.

220

Order is odd. As shown in Sec. 4.6.1, the order of G(z) in the above
design is of the form 4J + 2 so that the order of HO(z) is 2J + 1, that
is, odd. Since the integer N in (5.3.28) is also required to be odd, we
can take N to be same as the order of HO(z). This also ensures that the
filters defined as in (5.3.30) are causal.

Choosing the specifications. Let wS and AS be the stopband edge and
minimum stopband attenuation specified for HO(z). Then the filter G(z)
has the same stopband edge wS, and stopband attenuation = 2AS +
6.02 dB (why?). The passband specifications of G(z) are automatically
determined by the half-band constraint as follows: (a) peak passband
ripple is identical to peak stopband ripple, and (b) wp + @S = m.

Efficient design of G(z). The half-band filter G(z) can also be designed
using a more efficient trick, which was outlined in Problem 4.30 (using
slightly different notations for the filters).

Phase of HO(z). As explained in Sec. 3.2.5, the spectral factor HO(z) is
not unique because of the many ways in which the zeros of H(z) can

be grouped into those of HO(z) and HO(z). The efficient technique de-
scribed in Appendix D gives a minimum-phase spectral factor (i.e., the
zeros are on and inside the unit circle). If one desires to have a spectral
factor with nearly linear phase response, it can be done by other group-
ings of the zeros [Smith and Barnwell, 1984]. However, HO(z) cannot
have exactly linear phase, unless it has the form az-K + bz-L. This is
because, if HO(z) has linear phase, then so does H1(z) defined according
to (5.3.28). But HO(z) and H1(z) are also power complementary, and
cannot therefore have more than two nonzero coefficients (as proved
later in Sec. 7.1).
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Figure 5.3-6 (a) Construction of a half-band filter H(z) with H(ejw) = 0. (b)
Design example 5.3.2. Magnitude responses of the analysis filters of the perfect
reconstruction system.

Design Example 5.3.2. FIR Power Symmetric Filter Bank

Suppose HO(z) is required to be a real-coefficient, equiripple, power
symmetric FIR lowpass filter with specifications: wS = 0.6 and AS = 32
dB. This means that the half-band filter G(z) has stopband attenuation 70
dB (and stopband edge 0.61). The required order of G(z) (hence H(z))
turns out to be 38. So the power symmetric analysis filter HO(z) has order
N = 19. The coefficients of the spectral factor HO(z) are found using the
technique due to Mian and Nainer [1982], described in Appendix D. Table
5.3.3 shows the coefficients hO(n). The magnitude responses of the analysis
filters are shown in Fig. 5.3-6(b).

Computational complexity. If implemented independently, each
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analysis filter would require (N + 1) multiplications and N additions. How-
ever, since the impulse responses are related as in (5.3.30), we can imple-
ment the analysis bank as shown in Fig. 5.3-7, requiring a total of (N + 1)
multiplications and 2N additions. The total complexity of the direct form
implementation is therefore (N + 1) MPUs and 2N APUs for the analysis
bank (and the same for the synthesis bank).

TABLE 5.3.3 Filter coefficients in
Design example 5.3.2

n ho(n)
0 0.1605476 e+00
1 0.4156381 e+00
2 0.4591917 e+00
3 0.1487153 e+00
4 -0.1642893 e+00
5 -0.1245206 e+00
6 0.8252419 e—-01
7 0.8875733 e-01
8 -0.5080163 e-01
9 -0.6084593 e—01
10 0.3518087 e-01
11 0.3989182 e-01
12 -0.2561513 e-01
13 -0.2440664 e-01
14 0.1860065 e-01
15 0.1354778 e—01
16 -0.1308061 e-01
17 -0.7449561 e-02
18 0.1293440 e-01
19 -0.4995356 e-02

Instead of using the structure of Fig. 5.3-7 which exploits the relation
between H1(z) and HO0(z), we can also implement HO(z) and H1(z) individ-
ually in polyphase form. We then require only (N + 1) MPUs and N APUs
for the entire analysis bank.

The above MPU and APU counts are higher than the cost for Johnston’s
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designs (0.5(N + 1) MPUs and 0.5(N + 1) APUs for the analysis bank).
The increased complexity above is partly due to the fact that we have not
simultaneously exploited the relation (5.3.30) and the decimation operations.

In Sec. 6.4 we will present a lattice structure for the QMF bank which
overcomes this, and has the smallest possible complexity (same number of
MPUs and APUs as Johnston’s filters). This lattice has the additional ad-
vantage that the perfect reconstruction property is preserved in spite of
multiplier quantization. Such a feature is not offered by the direct form
structure (Fig. 5.3-7); for example, quantization of hO(n) results in the loss
of power symmetric property (hence loss of perfect reconstruction).

Figure 5.3-7 An (N + 1)-multiplier implementation of the real-coefficient anal-
ysis bank satisfying hi(n) = (—=1)nhO(N — n).

M-CHANNEL FILTER BANKS

For the two channel QMF bank, we considered a specific case where the
analysis filters are related as H1(z) = HO(-z), and studied it in detail. It
is important to analyze the more general case [where restrictions such as
H1(z) = HO(—z) are not imposed a priori], so that we can understand the
general conditions for alias cancelation and perfect reconstruction.

However, in attempting to study the general theory of alias cancelation
and perfect reconstruction, it turns out to be more efficient to deal directly
with the M-channel maximally decimated filter bank shown in Fig. 5.4-
1. We, therefore, study this system in the next few sections. The special
properties which arise for the two channel case (M = 2) will be pointed out
at appropriate places, along with several examples.

In Fig. 5.4-1 the signal x(n) is split into M subband signals xk(n) by the
M analysis filters Hk(z). Fig. 4.1-15(c) in Chap. 4 shows typical frequency
responses of the analysis filters. Each signal xk(n) is then decimated by M to
obtain vk(n). The decimated signals are eventually passed through M-fold
expanders, and recombined via the synthesis filters Fk(z) to produce x(n).
For convenience, and to be consistent with the literature, we sometimes
refer to this system as the (M-channel) QMF bank, even though the name
“QMF” is not justified any more. Many applications of this system were
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outlined in Chap. 4. More can be found in Chap. 10 and 11, where this
system is used as a unifying tool for a number of diverse topics such as
block filtering, nonuniform sampling, periodically time varying systems, and
wavelet transform theory.

Figure 5.4-1 The M-channel (or M-band) maximally decimated filter bank.
Also called M-channel QMF bank.

In this section we introduce the fundamentals of alias cancelation and
perfect reconstruction. These results will be used in other chapters fre-
quently. For notational convenience we define the vectors

(5.4.1)
Notice that the analysis bank is a one-input M-output system with trans-
fer matrix h(z); the synthesis bank is an M-input one-output system with
transfer matrix fT(z). The delay chain vector will be used in polyphase repre-
sentations; this was already encountered in Chap. 4 [e.g., see Fig. 4.1-16(a)].

5.4.1 Expression for the Reconstructed Signal

We first obtain an expression for X(z) in terms of X(z), by ignoring the
presence of coding and quantization errors. Each subband signal is given by

(5.4.2)
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so that the decimated signals vk(n) have z-transform (Sec. 4.1.1)

(5.4.3)

where W = WM = e-j2n/M. The outputs of the expanders are therefore
given by

(5.4.4)
so that the reconstructed signal is

(5.4.5)
We can rewrite this in the more convenient form

(5.4.6)
where

(5.4.7)
The quantity X(zWH¢) can be written for z = ejw as

(5.4.8)

For £ # 0, this represents a shifted version of the spectrum X(ejw). So the

reconstructed spectrum X(ejw) is a linear combination of X(ejw) and its
M — 1 uniformly shifted versions.

5.4.2 Errors Created by the Filter Bank System

In a manner analogous to the two-channel QMF bank, the reconstructed
signal x(n) differs from x(n) due to several reasons such as aliasing, imaging,
amplitude distortion, and phase distortion as explained next.
Aliasing and Imaging

The presence of shifted versions X(zWH¢%),£ > 0 is due to the decimation
and interpolation operations. We say that X(zW?¢) is the £th aliasing term,
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and AL(z) is the gain for this aliasing term. It is clear that aliasing can be
eliminated for every possible input x(n), if, and only if,

(5.4.9)

We now demonstrate alias cancelation ideas graphically for M = 3. We
have two alias cancelation conditions to satisfy, namely

(5.4.10)

(5.4.11)

Figure 5.4-2(a)-(c) show the magnitude responses of the three analysis fil-
ters, along with their shifted versions. It is assumed that Hk(ejw) is sym-
metric with respect to zero-frequency, which is consistent with the common
situation where the filter coefficients are real.

The signal which enters the filter FO(z) contains the terms

(5.4.12)

The purpose of the filter FO(z), broadly speaking, is to eliminate the terms
involving X(zW) and X(zW?2). This is done if FO(z) attenuates the replicas
HO(zW) and HO(zW?2), and retains only HO(z). For this reason, the response
FO(ejw) resembles HO(ejw), as shown in Fig. 5.4-2(d). The responses of
F1(z) and F2(z), based on same reasoning, are also indicated in the same
figure.

Thus, the output of FO(z) is a lowpass filtered version of x(n), plus some
alias terms. Similarly, the output of F1(z) is a bandpass filtered version of
x(n) plus alias terms. The relation between these outputs and the so-called
multiresolution components will be discussed in Section 5.8.

Note that if the filters were ideal, with responses given by

then there is perfect reconstruction, that is, x(n) = x(n). Since the filters
Fk(z) are not ideal in practice, they do not completely eliminate the shifted
replicas Hk(zW) and Hk(zW?2). For instance, the three terms in (5.4.10) are
not individually equal to zero. The residual alias terms are demonstrated in
Fig. 5.4-2(e)-(g). The responses of HO(zW)F0(z) and H1(zW)F1(z) have an
overlap, and so do the responses of H1(zW)F1(z) and H2(zW)F2(z). The
basic idea behind alias cancelation is to choose the synthesis filters such that
these overlapping terms cancel out.

Amplitude and Phase Distortions
Unless aliasing is canceled, the M-channel QMF bank is a periodically
time varying system (LPTV) with period M. (This was shown in Section
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5.1.1, by taking M = 2; also see Sec. 10.1.2.) If the aliasing terms are
somehow eliminated by forcing A€(z) = 0 for £ > 0, we have

(5.4.13)

Figure 5.4-2 (a), (b), (c) Magnitude respones of analysis filters and various
shifted versions. (d) Magnitude responses of synthesis filters. (e), (f), (g) Residual
alias terms with € =1, indicating overlap between adjacent-channel alias terms
which can be canceled with each other.
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Here T(z) is the distortion function (or overall transfer function)

(5.4.14)

Thus, when aliasing is canceled, the QMF bank is an LTI system with trans-
fer function T(z). If T(ejw) is not a constant (i.e., T(z) not allpass) we say
that there is amplitude distortion, and if T(z) has nonlinear phase we say
that there is phase distortion.

Perfect reconstruction (PR) systems. If Hk(z) and Fk(z) are such
that (a) aliasing is completely canceled and (b) T(z) is a pure delay (i.e.,
T(z) = cz-n0,c # 0), then the system is free from aliasing, amplitude dis-
tortion and phase distortion. Such a system satisfies x(n) = cx(n - n0), and
is called a perfect reconstruction system.

5.4.3 The Alias Component (AC) Matrix

We can rewrite (5.4.7) in matrix-vector form as

(5.4.15)
To cancel aliasing, we have to force all elements on the left side to zero
(except the top element). So, the conditions for alias cancelation can be
written as

(5.4.16)

where

(5.4.17)

The M x M matrix H(z) is called the Alias Component (AC) matrix.
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By combining (5.4.6) with (5.4.15) we can express

(5.4.18)

where

(5.4.19)

It is clear that, given a set of analysis filters Hk(z), we can in principle cancel
aliasing by solving for the synthesis filters from (5.4.16) as

(5.4.20)

This works as long as [det H(z)] is not identically zero. We can go a step
further and obtain perfect reconstruction, simply by requiring that t(z) be
of the form

(5.4.21)

Practical Difficulties with the AC Matrix Inversion

If we attempt to solve the alias cancelation or perfect reconstuction
problem by use of (5.4.20), then we would have to invert H(z). This is in
principle possible, unless the determinant of H(z) is identically zero for all
z. However the resulting filters Fk(z) may not be practical. To elaborate
this point, let us write (5.4.20) explicitly as (Appendix A)

(5.4.22)

Notice from here that Fk(z) could be IIR even if each analysis filter Hk(z) is
FIR. The zeros of the quantity [det H(z)] are related to the analysis filters
Hk(z) in a very complicated manner, and it is difficult to ensure that they
are inside the unit circle [which is necessary for stability of Fk(z)].

If we are willing to give up perfect reconstruction, and be satisfied with
alias cancelation, then we can replace (5.4.22) with

(5.4.23)

so that the distortion function after alias cancelation is

(5.4.24)
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for some ¢ # 0. The synthesis filters Fk(z) are now FIR (whenever the analy-
sis filters are FIR). But the entries of the matrix [Adj H(z)] are determinants
of (M-1)>(M-1) submatrices of H(z) and can represent FIR filters of very
large order even if Hk(z) have moderate order. Another difficulty with this
approach is that if [det H(z)] has zeros on the unit circle, say at z = ejw0,
then T(ejw0) = 0O, that is, there is severe amplitude distortion around wO.

In the next section we will outline a different technique for perfect re-
construction, in which all the above difficulties 'go away'. This is based on
the polyphase representation.

Singularity of H(ejw) versus Amplitude Distortion

Consider a QMF bank in which the filters have been chosen to cancel
aliasing completely. This means that (5.4.16) holds with t(z) as in (5.4.17).
If T(z) has a zero at z = ejw0, then t(ejw0) = 0 so that

(5.4.25)

Unless all synthesis filters Fk(z) have a zero at w0, this implies that H(ejw0)
is singular. Summarizing, the situation T(ejw0) = 0 in a alias-free system
implies singularity of the AC matrix at the frequency w0. We can restate
this as follows: if the AC matrix is nonsingular for all w, then the alias-free
system cannot satisfy T(ejw0) = 0 for any w0 (unless Fk(ejw0) = 0 for all k,
which does not happen in a good design).

In Section 5.2 we designed a class of two channel alias-free systems
satisfying the constraint H1(z) = HO(-z). In these systems the analysis
filters had linear phase. The filter order was required to be odd, in order to
avoid the situation T(ejn/2) = 0. In Problem 5.19 we request the reader to

verify the connection between that issue and the singularity of H(ejn/2).

POLYPHASE REPRESENTATION

In Sec. 4.3 we studied the polyphase representation, and found it to be very
useful, both theoretically and in engineering practice. This representation
finds application in filter bank theory as well [Vetterli, 1986], [Swaminathan
and Vaidyanathan, 1986], [Vaidyanathan, 1987a,b].

We know from Sec. 4.3 that any transfer function Hk(z) can be ex-
pressed in the form

(5.5.1)
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We can rewrite this as

(5.5.2a)
that is, as
(5.5.2b)
where
(5.5.3)

and h(z) and e(z) are as in (5.4.1). Fig. 5.5-1 shows this idea pictorially.
The matrix E(z) is the M x M Type 1 polyphase component matrix (or
polyphase matrix) for the analysis bank.

We can express the set of synthesis filters also in an identical manner.

Thus

(5.5.4)
Using matrix notations we have

(5.5.54a)
In terms of e(z) and the synthesis-bank vector fT(z), this becomes

(5.5.5b)
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where

(5.5.6)

The matrix R(z) is the Type 2 polyphase matrix for the synthesis bank. Fig.
8.5- shows this representation. In Sec. 5.6.3 we provide many examples.

Figure 5.5-1 Type 1 polyphase representation of an analysis bank. E(z) is
called the polyphase component matrix for the analysis bank.

Figure 5.5-2 Type 2 polyphase representation of a synthesis bank. R(z) is the
polyphase component matrix for the synthesis bank.

Using these two representations in the filter bank of Fig. 5.4-1, we
obtain the equivalent representation shown in Fig. 5.5-3(a), which we refer
to as the polyphase representation of the M-channel QMF bank.

By using noble identities (Fig. 4.2.3), we can redraw this in the equiv-
alent form shown in Fig. 5.5-3(b). This simplified structure can even be
used in practical implementations, and has the advantage that the filter
coefficients (coefficients of E(z) and R(z)) are operating at the lower rate.
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Finally, we can combine the matrices and redraw the system as in Fig.
5.5-3(c), where the M x M matrix P(z) is defined as

(5.5.7)

As we will see, these equivalent circuits are extremely useful for analytical
study as well as in the design and efficient implementation of QMF banks.

Figure 5.5-3 (a) Polyphase representation of an M-channel maximally deci-
mated filter bank (b) Rearragement using noble identitites. (c) Further simplifi-
cation, where P(z) = R(z)E(z).

Causality

Unless mentioned otherwise, the analysis filters Hk(z) will be assumed
to be causal so that E(z) is causal. The synthesis filters Fk(z), which are
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5.6

normally chosen to satisfy certain conditions (such as alias cancelation, per-
fect reconstruction and so on) can be made causal by insertion of appropriate
delays.

Relation Between Polyphase Matrix and AC Matrix

The study of filter banks can be done using either the alias component
matrix H(z) [Eq. (5.4.15)] or the polyphase matrix E(z). The later approach
has the advantage that E(z) is a physical matrix which makes appearance in
the polyphase implementation [Figs. 5.5-3(a),(b)]. However, all theoretical
conclusions obtained from use of one of these matrices can also be obtained
from the other.

We shall prove that the AC matrix H(z) and the polyphase component
matrix E(z) of any M-channel analysis bank are related as

(5.5.8)
where

(5.5.9)
and W is the M x M DFT matrix.

To see this, note that the definitions of H(z) and h(z) give us

(5.5.10)
using h(z) = E(zM)e(z). From the definition of e(z) we find

(5.5.11)

By using this in (5.5.10) (and remembering W = WT), we obtain (5.5.8).

PERFECT RECONSTRUCTION (PR) SYSTEMS

Recall that a perfect reconstruction (PR) system satisfies x(n) = cx(n- n0).
This means that aliasing has been canceled, and that T(z) has been forced to
be a delay. Such systems can indeed be designed. We will show that FIR PR
systems can be built for arbitrary M. Moreover, these can be designed such
that Hk(z) provides as much attenuation as the user specifies. If designed
properly, the implementation cost of such a system is quite competitive with
the cost of well-known approximate reconstruction systems (Chap. 8).
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5.6.1 The Delay Chain Perfect Reconstruction System

We begin with a very simple FIR perfect reconstuction system, and use it
to build more useful systems. Consider Fig. 5.6-1(a) which is a two-channel
system (M = 2) with analysis and synthesis filters

(5.6.1)

Figure 5.6-1 (a) The delay chain perfect reconstruction QMF bank, and (b) its
operation explained in the time domain.

By substituting in (5.4.5) we obtain X(z) = z-1X(z). The distortion
function simplifies to T(z) = z-1 so that this is a PR system indeed. It
is instructive to see how the system works in the time domain. This is
demonstrated in Fig. 5.6-1(b). The output of the upper decimator permits
the even numbered samples x(0),x(2),%x(4). .., whereas the lower decimator
permits odd numbered samples X(-1),%x(1), X(3),... The expanders insert
zero-valued samples as shown. The signals in these two branches are beau-
tifully interlaced by the synthesis bank as indicated by the oblique arrows.
So the reconstructed signal is precisely x(n) except for one unit of delay.

Figure 5.6-2 shows the M-channel generalization of this. This is a filter-
bank with analysis and synthesis filters

(5.6.2)

By substituting into (5.4.5), one can verify that this is a perfect reconstruc-
tion system, with

(5.6.3)
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So the overall system is an LTI system [with transfer function T(z) =

z-(M-1)] even though there are multirate building blocks in it.

Viewed in the time domain, we see that the kth channel passes the subset
of input samples xX(nM — k). In other words, the analysis bank merely splits
the input x(n) into M subsequences

(5.6.4)

These subsequences are then interlaced by the synthesis bank, in order to
resynthesize x(n).

Figure 5.6-2 The delay chain perfect reconstruction system. Here x(n) =
x(n — M + 1). Number of channels = M.

Figure 5.6-3 A generalization of Fig. 5.6-2. This is a perfect recronstruction
system if and only if M and J are relatively prime. Again, M is the number of
channels.

A further generalization is shown in Fig. 5.6-3. This is obtained by
replacing each delay in Fig. 5.6-2 with z-J where J is some integer. This
is a perfect reconstruction system if and only if the integers M and J are
relatively prime (Problem 5.15).

5.6.2 More General Perfect Reconstruction Systems

The above PR system has allpass analysis filters, which are not useful in
practice. Our aim is to use this simple system to develop more useful and
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practical PR systems. For this imagine that we insert two matrices E(z)
and R(z) in this system to obtain Fig. 5.5-3(b). It is clear that if

(5.6.5)

then the output x(n) is unchanged. Next, suppose we move E(z) and R(z)
(using noble identities) to obtain Fig. 5.5-3(a). This system continues to be
equivalent to Fig. 5.6-2, so that an observer who measures x(n) [in response
to x(n)] does not even notice our manipulations! In particular, Fig. 5.5-
3(a) continues to have the perfect reconstruction property, except that the
analysis filters can now be nontrivial.

We can now do our thinking backwards: suppose we are given a set
of analysis filters Hk(z),0 < k < M — 1. This completely determines E(z)
(Sec. 5.5). Assuming that E(z) can be inverted, we can then obtain a PR
system by choosing R(z) to be E-1(z) and then computing the synthesis
filter coefficients from (5.5.5).

Matrix inversion again? The first thought that crosses the mind
now is that this will bring home the same difficulties (including instability)
we encountered in the inversion of the AC matrix H(z) (Sec. 5.4.3). As
we will substantiate in Chap. 6, this alarm is unwarranted. We can avoid
direct inversion of E(z) in many ways; one of these is to constrain it to be
paraunitary (Sec. 6.1). Notice also that, unlike the AC matrix, E(z) is
a physical matrix which will be used in implementation as well as in filter
design.

Necessary and Sufficient Conditions for Perfect Reconstruction

The condition (5.6.5) is sufficient for perfect reconstruction, whether
the system is FIR or IIR. It is clear that if we replace this with

(5.6.6)

we still have perfect reconstruction but now T(z) = cz-(Mm0+M-1). More
generally it can be shown that, the system has perfect reconstruction if and
only if the product R(z)E(z) has the form

(5.6.7)
for some integer r with 0 < r < M — 1, some integer m0, and some constant
¢ # 0. Under this condition the reconstructed signal is x(n) = cx(n — n0),
where n0 = MmMO0 + r + M - 1. This result is a consequence of a general
result which we will prove later in Sec. 5.7.2. It holds whether the system
is FIR or IIR.
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As a special case consider the two channel QMF bank. The matrices
E(z),R(z) and P(z) are now 2 x 2. This system has perfect reconstruction
if and only if P(z) has the form

(5.6.8)

Every QMF bank satisfying (5.6.7) for some r can be obtained by start-
ing from a QMF bank satisfying (5.6.5) and inserting a delay z-r in front
of each synthesis filter. (This will be shown in Sec. 5.7.2.) As a result c,r,
and m0 are not fundamental quantities. We sometimes use the term ‘perfect
reconstruction' to imply the simpler condition (5.6.5).

Condition on determinant. The reader can verify (Problem 5.16)
that under the condition (5.6.7) we have

(5.6.9)

for some c0 # 0 and some integer kO. So any perfect reconstruction system
(FIR or 1IR) has to satisfy this determinant condition.

FIR Perfect Reconstruction Systems

Perfect reconstruction QMF banks with FIR filters Hk(z) and Fk(z) are
of great interest in practice. For these systems the elements of E(z) and R(z)
are FIR. The FIR nature of E(z) and R(z) implies that their determinants
are FIR. If the product of these FIR functions has to be a delay [see (5.6.9)],
then we must have

(5.6.10)

Thus every FIR perfect reconstruction system must satisfy the above condi-
tion; and [det R(z)] must have similar form.

Characterization using paraunitary and unimodular systems.
In Chap. 6 we will study a particular family of causal FIR matrices called pa-
raunitary matrices, which satisfy the condition (5.6.10) with K = McMillan
degree of E(z). In Chap. 13 we will encounter another family of causal FIR
matrices called unimodular matrices, which, by definition, satisfy (5.6.10)
with K = 0. It is shown in Vaidyanathan [1990b] that any causal FIR ma-
trix satisfying (5.6.10) is a product of a paraunitary matrix and a unimodular
matrix, motivating us to study these two classes of matrices in the chapters
mentioned above.

5.6.3 Examples of Perfect Reconstruction Systems

Using the above principles we now generate a number of examples which
demonstrate the idea of perfect reconstruction.
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Example 5.6.1

Consider the two channel system in Fig. 5.6-4(a). By comparing with
Fig. 5.6-1 we see that E(z) = T and R(z) = cT-1 so that the perfect
reconstruction condition is satisfied, and x(n) = cx(n — 1). We can find
the analysis and synthesis filters using (5.5.2) and (5.5.5), that is,

(5.6.11)

Take an example with ¢ = 2 and

(5.6.12)

This is shown in Fig. 5.6-4(b), and can be redrawn in the form of the
usual QMF bank as in Fig. 5.6-4(c). So the filters are

(5.6.13)

This PR system is less trivial than Fig. 5.6-1(a) because the filters HO(z)
and H1(z) are lowpass and highpass (rather than just allpass). We can
generate endless examples like this. For example let

(5.6.14)
We then have with ¢ = 1,

(5.6.15)

In this case x(n) = x(n - 1). Notice that the condition H1(z) = HO(-z)
is not satisfied by this perfect reconstruction example.

Example 5.6.2.

Let
(5.6.16)

which is FIR. Notice that the determinant of this matrix is a delay, as
required by (5.6.10). We choose R(z) to satisfy (5.6.6), that is,

(5.6.17)
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so that the perfect reconstruction condition holds. Choosing ¢ = 4 and
m0 = 1, this becomes

(5.6.18)

The only purpose of m0 has been to avoid the positive powers of z (non
causal terms). The analysis and synthesis filters corresponding to the
above E(z) and R(z) are

(5.6.19)

Figure 5.6-4 (a) Example of a perfect reconstruction system, (b) a specific
choice of T and (c) redrawing in conventional form.
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Example 5.6.3: The Uniform-DFT Filter Bank

A simple FIR perfect reconstruction system can be constructed by re-
ferring to Example 4.1.1 (the DFT filter bank) in Chap. 4. In that
example, the analysis bank is as in Fig 4.1-16(a), so that the filters are

related as
(5.6.20)

where
(5.6.21)

Notice that the filters have length M, which is equal to the number
of channels. The frequency responses Hk(ejw) are shifted versions of
the lowpass response HO(ejw), as shown in Fig. 4.1-16. In this ex-
ample, we clearly have E(z) = W™, so that we can obtain a perfect
reconstruction system by taking R(z) = W. Under this condition
R(z)E(z) = WW* = M so that the reconstructed signal satisfies the
perfect reconstruction property x(n) = Mx(n— M —+1). It can be shown
that the synthesis filters are related as

(5.6.22)

and that FO(z) = HO(z). So each synthesis filter has precisely the same
magnitude response as the corresponding analysis filter. Fig. 5.6-5 shows
the complete analysis/synthesis system.

Recall from Fig. 4.1-16 that each analysis filter has about 13 dB at-
tenuation, and adjacent responses have substantial overlap. This shows
that there is substantial amount of aliasing error at the output of each
decimator. However, the filters Fk(z) and Hk(z) are related in such a
delicate manner that the aliasing has canceled off.

Higher Order FIR Perfect Reconstruction Systems

Even though (5.6.10) can be trivially satisfied by taking E(z) to be a
constant nonsingular matrix (as we did in the above example), it is of greater
practical interest to employ E(z) having higher degree, so that the filters
Hk(z) have higher order. In this way Hk(ejw) can have higher stopband
attenuation and sharper cutoff rate.

One way to obtain FIR E(z) of higher degree while at the same time
satisfying (5.6.10) is shown in Fig. 5.6-6. Here Rm are constant M x M
nonsingular matrices. Clearly

(5.6.23)

where
(5.6.24)
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Evidently [det E(z)] = az-J,a # 0. We can choose R(z) = z—JE-1(z) so
that it is causal. We then have

(5.6.25)

where

(5.6.26)

Figure 5.6-7 shows the synthesis bank obtained in this manner. The filters
Hk(z) and Fk(z) can be found using (5.5.2) and (5.5.5).

Figure 5.6-5 An FIR perfect reconstruction system with E(z) = W* and
R(z) = W, where W = DFT matrix. Here x(n) = Mx(n — M + 1).

Figure 5.6-6 Analysis bank in which E(z) is a cascade of nonsingular matrices
Rm separated by delays. Clearly [det E(z)] = delay.
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Figure 5.6-7 The synthesis-bank corresponding to Fig. 5.6-6, which would
result in a perfect reconstruction system.

Example 5.6.4

Consider a special case with J = 1, and the matrices R0 and R! chosen
(rather arbitrarily) as

(5.6.27)

Since RO is triangular, its determinant is the product of its diagonal
elements, and is nonzero. So RO is nonsingular, and

(5.6.28)
Also RI-1 is the transpose of R0-1. The matrix E(z) is

(5.6.29)
The analysis filters obtained using (5.5.2) are given by

(5.6.30)
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The synthesis filters for perfect reconstruction are obtained by taking

(5.6.31)

By using (5.5.5) we obtain

(5.6.32)

This example demonstrates that we can construct FIR perfect recon-
struction systems of arbitrarily high order, by structuring E(z) and R(z) as
in Figs. 5.6-6 and 5.6-7. Since the matrices Rm in Fig. 5.6-6 can be chosen
arbitrarily (subject only to nonsingularity requirement), we can optimize the
elements of Rm to obtain good filter responses Hk(ejw) . The resulting sys-
tem is guaranteed to have perfect reconstruction. Practical design examples
of this nature can be found in Chap. 6 to 8.

Example 5.6.5

Let HO(z) and H1(z) be related as H1(z) = HO(—2z) so that the analysis
bank has the form (5.2.5). We then have

(5.6.33)

Using (5.6.6) with ¢ = 2 and m0 = 0 results in

(5.6.34)

The analysis and synthesis banks can now be drawn as in Fig. 5.6-8. So
in this case the PR system is obtained merely by using, on the synthesis
bank side, the reciprocals of the polyphase components of HO(z). The
synthesis filters are

(5.6.35)

and are stable as long as the zeros of Ei(z) are strictly inside the unit
circle. In this case [i.e., with H1(z) = HO(-z)] there is no way to obtain
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57

perfect reconstruction if all the filters are required to be FIR (unless the
filters have trivial responses). This is consistent with the observation
made in Sec. 5.2, where we studied this case in detail. As a numerical
example, let EO(z) = E1(z) =2+ z-1. Then

(5.6.36)

In the above example, the requirement that the zeros of Ei(z) be inside
the unit circle, is severe. It puts severe constraints on the frequency response
of HO(z). So this is not a very practical system.

Figure 5.6-8 Another example of a PR QMF bank. The synthesis bank is IIR
if analysis bank is FIR.

ALIAS-FREE FILTER BANKS

Alias cancelation is evidently a less stringent requirement than perfect re-
construction. Even though it is possible to achieve perfect reconstruction as
explained in the previous section, it is important to study the most general
conditions under which aliasing is canceled. We first demonstrate some use-
ful M-channel alias-free QMF banks. We then study the general theory for
alias cancelation.

5.7.1 Examples of Alias-Free Systems

Starting from the conceptually simple perfect reconstruction system of Fig.
8,6- we now obtain some examples of alias-free systems.

Example 5.7.1

Consider Fig. 5.7-1(a) in which we have M transfer functions Sk(z)

'sandwiched' between the decimators and expanders. Evidently X(z) is
a linear combination of X(z) and the alias components X(zW&#). What
is the set of necessary and sufficient conditions on Sk(z) so that aliasing
terms are canceled?
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First, we claim that aliasing is absent if
(5.7.1)

To see this, simply move S(z) all the way to the right using the appro-
priate noble identity (Fig. 4.2-3). The result [Fig. 5.7-1(b)] is identical
to the perfect reconstruction structure of Fig. 5.6-2, in cascade with
S(zM). Under this condition we have

(5.7.2)

Figure 5.7-1 (a) Pertaining to Example 5.7.1 and (b) simplification when
Sk(z) = S(z) for all k.

So the system is alias free, and has distortion T(z) = z(M-1)S(zM). It
turns out that (5.7.1) is also a necessary condition for alias cancelation.

To see this, we first express X(z) in terms of X(z) :

(5.7.3)
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This is free from the alias components X(zW¢),£ > 0 [for all possible
inputs x(n)] if, and only if,

(5.7.4)

(5.7.5)

where x denotes a possibly nonzero entry. Since WW1 = MI, this
implies

(5.7.6)

for some S(z), from which (5.7.1) follows. This result can be used to
generate some useful alias-free systems, as demonstrated next.

Example 5.7.2.

Suppose each transfer function Sk(z) in Fig. 5.7-1(a) is factorized into
Sk(z) = Ek(z)Rk(z) (Fig. 5.7-2(a)). By use of the noble identities we
can move Ek(z) all the way to the left and Rk(z) all the way to the right
(Fig. 5.7-2(b)). If we now insert a nonsingular matrix T and its inverse
as shown, the input-output behavior of the system is still unchanged. In
particular if the product

(5.7.7)

is the same (= S(z)) for all k, then the system is free from aliasing, and

X(z) is given by (5.7.2), regardless of the choice of T!

For example, imagine that T = W*. Then the analysis bank is the
familiar uniform-DFT bank. In this case, Ek(z) and Rk(z) are, respec-
tively, the Type 1 and Type 2 polyphase components of the prototype
filters HO(z) and FO(z). The filters are related by uniform shifts (pre-
cisely as in (5.6.20) and (5.6.22)). This little exercise shows that we
can eliminate aliasing in a uniform-DFT filter bank by enforcing the
condition that Rk(z)Ek(z) be the same for all k, that is,

One way to do so would be to take Rk(z) = 1~Ek(z), which also yields
perfect reconstruction. This choice, however, makes Rk(z) (and hence
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Figure 5.7-2 Step by step development of a fairly general alias-free sys-
tem. All three systems have the same input/output behavior. Here Sk(z) =
Ek(z)Rk(z).
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the synthesis filters) unstable unless Ek(z) has all zeros inside the unit
circle. A second way to enforce the above condition would be to take

(5.7.8)

Then

(5.7.9)

For large M, (5.7.8) implies that the synthesis filters have much higher
order than the analysis filters. For M = 2, (5.7.8) means

This is consistent with the special cases we saw in Section 5.2. For
example see Fig. 5.2-2 where the synthesis bank has E1(z) in the top
branch and EO(z) in the bottom branch. Also in Fig. 5.2-5, the synthesis
bank has al(z) in the top branch and a0(z) in the bottom branch.

The ideas introduced above can also be used to compensate for channel
distortion in QMF systems, as well as to design M-channel IIR systems free
from amplitude distortion. We will skip these details (many of which are
covered in Problems 5.21-5.23), and return to the general problem.

5.7.2 The Most General Alias-Free System

What is the most general set of necessary and sufficient conditions so that
aliasing is canceled? One way to answer this question is to refer to (5.4.16),
where H(z) is the alias component matrix (determined completely by the
analysis bank) and f(z) is the synthesis filter bank. The filter bank is alias
free if and only if the product H(z)f(z) has the form (5.4.17).

We now obtain an equivalent set of necessary and sufficient conditions
based on the polyphase matrices E(z) and R(z) [Vaidyanathan and Mitra,
1988]. We will show that the filter bank is alias free if and only if P(z),
defined as the product R(z)E(z), is a pseudocirculant matrix (defined below).
Under alias free condition, additional properties of the distortion function
T(z) can be expressed entirely in terms of this matrix very conveniently.

Pseudocirculant Matrices

First, a matrix is said to be circulant if every row is obtained using a
right-shift (by one position) of the previous row with the added requirement
that the righmost element which ‘spills over' in the process be ‘circulated
back' to become the leftmost element. Here is an example:

(5.7.10)
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Actually it is more approprite to call this a right-circulant, because the defi-
nition involves right shifts. In a similar way one can define left circulants. In
this book, ‘circulant’ stands for ‘right circulant’, unless mentioned otherwise.

A pseudocirculant matrix is essentially a circulant matrix with the ad-
ditional feature that the elements below the main diagonal are multiplied
with z-1. An example is:

(pseudocirculant matrix). (5.7.11a)

In other words, the element that spills over during the right shift is circulated
after multiplying with z-1. In the time domain, the above matrix has the
form

(pseudocirculant matrix). (5.7.11b)

Evidently, all the rows of a M x M pesudocirculant matrix P(z) are
determined by the Oth row which is

(5.7.12)

For a pseudocirculant, the kth column is obtainable from the (k+1)st column
as follows: (a) shift the (k+1)st column upwards by one element, (b) circulate
the element that spills over so that it becomes the bottom most element, and
(c) multiply the circulated element with z-1. The result is equal to the kth
column. [The reader can verify this for (5.7.11a).] This can in fact be taken
as an equivalent definition for pseudocirculants.

The occurence of pseudocirculant matrices in the context of multi-
rate filter banks was noticed by Marshall [1982]. It was studied later in
Vaidyanathan and Mitra [1988]. These matrices have also been found to
arise in the context of block digital filtering [Barnes and Shinnaka, 1980];
Sec. 10.1 provides a more complete discussion. The following result was
proved in Vaidyanathan and Mitra [1988].

« Theorem 5.7.1. Necessary and sufficient condition for alias
cancelation. The M-channel maximally decimated filter bank (Fig. 5.4-
1) is free from aliasing if and only if the M x M matrix P(z) (defined as

the product R(z)E(z)) is pseudocirculant. Under this condition X(z) =
T(z)X(z), and the distortion function T(z) can be expressed as
(5.7.13)

where Pm(z) are the elements of the Oth row of P(z).
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Proof. Consider Fig. 5.7-3 which is the familiar equivalent circuit for

the QMF bank in terms of P(z). We will express X(z) in terms of X(z)
and the elements Ps,8(z) of P(z). First, using standard decimation formulas
(Sec. 4.1.1) we have

(5.7.14)

with W = e-j21t/M. The outputs of P(z) are given by

(5.7.15)

Figure 5.7-3 The equivalent circuit for the maximally decimated filter bank.

The reconstructed signal is

(5.7.16)

This can be rearranged as
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The terms of the form X(zWKk),k # 0 represent aliasing. The above expres-
sion is free from these aliasing terms [for all input signals x(n)] if and only
if

(5.7.18)

This can be written using matrix notation as

(5.7.19)

where W is the M x M DFT matrix, and x indicates a possibly nonzero
entry. Using the fact that WW1t = MI, we can rewrite this as

(5.7.20)

This implies
(5.7.21)

since the Oth column of W has all entries equal to unity. Thus the QMF
bank is alias-free if and only Ve(z) defined in (5.7.18) is the same for all €.

Figure 5.7-4 Comparing the Type 2 polyphase implementations of V0(z) and
V1(z).
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In Figs. 5.7-4(a) and (b) we demonstrate polyphase structures for VO(z)
and V1(z). The structure for V1(z) can be rearranged as shown in Fig. 5.7-
4(c). Because of the requirement VO(z) = V1(z), the polyphase components
in Figs. 5.7-4(a) and (c) should be the same. This shows that the Oth column
of P(z) is an upwards-shifted version of the 1st column, with the top most
element recirculated with a z-1 attached to it. Similarly we can verify that
the £th column is obtained from the (£ + 1)st column in this manner. This
proves that P(z) is pseudocirculant.

Having canceled aliasing, (5.7.18) holds so that X(z) = T(z)X(z) with
T(z) obtained from (5.7.17) as

(5.7.22)

Since the elements Ps,£(z) are completely determined by the Oth row elements
P0,£(z), we can rearrange this (Problem 5.29) into the form (5.7.13). This
completes the proof.

The Special Case of Perfect Reconstruction (PR) Systems

A PR system is an alias free system with T(z) = delay. The alias-free
nature implies that P(z) is pseudocirculant. With the Oth row of P(z) as in
(5.7.12), T(z) has the form (5.7.13). This is a delay only if Pm(z) = 0 for
all but one value of m in the range 0 < m < M — 1. And this nonzero Pm(z)
must have the form cz-m0. Summarizing, an alias free system has perfect
reconstruction if and only if the pseudocirculant P(z) has Oth row equal to

(5.7.23a)

In other words P(z2) (i.e., R(Z)E(z)) has the form

(5.7.23b)

for some rinO=r=M - 1. This was stated earlier in (5.6.7) without proof.
Under this condition (5.7.13) reduces to

(5.7.23¢)

Some Practical Special Cases of Alias Free Systems

1. Consider the special case when P(z) is diagonal. This means that the
structure is as in Fig. 5.7-1(a). The pseudocirculant condition on P(z)
now means that all diagonal elements are identical, so that

(5.7.24)
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5.8

This result agrees with the alias-cancelation condition obtained earlier
in Example 5.7.1. In this case T(z) reduces to

(5.7.25)

2. A generalization of the above is the case where P(z) has one nonzero
entry per row. In this case, the pseudocirculant property means

(5.7.26)

where 0 < r < M — 1. The Oth row of P(z) has all zeros except Pr(z) =
S(z2), so that (5.7.13) yields

(5.7.27)

The presence of r merely introduces additional delay. We can obtain
this from the first special case simply by replacing each synthesis filter
Fk(z) with z-rFk(z). Thus every PR system satisfying (5.7.26) can be
obtained from a PR system satisfying (5.7.24) simply by replacing each
synthesis filter Fk(z) with z-rFk(z). In this sense, the form (5.7.26) is
only “trivially” more general than (5.7.24).

If S(z) is a delay, then (5.7.26) reduces to the form (5.7.23b) imply-
ing perfect reconstruction. Practically all the alias-free systems we consider
belong to simple special cases of the form (5.7.26), that is, P(z) is a pseu-
docirculant with one nonzero entry per row.

Further results on amplitude and phase distortion in alias-free systems
can be found in Sec. 10.1. In particular, it will be shown that T(z) is allpass
(i.e., there is no amplitude distortion) if and only if the pseudocirculant P(z)
satisfies a property called paraunitariness.

TREE STRUCTURED FILTER BANKS

Consider the structure shown in Fig. 5.8-1(a). Here a signal is split into two
subbands, and after decimation, each subband is again split into two and
decimated. The subbands are then recombined, two at a time, by use of two-
channel synthesis banks. This system is said to be a maximally decimated
(binary) tree structured filter bank. The complete system can be redrawn in
the equivalent nontree form of Fig. 5.4-1, with M = 4. The resulting filters
Hm(z) and Fm(z) (0 < m < M — 1) can be expressed in terms of the filters
H{k)(z) and Fi(k)(z) (Problem 5.24).

Fig. 5.8-1(b) shows an example of the magnitude responses of the four
analysis filters Hm(z) for the two level tree. In this example, the tree filters

HO(k)(z) have the power symmetric response shown earlier in Fig. 5.3-4(a),
and H1k)(z) = HO(k)(-z). Note that the four analysis filters are not equirip-
ple, even though HO(k)(z) and H1k)(z) are.
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Suppose the filters HOk)(z), H1(k)(z), FO(k)(z) and F1(k)(z) are such that
the two-channel QMF bank with these filters is alias-free. Then the complete
system is also alias-free. Similarly, if the two channel system has perfect
reconstruction, then so does the complete system. (Problems 5.24 and 5.25).
These results can also be extended to more than two levels of splitting. The
results also extend to trees other than binary (e.g., split a signal into two
subbands, then split one subband into three and the other into four, etc.).

Figure 58-1 (a) A two-level maximally decimated tree structured filter bank,
and (b) example of magnitude responses.

Assume that all the two-channel systems in Fig. 5.8-1(a) have perfect
reconstruction. Suppose, however, that the upper two-channel QMF bank
and the lower two-channel QMF bank at the second level do not have the
same set of analysis and synthesis filters. Then it may be necessary to
introduce appropriate scale factors and delays at proper places so that the
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complete system still has perfect reconstruction (why?).

Tree structured filter banks are used in a number of applications both
in one and two-dimensional signal processing. We now mention two of these,
which were originally intended for image processing. The presentation here
is brief.

Multiresolution Analysis Algorithm

Consider the variation of the analysis bank shown in Fig. 5.8-2(a). This
is equivalent to the system shown in Fig. 5.8-2(b). This is a four-channel
system with unequal decimation ratios. (It is still a maximally decimated
system.) Each [G(z), H(z)] is typically a lowpass/highpass pair, as in a two
channel QMF bank.

Figure 5.8-2 (a) A 3-level binary tree structured QMF bank, and (b) the
equivalent four-channel system.

Figure 5.8-3(a) shows the synthesis bank that goes with this system,
and Fig. 5.8-3(b) shows the non-tree equivalent structure. Assume that
Gs(z), Hs(z) are chosen so that the two channel QMF bank with filters
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G(z),H(z),Gs(z) and Hs(z) has perfect reconstruction, with unit-gain and
no delay. We then have x(n) = x(n).

Figure 5.8-3 (a) The synthesis bank corresponding to Fig. 5.8-2, and (b)
equivalent four-channel system.

Figure 5.8-4 shows typical frequency responses of the analysis and syn-
thesis filters (assuming that G(z) and H(z) form a lowpass and highpass
pair, with cutoff around ™2.) The signals vk(n) which are outputs of Fk(z),
are called multiresolution components. For example the signal v3(n) rep-
resents a lowpass version (or a ‘coarse' approximation) of x(n), subject to
aliasing and other errors. (Note that vk(n) has the same ‘sampling rate'
as x(n).) The signal v2(n) adds some high frequency (bandpass) details, so
that v3(n) + v2(n) is a finer approximation of x(n). The signal vO(n) adds
the finest ultimate (high-frequency) detail, so that x(n) = x(n) (by perfect
reconstruction property). An obvious generalization of the tree structure

Sec. 5.8 Tree structured filter banks 257



uses different filter pairs at different levels of the tree.

Figure 5.8-4 Typical appearances of magnitude responses of filters in the 3-level
tree.

There are several ways in which this structure can be used to obtain
image compression. For example, one can choose to retain only v3(n) or one
can add a quantized version of v2(n) to v3(n). More generally we can attach
decreasing weights (bits) to the finer and finer detail signals vk(n). This
technique is the ingredient of Mallat's multiresolution algorithm for image
compression [Mallat, 1989a,b]. The above observation can also be used to
transmit finer and finer versions of video data (e.g., in teleconferencing).

The above algorithm is extremely appealing even from an intuitive and
philosophical view point: any kind of 'learning’ or ‘understanding' in life
always occurs at various levels of resolutions, which get finer and finer as we
improve our skills. Think of the way we mature in any of these: 'baseball,
music, scientific skills, writing skills ...

The Laplacian Pyramid

This is a well-known scheme for image coding [Burt and Adelson, 1983],
and is demonstrated in Fig. 5.8-5. Here G(z) is an FIR lowpass filter. The

notation G(z) is defined as usual, so that G(ejw) = G*(ejw). Thus x0(n)
is a coarse lowpass approximation of the input x(n). This approximation

introduces no phase distortion [since G(z)G(z) has zero phase]. We can
subtract x0(n) from x(n) to recover the high frequency details, denoted
do(n).

This process is now repeated on the decimated signal x1(n). The analysis
bank, therefore, produces the highpass signals dO(n),...dL-1(n), and the
lowpass signal xL-1(n). (In the figure L = 2.) These signals can then be
recombined using a synthesis bank as demonstrated in the figure, to recover
X(Nn).

Notice that the perfect reconstruction property is trivially satisfied, re-
gardless of the design of G(z). This is not surprising because the difference
signals (highpass signals) dk(n) are not maximally decimated. For example,
do(n) is not decimated at all. This results in increased data rate (nearly
by a factor of two). In order for the scheme to be beneficial, this must be
compensated by the compression obtainable by the quantization of the sig-
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nals dk(n) and xL-1(n). Traditional QMF banks (such as Fig. 5.8-2) are, on
the other hand, maximally decimated, and do not have this problem (but
require special design procedures).

Figure 5.8-5 Burt and Adelson’s algorithm. (a) analysis, and (b) synthesis.

5.9 TRANSMULTIPLEXERS

An introduction to transmultiplexers was given in Section 4.5.4, which the
reader should review at this time. Figs. 4.5-4 and 4.5-5 demonstrate the
time domain and frequency domain multiplexing operations, and Fig. 4.5-6
shows the complete TDM - FDM - TDM converter (transmultiplexer),
also reproduced in Fig. 5.9-1.

Fig. 5.9-2 demonstrates how the signal V1(ejw) is generated starting
from Xl1(ejw). If all the signals xk(n) are bandlimited to ® < ok with
ok < m, there is no overlap between adjacent signals in the FDM format,
that is, there exists a guard band between ajdacent frequency bins, as demon-
strated in Fig. 5.9-3. In this case the FDM signals can be separated by filter-
ing operations (followed by M-fold decimation to stretch the signal back to
the full band —1t < w < ). The presence of guard bands ensures that there
is no cross talk between adjacent signals, even though the filters have nonzero
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Figure 5.9-1 The transmultiplexer circuit, drawn in terms of filter bank nota-
tions.

Figure 5.9-2 Generation of the signal v1(n) by use of interpolation and filtering.
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transition band. A larger guard band implies larger permissible transition
band (hence lower cost) for the filters Hk(z), which attempt to recover the
signals xk(n) from the FDM version. However, the existence of guard bands
also means that the full channel bandwidth is not utilized in the transmission
process.

The following observation was made in Vetterli [1986]: even if there
are no guard bands (thereby permitting cross talk), we can subsequenty
eliminate the cross talk in a manner analogous to alias cancelation in QMF
banks. This idea makes judicious use of the relation between the mathemat-
ics of QMF banks and transmultiplexers as we will elaborate. We remind
the reader that the term '"QMF’, which is used for convenience, really stands
for 'maximally decimated analysis synthesis systems’.

Figure 5.9-3 Stacking up the M signals Vk(ejw) in the frequency domain, to
obtain the FDM version y(n).

5.9.1 Input-Output Relations for Transmultiplexers

We show that it is possible to achieve perfect cross talk elimination as well
as perfect recovery of each TDM component xk(n) with finite-cost (in fact
FIR) filters Hk(z) and Fk(z). In analogy with the QMF bank, we continue
to use terms such as “analysis” and “synthesis” filters, and “filter banks”
as indicated in Fig. 5.9-1. Notice the conceptual duality between the QMF
bank and the transmultiplexer. In the former, we first “analyze” and then
"synthesize™; this is in reverse order as compared to the transmultiplexer.
(The QMF bank can also be conceptually looked upon as a FDM - TDM
- FDM convertor.) We will see that the problem of designing filters for
‘perfect reconstruction transmultiplexers' is same as the design of perfect
reconstruction (PR) QMF banks.

The relation between xk(n) and xm(n) can be schematically represented
as in Fig. 5.9-4. By using the polyphase identity (Fig. 4.3-13) we see that
each branch in this figure is in reality an LTI system. We can therefore
express

(5.9.1)
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where Skm(z) is the Oth polyphase component of Hk(z)Fm(z). By defining

(5.9.2)

we can express (5.9.1) more compactly as

(5.9.3)

So the transmultiplexer is an LTI system with transfer matrix S(z). The
system is free from cross talk if and only if S(z) is diagonal. (This is the
same as the requirement that the Oth polyphase component of Hk(z)Fm(z)
be zero unless k = m.) Under this condition, each reconstructed TDM signal
xk(n) is related to the original signal xk(n) according to

(5.9.4)

The transfer functions Skk(z) represent the distortions that remain after
cross talk elimination. If Skk(z) is allpass for all k, there is no amplitude
distortion; if Skk(z) has linear phase, there is no phase distortion. Finally,
a perfect reconstruction (PR) transmultiplexer is one for which

(5.9.5)

for some nonzero ck and integer nk. The TDM signals are then recovered
without error, that is, xk(n) = ckxk(n — nk).

Figure 5.9-4 Equivalent circuit for generation of xk(n).

5.9.2 Study Based on Polyphase Matrices

The use of polyphase decomposition adds further insight into the operation
of the transmultiplexer [Koilpillai et al., 1991]. As in Sec. 5.5, we can redraw
the analysis and synthesis banks in terms of the polyphase matrices E(z) and
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R(z). The resulting equivalent transmultiplexer circuit is shown in Fig. 5.9-

5(a), which simplifies to Fig. 5.9-5(b) after invoking the noble identities. f
This structure can be further simplified into the equivalent form shown in
Fig. 5.9-5(c), by using the equivalence of Fig. 4.3-14. It is, therefore, clear
that the transfer matrix S(z) can be expressed as

(5.9.6)

where
(5.9.7)

Figure 5.9-5 (a) Equivalent structures for the transmultiplexer in terms of
polyphase matrices, (b) rearrangement using noble identitites, and (c) simplifica-
tion using the equivalence of Fig. 4.3-14.

T Note that if we set E(z) = | as a special case, then y(n) becomes the
TDM (rather than FDM) signal!
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So the set of reconstructed signals x(n) is related to x(n) by the transfer
matrix (5.9.6). From this expression we can explore the conditions for cross
talk elimination and perfect reconstruction.

Perfect Reconstruction

A sufficient condition for perfect reconstruction is obtained by setting
S(z) = cz-n0l. Now

(5.9.8)

Substituting for '(z), this becomes

(5.9.9)

for appropriate integer mo.

Relation to perfect reconstruction (PR) QMF banks. From the
previous section we know that the product R(z)E(z) of a PR QMF bank
satisfies (5.7.23b) for some integer r in 0 < r < M - 1. If the QMF bank is
such that r = 1, then this condition is same as (5.9.9). On the other hand, if
r # 1, then we can insert appropriate amount of delay in front of the filters
Fk(z) to force r = 1.

The amount of delay to be introduced can be judged as follows: for
arbitrary r the PR QMF bank has overall transfer function (5.7.23c). This
has the form cz-€M for integer ¢ if and only if r = 1. So the amount of
delay to be inserted is such that T(z) takes this form. For example, suppose
the PR QMF bank has T(z) = cz-2z-im. If we insert the delay z-(M-2) in
front of each Fk(z), then T(z) becomes cz-(i+1)M. So insertion of this delay
results in a PR QMF bank with r = 1. Its analysis and synthesis filters can
then be used in the transmultiplexer to obtain perfect reconstruction!

Summary of perfect-reconstruction condition. This important
conclusion can be summarized as follows: Let Hk(z) and Fk(z) be the anal-
ysis and synthesis filters of a perfect reconstruction QMF bank, with overall
transfer function T(z) = cz-L for some ¢ # 0 and integer L. Then the trans-
multiplexer with analysis filters Hk(z) and synthesis filters z—JFk(z) has per-
fect reconstruction property for some integer J in therange 0 < J < M — 1L
The appropriate value of J is such that L + J is a multiple of M. (That
is, J is such that a QMF bank with filters Hk(z) and z-JFk(z) would have
T(z) = cz-fm for some integer £.)
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Cross Talk Free Transmultiplexers

The next natural question is this: suppose we are not interested in
perfect reconstruction, but only in perfect cross talk elimination, and min-
imization of other distortions. (This will cut the cost of filters to some
extent.) Can we obtain such a system starting from a QMF bank? Since
X(z) = S(z)X(z), the transmultiplexer is cross talk free if S(z) is diagonal.

We now show that this can be accomplished by starting from a suit-
able alias-free QMF bank. The most common alias-free QMF bank satisfies
(5.7.26), where P(z) = R(z)E(z). We will assume r = 1, as this can be
ensured by inserting the right amount of delay z-J in front of Fk(z). So we
have

(5.9.10)

where '(z2) is as in (5.9.7). The QMF bank satisfying (5.9.10) has distortion
function (5.7.27), with r = 1. That is,

(5.9.11)

In other words, T(z) is a function of zM, i.e., z appears only in the form zM.
Now the condition (5.9.10) implies

(5.9.12)

which in turn implies

(5.9.13)

The quantity on the left is the transfer matrix S(z) of the transmultiplexer
with same analysis and synthesis filters as the QMF bank. So (5.9.13) is

equivalent to
(5.9.14)

Since this is a diagonal matrix, cross talk has been eliminated, and the
reconstructed signals satisfy

(5.9.15)

Summary of cross talk cancelation condition. This result can
be summarized as follows: Let Hk(z) and Fk(z) be the analysis and syn-
thesis filters in a QMF bank satisfying (5.9.10). This QMF bank is there-
fore alias-free with distortion function T(z) = z-MS(zM). If we now design
a transmultiplexer with analysis filters Hk(z) and synthesis filters Fk(z),
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then it is free from cross talk. Moreover, the reconstructed signals satisfy
Xk(z) = z-1S(z)Xk(z).

The cross talk free transmultiplexer in general suffers from amplitude
and phase distortions since S(z) in (5.9.15) is an arbitrary transfer function.
This same S(z) appears in (5.9.11) which represents the distortions in the
alias-free QMF bank. If S(z) is allpass, then both systems are free from
amplitude distortion. If S(z) has linear phase, then both systems are free
from phase distortion.

Notice that the distortion functions Skk(z) in the transmultiplexer are
not required to be same for all k. This freedom is not exploited above, because
Skk(z) = z-1S(z) for all k.

5.10 SUMMARY AND TABLES

In this chapter we studied the quadrature mirror filter bank. Both two-
channel and M channel cases were considered.

For the two channel case we also presented design techniques for alias-
free QMF banks; in the FIR case we showed how to eliminate phase distor-
tion and minimize amplitude distortion. For the IIR case we showed that
if the analysis filters are constrained to be power symmetric, we can design
alias-free QMF banks free from amplitude distortion. The very low compu-
tational complexity of this IIR system was also demonstrated. With FIR
filters, the same power symmetric condition was then used to obtain perfect
reconstruction.

For the M channel case we developed the theory of alias cancelation and
perfect reconstruction, and demonstrated the ideas with several examples.
These results were extended to the study of transmultiplexers. We also
considered tree structured filter banks.

Tables 5.10.1-5.10.4 summarize the main results of this chapter. Table
5.10.5 presents a summary of important matrix quantities, and the relations
between them. In the next few chapters, we will present design techniques
for M channel QMF banks.
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TABLE 5.10.1 Two-channel QMF bank at a glance

1. Basic facts (Section 5.1)
Reconstructed signal: X(z) = T(z)X(z) + A(z)X(-2).
T(z) = Distortion function = %[H0(z)F0(z) + H1(z)F1(z)].
A(z) = Abasing gain = %[HO(-z)F0(z) + H1(-z)F1(z)].
Sff - cond. for alias cancelation: FO(z) = H1(-z), F1(z) = —HO(-2).
After aliasing is canceled X(z) = T(2)X(z).

T(z) not allpass amplitude distortion (AMD)
T(z) not linear-phase phase distortion (PHD).

FIR QMF bank: HO(z),H1(z),F0(z),F1(z) are FIR.
Linear-phase QMF bank: HO(z),H1(z) have linear phase.
2. A simple choice of filters for alias cancelation (Section 5.2)
Choose H1(z) = HO(-z),F0(z) = HO0(z),F1(z) = —H1(z2). Then
a) This is alias-free with T(z) = Y%[HQ(z) — HA(-2)].
b) Let HO(z) = EO0(z2) + z-1E1(z2), then T(z) = 2z-1E0(z2)E1(z2).

c) This expression for T(z) (a consequence of the constraint H1(z) =
HO(-z)) shows that perfect reconstruction is obtained if and only

if E1(z) = az-b~E0(z), imposing severe restrictions on analysis
filters. For example, in the FIR case HO(z) has to be a sum of two
delays.

A polyphase implementation:

FIR case (see Table 5.10.2 for IIR case).

a) If HO(z) is linear-phase FIR with order N, then T(z) has linear
phase, and the system has only AMD. N must be odd, or else
T(ejn/2) = 0. Perfect reconstruction is not possible unless EO0(z)
and E1(z) are delays, which would make HO(z) trivial.

b) If N denotes the order (odd) of HO(z), the analysis bank requires
0.5(N + 1) MPUs and 0.5(N + 1) APUs (using polyphase form).
This is true whether HO(z) has linear phase or not.
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TABLE 5.10.2 |IR allpass based QMF banks

In what follows, the analysis and synthesis filters are related as H1(z) =

HO(-2)

,FO(z) = HO(2),F1(z) = —H1(2), so that aliasing is canceled.

1. Power symmetric filters.

a)

b)

HO(z) is said to be power symmetric if HO(z)HO(z) is a half-band

filter, i.e., HO(z)HO(z) + HO(-z)HO(-z) = [ for some nonzero
constant [3.

Under some mild conditions (Theorem 5.3.1), an IIR power sym-
metric filter can be written as HO(z) = 0.5[a0(z2) + z-1al(z2)],

where a0(z),al(z) are real-coefficient allpass. Then the QMF bank
can be implemented as shown below.

The distortion function is T(z) = %z-1a0(z2)al(z2) = allpass, so
that the QMF bank is free from AMD. Only PHD is still present,
since abasing has already been canceled.

2. Power symmetric elliptic filters (Table 5.3.1 has design algo-
rithm).

a)

b)

Major fact. If HO(z) is elliptic lowpass with ripples related as 82 =
451(1 — 81) and band edges related as wp + wS = m, then it is power
symmetric.

Low complexity. If in addition the order N is odd, it can be ex-
pressed as HO(z) = [a0(z2) + z-1al(z2}}2, and the QMF bank im-
plemented as above. Here a0(z),al(z) are real-coefficient allpass.

The analysis bank requires only 0.25(N — 1) MPUs and 0.5(N + 1)
APUs.

Pole locations. Power symmetric elliptic filters have all poles on the
imaginary axis. So the denominator has the form D(z) = d(z2).

268 Chap. 5. Maximally decimated filter banks



TABLE 5.10.3 FIR power symmetric QMF banks

Basic result. (Section 5.3.6). Let HO(z) = =Nn=0 hO(n)z-n be power sym-
metric, that is, HO(z)HO(z) is a half-band filter, that is,

HO(z)HO(z) + HO(-z)HO(-z) =B

for some nonzero constant . Then N is automatically odd (assuming that
hO(0) # 0 and hO(N) # 0). Let the filters H1(z),F0(z) and F1(z) be chosen
as

H1(z) = —-z-NHO0(-z), FO(z) = z-NHO0(z), F1(z) = z-NH1(z).

Then the two channel QMF bank has perfect reconstruction. All the filters
are FIR and have same order N. Efficient lattice structures for this system
will be presented in Section 6.4.

Design procedure. It only remains to design HO(z). This can be done
by first designing a zero-phase FIR half-band filter H(z) with H(ejw) = 0
and taking HO(z) to be a spectral factor. See Section 5.3.6 for more details.
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TABLE 5.10.4 Facts about M-channel QMF banks

Fig. 5.4-1 represents an M channel QMF bank. The reconstructed
signal X(z) is given by X(z) = T(z)X(z) + =NM-U=1 AL(z)X(zWI). This is
a linear and time varying system. The terms X(zW&¢®),? > 0 are the alias
terms. The system is free from aliasing if A8(z) = 0 for € > 0. Under
such condition, the QMF bank becomes a linear time invariant (LTI) system
with transfer function T(z) = =M-U=0 Hk(z)Fk(zy™M, called the distortion
function.

Any M-channel QMF bank can be redrawn in terms of the polyphase
component matrices E(z) and R(z) (Fig. 5.5-3(a),(b)). This in turn can be
redrawn in terms of a M x M matrix P(z) = R(z)E(z) (Fig. 5.5-3(c)).

1. The QMF bank is alias-free if and only if P(z) is a pseudocirculant
(demonstrated in (5.7.11) for M = 3.)

2. Under this alias-free condition, the QMF bank is an LTI system with
transfer function T(z) = z-(M-1) =M-k=0 z-kPk(zM)

3. An alias-free system is free from amplitude distortion (i.e., T(z) is stable
allpass) if and only if P(z) is a lossless matrix. (To be proved later in
Section 10.1.)

4. An alias-free system has perfect reconstruction if T(z) is a delay, i.e.,
T(z) = cz-n0. This happens if and only if the pseudocirculant P(z) has
the special form (5.7.23b). The most common special case has r = 0 so
that R(z)E(z) = cz-m0l, i.e.,

Given a perfect reconstrucion (PR) QMF bank satisfying (5.7.23b) for
some r in the range 0 < r < M — 1, we can obtain a PR QMF bank
with a different value of r just by replacing the synthesis filters Fk(z)
with z-mFk(z) for appropriate integer m.

5. An FIR QMF bank is one for which Hk(z) as well as Fk(z) are FIR. If
such a system has PR property then

6. Special case where P(z) is diagonal. A multirate system of the form
shown in Fig. 5.7-1(a) is alias-free if and only if Sk(z) is same for all k.
Letting Sk(z) = S(z) we then have T(z) = z-(M-1)S(zM).
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TABLE 5.10.5 Matrix notations in filter bank theory
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5.1.

5.2.

5.3.

272

PROBLEMS

Suppose the analysis filters in a two-channel QMF bank (Fig. 5.1-1(a)) are
given by

Find a set of stable synthesis filters that result in perfect reconstruction.

In Sec. 5.2 we considered QMF banks in which the filters are related as in
(5.2.1) and (5.2.2). We saw that with HO(z) chosen to have real coefficients
and linear phase, the distortion function is given by (5.2.10). If N is even this
implies T(ejn/2) = 0 so that the filter order N has to be odd. Now consider
the modified QMF bank shown below where the filters could be FIR or HR
[Galand and Nussbaumer, 1984],

Figure P5-2

Express X(z) in terms of X(z). With H1(z) = HO(-z), show that the choice
FO(z) = HO(z) and F1(z) = H1(z) cancels aliasing. With this choice write
down the distortion T(z) in terms of HO(z).

a) Now let HO(z) be a real coefficient linear phase FIR lowpass filter of order
N. Simplify T(z) and show that there is no phase distortion. Also show
that N has to be even, in order to avoid the condition T(ejmt/2) = 0.

b) For the system in part (a) with N even, what is the number of MPUs
required to implement the analysis bank? (Try to exploit as many of
the following facts as you can: (i) the relation H1(z) = HO(-z), (ii) the
linear phase property, and (iii) the presence of decimators). How does this
compare with the numbers we obtained for the case of Fig. 5.1-1(a) with
odd N?

Consider Fig. 5.2-2(b). Here the analysis filters are related as H1(z) = HO(-z).
Assuming that HO(z) is a real coefficient Nth order filter (N odd), we know
that the analysis bank requires 0.5(N + 1) MPUs. This implementation uses
two facts, namely that the coefficients of H1(z) are related to those of HO(z),
and that we decimate the filter outputs. Curiously enough, we have not used
the fact that HO(z) has linear phase, i.e., hO(n) = hO(N — n). At first sight
it appears that there should be some way to reduce complexity further by
exploiting this relation. This, however, is not true.

a) Prove that linear-phase of HO(z) implies that E0(z) is the Hermitian image
of E1(z).

b) In view of Problem 4.17, it appears therefore that we can share the mul-
tipliers between EO(z) and E1(z). This, however, is not true. To see this,
consider the decimated outputs vO(n) and vi(n) (Fig. 5.1-1). Show that
if the product x(i)h0(j) is computed in the process of evaluating vO(n),
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this same product is never computed in the evaluation of vi(m) for any
choice of n, m (unless the input sequence Xx(n) is restricted to have special
values). (Note. Another way to look at this is as follows. The analysis
bank requires the implementation of the two systems EO(z) + E1(z) and
EO(z) — E1(z). Each of these resembles Fig. P4-17(b), and can therefore
be implemented with (N + 1L}»2 multipliers each. If each of these systems
is implemented this way, we cannot share the multipliers in EO0(z) + E1(z)
with those in E0(z) — E1(z). This is because the multiplier a cannot be
shared between (x + y)a and (X —y)a.)

c) What is the story if N is even? Can we exploit linear phase property of
HO(z) to implement the analysis bank with only about 0.25(N+1) MPUs?
Explain.

5.4. For the case of an odd order power symmetric BR transfer function we pre-

5.5.

sented a result which showed that it can be expressed as in (5.2.16) so that the
polyphase components are allpass (Theorem 5.3.1). For the even order case,
the situation is somewhat different. Suppose for example that HO(z) is an IIR
elliptic lowpass filter with even order N > 0. It can be shown [Vaidyanathan,
et al., 1987] that this can be expressed as

(P5.4a)

where A(z) is a unit-magnitude allpass function of order N/2 with complex
coefficients, and A*(z) is obtained by conjugating the coefficients of A(z). (You
can accept this as a fact for this Problem). Suppose now that HO(z) is, in
addition, power symmetric. Define the new real coefficient transfer function

(P5.4b)

a) Show that HO(z)HO(z) + H1(z)H1(z) = 1.
b) Show that H1(z) = cHO(-z) where ¢ = 1.

c) Let EO(z) and E1(z) be the polyphase components of H0(z), i.e., H0(z) =
EO0(z2) + z-1E1(z2). Show that z-iEi(z2) = CiA(z)+c*A*(z) for some ci.
d) Hence show that Ei(z) cannot be allpass (Hint. Use Problem 3.21.)

The application of this problem in QMF banks is considered in Problem 5.6.

Let HO(z) be as in Problem 5.4.
a) Show that A*(z) = xjA(-2z).
b) Show that A(z) has the form

(P5.5)

where ¢ = exjn/4 and —1 < Bk < 1.

5.6. Consider the system shown in Fig. P5-2 again. Suppose that the analysis

filters are related as H1(z) = HO(-z) and let the synthesis filters be chosen
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5.7.

5.8.

5.9.

5.10.

5.11.

as in Problem 5.2 to eliminate aliasing. Assume, however, that HO(z) is an
elliptic power symmetric filter with even order N > 0. We know from Problem
5.4 that the polyphase components are not allpass.

a) Find the distortion function T(z) and show that amplitude distortion has
actually been eliminated.

b) Draw the complete QMF bank in terms of A(z). In your scheme, what
is the number of MPUs required to implement the analysis bank? (Note.
When the multipliers are complex, you must carefully count the number
of real MPUS).

Let HO(z) be as in (5.2.16) where a0(z) and al(z) are allpass filters as in (5.3.6).
We can then write HO(z) = PO(zyd0(z2)d!(z2) where P0(z) is a polynomial
in z-1. Assume that (i) d0(z) and d1(z) have all poles inside the unit circle,
and (ii) d0(z) and d1(z) have no common factors of order = 1. Show that there
are no common factors (of order = 1) between P0(z) and the denominator
d0(z2)d1(z2).

Let HO(z) be a digital filter obtained from an analog Butterworth filter Ha(s)
(Sec. 3.3.2), using the bilinear transform (3.3.1). Suppose the Butterworth
filter has 3dB point Q¢ = 1. Show then that HO(z) is power symmetric.

Consider a QMF bank with analysis filters related by H1(z) = HO(-z) so that
(5.2.5) holds. HO(z) and H1(z) could be FIR or IIR, but assume that they are
stable.

a) Assume that the polyphase components EO(z) and E1(z) have all zeros
outside the unit circle (the poles, of course, are inside). Find a set of
stable synthesis filters so that aliasing as well as amplitude distortion are
eliminated.

b) Repeat (a) under the condition that E0(z) and E1(z) have some zeros
inside and some outside (but none on) the unit circle.

Let HO(z) = PO(zyD(z) and H1(z) = P1(2D(z) with
(P5.10)

Assume D(z) has all zeros inside the unit circle. Suppose the following condi-
tions are true: (i) HO(ejw) 2 + Hl(ejw) 2 = 1 for all w. (ii) PO(z) is Hermitian
and P1(z) is skew Hermitian. Show that we can express these transfer functions
as HO(z) = [A0(z) + AL(z}2 and H1(z) = [AO0(z) — Al(z)}}»2 where AO(z) and
Al(z) are stable unit-magnitude allpass.

Let HO(z) be a causal stable rational transfer function with HO(ejw) < 1, with
irreducible representation HO(z) = PO(zyDO0(z). Assume that if a is a zero
of D0(z) then 1-a* cannot be a zero of PO(z). This means that there are no
nontrivial allpass factors in HO(z).

a) Let H1(z) be a causal stable system such that Hl(ejw) 2+ HO(ejw) 2 = 1,
and let H1(z) = Pl(zyD1(z) be an irreducible representation. Assume
that H1(z) has no nontrivial allpass factors. Show that D1(z) = cDO0(z)
for some constant c.

b) Assume now that HO(z) above is power symmetric. Show that its denom-
inator can be written in the form D0(z) = 1 + d(2)z-2 + ... d(2K)z-2K
That is, D0(z) = G(z2) for some FIR G(z).
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5.12. Let HO(z) be a stable IIR power symmetric transfer function with possibly

complex coefficients. Let HO(z) = PO(zyD(z) be an irreducible representation,
where

(P5.12a)

with none of d(N),p0(0),p0(N) equal to zero. Assume that there are no allpass
factors (of order > 0) in HO(z). Suppose N is odd and P0(z) Hermitian. Prove
that HO(z) can be expressed as

(P5.12b)

where a0(z) and al(z) are stable (rational) unit-magnitude allpass functions.
Thus, the polyphase components are allpass. (Hint. use Problem 5.10.)

5.13. Analog QMF bank. In this problem we consider an extension of the maximally
decimated filter bank system for the case where the input is a continuous-time
signal. Consider the following 'two-channel filter bank' system, where xa(t) is
a continuous-time signal with Laplace transform Xa(s).

Figure P5-13(a),(b)

The device labeled “sampler” operates as follows: in response to a continuous
time input sa(t), it produces the sampled version

where da(.) is the Dirac delta function (Sec. 2.3). This is illustrated in Fig.
P5-13(b).
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a) Express Xa(jQ) in terms of Xa(jQ), and the various filter transfer func-
tions. You will see that this expression is a linear combination of an infinite
number of terms of the form

b) Suppose xa(t) is a o-bandlimited signal, that is, Xa(jQ) =0 for Q = ¢.
(Assume 0 < 0 < m.) We know that the Nyquist sampling rate is © = 2c.
(Ifwe sample xa(t) at this rate, we can recover xa(t) from the samples with
the help of a ideal lowpass filter with passband —0 < Q < ¢.) Define the
corresponding Nyquist sampling period T = 2n-®. Suppose T! = 2T, that
is, each channel in the figure performs sampling at halfthe Nyquist rate (so
that the total number of samples per unit time, counting both channels,
corresponds to Nyquist sampling). Show that, for any fixed frequency Q,
only two out of the infinite number of terms in the expression for Xa(j<)
can be nonzero.

c) The aim is to choose the synthesis filters such that aliasing and other
distortions are eliminated. Continuing with part (b), assume that the
synthesis filters satisfy Fak(jQQ) = 0 for Q = ¢. Show that we can obtain
perfect reconstruction (that is, xa(t) = xa(t)) by solving for Fa,k(jQ) from
the equations

(P5.13a)

for .0 < Q <0, and

(P5.13b)

for 0 < Q < o. In other words, given the analysis filters Ha,0(s) and
Ha,1(s), we can solve for the frequency responses of the synthesis filters
from the above equations. The sets of equations to be used depends on
the frequency region as indicated. (Outside this frequency region we just
take Fak(jQ) = 0.) (Note. This idea works as long as the 2 x 2 matrices
in the equations above are nonsingular, but the resulting synthesis filters,
in general, are not guaranteed to be stable or realizable!)

d) Continuing with part (c), let Ha0(s) = 1, and let Hal(s) = s (i.e., a
differentiator). Verify that the matrices above are nonsingular. So we can
indeed find synthesis filters for perfect reconstruction. Find expressions
for Fa,0(jQ) and Fa,1(jQ) in the above frequency regions. Show that these
synthesis filters have impulse responses

(P5.13c)

Evidently these are noncausal (unrealizable) continuous-time filters.

Note: The above scheme gives rise to a number of generalizations to Nyquist
sampling theorem. If xa(t) is o-bandlimited, Nyquist theorem says that we can
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5.14.

5.15.

5.16.

5.17.

5.18.

reconstruct it (by lowpass filtering) from its samples uniformly spaced apart
by T seconds. According to above scheme, we can split xa(t) into two signals
and sample each at half the rate, and still reconstruct the original version. In
part (d) we are essentially sampling xa(t) and its derivative (output of Ha,1(s))
at half the Nyquist rate. We can recover xa(t) from these two undersampled
signals by using the filters in (P5.13c). This gives a proof of the derivative
sampling theorem, originally proposed in [Shannon, 1949] four decades ago.
More generally, if we consider the M-channel version of this problem we will
find that we can recover a bandlimited signal by sampling it and its M — 1
derivatives M times slower than the Nyquist rate. As part (d) shows, the
filters required to do this reconstruction are, as such, unrealizable. (In fact
the ideal lowpass filter which is used to reconstruct a bandlimited signal from
its 'traditional Nyquist-rate samples' is also unstable and noncausal.) These
filters should therefore be replaced with practical approximations.

Given below are three sets of FIR analysis banks for a 3 channel maximally
decimated QMF bank (Fig. 5.4-1, with M = 3). In each case, answer the
following: (i) Is it possible to obtain a set of FIR synthesis filters for perfect
reconstruction? If so find them. (ii) If not, find a set of IR synthesis filters for
perfect reconstruction (iii) In the latter event, are the synthesis filters stable?

a) HO(z)=1, H1(z2)=2+ z-1, H2(z) =3+ 2z-1 + z-2.
b) HO(z)= 1, H1(z)=2+ z-1+2z-5 H2(z) =3+ 2z-1 + z-2
c) HO(z)= 1, H1(z)=2+ z-1 +z-5 H2(z) =3+ z-1 + 2z-2.

Prove that the structure of Fig. 5.6-3 has perfect reconstruction property if
and only if the integers M and J are relatively prime. Under this condition,
find x(n) in terms of x(n), M, and J.

Consider the M x M matrix

(P5.16)

Show that its determinant is of the form £z-r. This shows that if the product
P(z) = R(z)E(z) takes the form (5.6.7), then its determinant is a delay, that
is, has the form (5.6.9).

Suppose the filter bank of Fig. 5.4-1 is alias-free, and let T(z) be the distortion
function. Suppose we define a new filter bank in which the analysis and syn-
thesis filters are interchanged, that is, Fk(z) are the analysis filters and Hk(z)
the synthesis filters. Show that the resulting system is free from aliasing and
has the same distortion function T(z). So we can swap each Fk(z) with corre-
sponding Hk(z), without changing these input/output properties! (Hint. Use
AC matrix formulation cleverly.)

Consider the M channel maximally decimated system of Fig. 5.4-1. Let the
choice of filters be such that this is a perfect reconstruction system. Suppose
we replace each synthesis filters Fk(z) with Fk(zW¢), where W — e-j21t/M, and
£ is an integer (independent of k) with 0 < € < M — 1. Let x1(n) be the new
output of the QMF bank. How is it related to the input x(n)? Given x1(n),
would you be able to recover x(n)? If so, how?
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5.19. Consider the two channel QMF bank with analysis filters related as H1(z
HO(-z). Suppose the synthesis filters are chosen as FO(z) = HO(z) and F1(z
—H1(z), so that aliasing is canceled.

a) Write down the AC matrix H(z), and express its determinant in terms of
HO(z).

b) Show that the distortion function T(z) is zero for some z if and only if
H(z) is singular (i.e., the determinant equals zero) for this value of z.

c) Suppose HO(z) = =N:=0 h(n)z-n. Let N be even and let h(n) be real with
h(n) = h(N —n) (Type 1 linear phase). Show that H(z) is singular for
z = ejn/2. In view of part (b) this proves that T(ejrt/2) = 0, a conclusion
we already know from Sec. 5.2.2.

~

5.20. Consider the following uniform DFT analysis bank,

Figure P5-20

where Ek(z) are stable allpass functions with Ek(ejw) = 1 for all w. (Evidently,
these are the polyphase components of H0(z).)
a) Show that the anlaysis filters are power complementary.
b) Show that each analysis filter is a spectral factor of an Mth band filter,
that is, show that Hk(z)Hk(z) satisfies the Mth band property.
c) Draw a (stable) synthesis bank structure so that (i) aliasing is canceled,
and (ii) T(z) becomes allpass thereby eliminating amplitude distortion.

5.21. Consider Fig. 5.7-2(c) with T = W* (uniform DFT analysis bank). Suppose
RKk(z) are chosen as in (5.7.8), so that the product Rk(z)Ek(z) is independent
of k. This ensures that aliasing has been canceled.

a) Just as a review, verify that the uniform-shift relations Hk(z) = HO(zWK)
and Fk(z) = W-kF0(zWk) hold, where W = e-j2n/M

b) Express the distortion function T(z) in terms of Ek(z),0 < k< M — L

c) Show that the AC matrix H(z) is a left circulant.

d) Find the determinant of H(z) in terms of Ek(z). (Review of Sec. 5.5 helps
here.) Show that this determinant is equal to cz-KT(z) where ¢ # 0, and
K is some integer. Thus H(ej0) is singular if and only if T(ej6) = 0.

e) Suppose HO(z) = =Nn=0 h(n)z-n. Assume h(n) is real with h(n) = h(N —
n) (linear phase FIR). This property imposes certain constraints on the
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polyphase components Ek(z) (Problem 4.22). In particular, for some com-
binations of N and M, it is possible that some polyphase component
EL(z) is an odd order filter with symmetric impulse response. This im-
plies EL(ejt) = 0. Using part (b) prove that this implies T(ejw) = 0 for
w = /M, 3-M,... etc. To avoid this situation, the relative values of M
and N must be carefully chosen. Explain how. (You can do it using the
notation 'm0' from Problem 4.22) (Hint. For M = 2, this should reduce
to the requirement that N be odd, as seen in Sec. 5.2.2.)

5.22. In the above problem we took Rk(z) according to (5.7.8). This has a disadvan-
tage: each filter Rk(z), which is a product of M — 1 of the E£(z)'s, can have
very high order (for large M), so that the synthesis filters have high order. We
can partially rectify this situation if we take a closer look at the form of Ek(z).

Thus, let
(P5.22a)

where NKk,1(z), Nk,2(z) and Dk(z) are polynomials in z-1. Here Nk,2(z) is the
part with all zeros inside the unit circle, (and Nk,1(z) has zeros on and/or

outside).
a) Show that the choice

(P5.22b)

cancels aliasing. (Note that this choice gives stable synthesis filters.)
b) With such choice of Rk(z), what is the distortion function T(z)?

¢) Making the further assumption that Nk,1(z) has no zeros on the unit cir-
cle for any k, how would you modify Rk(z) [without destroying stability
of Rk(z), and the alias-free property] so that T(z) now becomes allpass
(thereby eliminating amplitude distortion)?

5.23. Consider the following M channel multirate system, which is essentially a QMF
bank with the additional transfer functions Ck(z) inserted.

Figure P5-23

We can imagine that Ck(z) represents the amplitude and phase distortions
introduced by the kth channel. Assume throughout that the functions Fk(z),
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Hk(z) and Ck(z) are rational and stable; unless stated otherwise, do not make
specific assumptions about zeros of these transfer functions.

a) Suppose Hk(z) and Fk(z) are such that the system is alias-free in absence
of channel distortion Ck(z) (i.e., with Ck(z) replaced with unity for all k).
Now with Ck(z) present, find a modified set of (stable) synthesis filters
Gk(z) to retain alias-free property.

b) Repeat part (a) by replacing "alias-free" with "alias-free and free from
amplitude distortion" everywhere. Assume, however, that Ck(z) has no
zeros on the unit circle. (Hint. First write the numerator of Ck(z) as
Ak(z)Bk(z) where Ak(z) has all zeros inside the unit circle and Bk(z) has
them outside.)

c) Repeat part (a) by replacing "alias-free" with “perfect reconstruction”
everywhere. Assume now that Ck(z) has no zeros on or outside the unit
circle.

Hint. This is not tedious, but you have to think straight!

5.24. Consider the tree structure shown in Fig. 5.8-1(a).

5.25.

280

a) Show that the complete system is equivalent to Fig. 5.+1 with M = 4
(four-band QMF bank) and identify Hk(z) and Fk(z) for 0 < k < 3, in
terms of the filters in Figure 5.8-1(a).

b) Assume that the two-channel QMF bank with filters HO(1)(z), H1(1)(z),
FO(1)(z), and F1(1)(z) is alias-free with distortion function T(1)(z). Let the

same be true of H0(2)(z), H1(2)(z), FO(2)(z), and F1(2)(z), with distortion func-
tion T(2)(z). Prove that the equivalent four-band QMF bank is alias-free,
and find its distortion function T(z) in terms of T(1)(z) and T(2)(z).

c) Continuing with part (b), prove that T(z) is allpass if T(1)(z) and T(2)(z)
are allpass. Thus, if each two-channel QMF bank is free from amplitude
distortion, then so is the overall four-channel system. Similarly verify that
T(z) has linear phase if T(1)(z) and T(2)(z) have linear phase.

d) If each two-channel QMF bank

is a perfect reconstruction system, verify that the same is true for the
equivalent four-channel system.

Note. These results can be extended to tree structures with more than two
(say m) levels. We can thus build QMF banks with M = 2m, with any set
of desired properties (such as freedom from selected set of distortions etc.),
including perfect reconstruction. For composite M which is not a power of
two, the idea can be extended. Thus if M = 3 x 2, we can build the QMF bank
in terms of two-channel systems and three channel systems. So tree structures
cover a wide class of useful filter banks.

Tree structures can be used to obtain QMF banks in which the decimation ratio
is not the same for all channels (called nonuniform filter banks). Consider the
system shown in Fig. P5-25(a).
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This is equivalent to the following five channel system.

Figure P5-25(b)

a) Identify the filters Gk(z) and Pk(z) in terms of the filters HO(z), H1(z),
FO(z) and F1(z). Suppose HO(z) and H1(z) are real coefficient filters with
magnitude responses as shown below.

Figure P5-25(c)

Sketch the magnitude responses Gk(ejw) for 0 < k < 4. Thus, the filters have
unequal bandwidths, and the decimation ratios are inversely proportional to
these bandwidths. This is called a nonuniform (maximally decimated) QMF
bank.

b) Suppose the filters HO(z), H!(z), FO(z) and F1(z) are such that the tradi-
tional two channel QMF bank (Fig. 5.1-1(a)), has perfect reconstruction
property, with distortion function T(z) = 1. Show that the five-channel
nonuniform system also has perfect reconstruction property.

¢) Suppose the filters HO(z), H1(z), FO(z) and F1(z) are such that the tradi-
tional two channel QMF bank is alias-free, with distortion function T(z).
Does the above five channel nonuniform system remain alias-free? If not,
how would you modify the structure of Fig. P5-25(a) to obtain this prop-
erty, and what is the resulting distortion function?

5.26. Consider a transmultiplexer with M = 2.
a) Let the analysis filters be HO(z) = 1+2z-1 and H1(z) = 1 —z-1 Find a set
of FIR synthesis filters FO(z) and F1(z) such that the system has perfect

reconstruction property.
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b) Let the analysis filters be HO(z) = 1 + z-1 and H1(z) = 1 + z-1 + z-2
Can we find FIR synthesis filters such that there is perfect reconstruction?
If so find them.

5.27. Consider a three-channel transmultiplexer with synthesis filters

Find a set of FIR analysis filters such that perfect reconstruction property is
satisfied.

5.28. Suppose we have a three channel alias-free QMF bank with distortion function
T(z) = z-211 — az-1). Find closed form expressions for the elements of the
3 x 3 matrix P(z) [Fig. 5.5-3(c)] in terms of a, z.

5.29. Assuming that the matrix P(z) is pseudocirculant, verify that (5.7.22) indeed
reduces to (5.7.13) (with Pm(z) denoting PO,m(z)).

5.30. Consider the following multirate system.

Figure P5-30

In each of the following cases, what can you say about the input output relation
of the system? Give as much information as possible, based on given data.
a) M =2 and H(z) is an IIR power symmetric elliptic filter of odd order.
b) M is arbitrary, and H(z) is a zero-phase Mth band lowpass filter.

5.31. Consider the following M-channel analysis/synthesis system.

Figure P5-31(a)

This reduces to the QMF bank of Fig. 5.4-1 if L = M. If L < M, this is called
a nonmaximally decimated QMF bank. With such a system, elimination of
aliasing turns out to be relatively easy (as this exercise will demonstrate).

a) Find an expression for X(z).
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b) Suppose M =4 and L = 3. Suppose the analysis bank is the uniform DFT
bank, i.e., Hk(z) = HO(zWKX0 < k < 3. Assume that HO(z) has response

shown below.

Figure P5-31(b)

How small would e have to be so that HO(z) does not overlap with the
aliased versions HO(zW8),n = 1,2? With such e, show typical responses
of Fk(z),0 < k < 3 such that aliasing terms are eliminated. (The trivial
choice Fk(z) = 0 is forbidden, of course!). What is the distortion transfer
function after such elimimation of aliasing?
Note. In nonmaximally decimated systems, the total number of samples per
unit time at the output of the decimated analysis bank is evidently more than
for x(n). This is the price paid to obtain the simplicity of alias elimination.

5.32. Consider the following system which is a general M channel nonuniform filter
bank.

Figure P5-32

If the integers nk are such that

(P5.32a)

the system is said to be maximally decimated. (Note that this condition holds
for Fig. 5.4-1, where nk = M for all k. Also the tree structured system in Prob-
lem 5.25 is a special case of this nonuniform filter bank, with decimation ratios
8, 8,4, 4, 4.) The kth analysis filter Hk(z) has total passband width = 2k, so
that it makes sense to decimate its output by nk This system suffers from the
usual set of errors (aliasing, amplitude distortion, and phase distortion) as does
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5.33.

5.34.

Fig. 5.4-1. Given an arbitrary set {ni} of M integers nk satisfying (P5.32a), it
is not in general possible to find nonideal filters Hk(z) and Fk(z) to eliminate
aliasing completely. The alias terms at the output of the kth expander are

(P5.32b)

(Wm stands for e-j2n/m.) So, unlike in Fig. 5.4-1, the “shifted versions” created
by different channels have different amounts of shift. For example, the Oth
channel generates

(P5.32c)

Unless each of these is also generated by at least one other channel, we cannot
"cancel" all alias terms with nonideal filters.

If a set of integers {ni} is such that every shifted copy of X(ejw) appears at the
output of at least two expanders, we say that {ni} is a compatible set. Com-
patibility of {ni} is thus a necessary condition for complete alias cancelation in
Fig. P5-32. If the filter bank is derived from a tree structure, (i.e., by starting
from a system similar to Fig. P5-25(a) where uniform filter banks, not neces-
sarily two-channel each, are used repeatedly), then the compatibility property
is satisfied automatically because we know the system can be designed to be
alias free (Problems 5.24, 5.25).

Which of the following sets are compatible?
a) (2,3,6)
b) (2,6,6,6)
c) For large sets of integers [e.g., part €) below], it is tedious to directly check
compatibility. Devise an efficient test for compatibility of a given set {ni}.
d) Using the test developed above, show that the set (2,6,10,12,12,30,30)
is compatible.

e) Show that the set in part d) cannot be derived from a tree structure. Thus,
there exist compatible sets which are not derived from tree structures.

Consider Fig. 5.4-1. Suppose the filters are chosen such that the system has
the perfect reconstruction (PR) property. Now suppose that we replace each of
the analysis and synthesis filters with Hk(z2) and Fk(z2), for0< k<M — 1L
Does the resulting system still have the PR property?

In Problem 5.33, suppose we replace Hk(z) and Fk(z) with Hk(zL) and Fk(zL)
for some integer L > 0. (So with L = 2, we obtain Problem 5.33). Find a
necessary and sufficient condition on L such that the resulting system continues
to have the PR property.
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6.0

Paraunitary
Perfect Reconmnstructiomn (PR)

Filter Banks

INTRODUCTION

From Sec. 5.5 we know that the analysis and synthesis filters of the M
channel maximally decimated filter bank can be expressed in terms of the
polyphase matrices E(z) and R(z). If the filters are FIR and the filter bank
has the perfect reconstruction (PR) property, then the polyphase matrix
E(z) has to satisfy the property (5.6.10). That is, the determinant of E(z)
must be a delay. This ensures that its inverse is FIR so that we can find
FIR R(z) satisfying the PR requirement.

In this chapter we study PR filter banks in which E(z) satisfies a special
property called the lossless or paraunitary property. This property automat-
ically ensures (5.6.10) [even though paraunitariness is not a necessary condi-
tion for (5.6.10)]. In addition to perfect reconstruction, the FIR filter bank
based on paraunitary E(z) satisfies many other useful properties. These are
summarized at the end of Sec. 6.7.1. Here is a short preview of some of the
benefits.

1. The synthesis filter Fk(z) has the same length as the analysis filter
Hk(z).

2. Fk(z) can be found from Hk(z) by inspection.

There exist good design techniques with fast convergence.

4. The paraunitary property is basic to the design of cosine modulated
perfect reconstruction systems, described in Sec. 8.5. We will see that
these systems combine the perfect reconstruction property with very
low design as well as implementation complexity.

5. The paraunitary property is also basic to the generation of the so called
‘orthonormal wavelet basis' to be studied in Chap. 11.

w
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Brief historical notes

The ideas of passivity, paraunitariness, and losslessness originate from clas-
sical electrical network theory [Brune, 1931], [Darlington, 1939], [Guillemin,
1957], [Potapov, 1960], [Belevitch, 1968], [Balabanian and Bickart, 1969],
and [Anderson and Vongpanitlerd, 1973]. These have been applied for the
design of robust digital filter structures [Fettweis, 1971], [Swamy and Thya-
garajan, 1975], [Bruton and Vaughan-Pope, 1976], [Antoniou, 1979], [De-
prettere and Dewilde, 1980], [Rao and Kailath, 1984], [Vaidyanathan and
Mitra, 1984], and [Vaidyanathan, 1985a,b]. Also see Sec. 14.1.

Paraunitary transfer matrices were applied to the design of perfect
reconstruction systems in Vaidyanathan [1987a,b]. It turns out that the
two channel power symmetric PR QMF bank (Sec. 5.3.6) has paraunitary
E(z) (Sec. 6.3.2), even though the authors [Smith and Barnwell, 1984] and
[Mintzer,1985] used a different approach in their derivation. It has been
shown [Vetterli and Le Gall, 1989] that some of the earlier filter bank de-
signs [Princen and Bradley, 1986] also have the paraunitary property. The
lapped orthogonal transform (LOT) [Cassereau, 1985], [Malvar and Staelin,
1989], has been shown later to have the paraunitary property (see Sec. 6.6).
Paraunitary matrices have also been considered in the context of multidi-
mensional multirate filter banks [Karlsson and Vetterli, 1990] (see Chap.
12). Subsequently, paraunitary systems have been used in the design of co-
sine modulated filter banks, which offer great simplicity of design as well
as implementation [Malvar, 1990b], [Koilpillai and Vaidyanathan, 19914],
[Ramstad, 1991].

We will see that the paraunitary condition is a very natural choice.
For example, if the anaysis filters have ideal brick-wall responses, then E(z)
is paraunitary [see comments after eqn. (6.2.13) later]. Second, some of
the approximate reconstruction designs (the pseudo QMF design, Chap. 8),
developed prior to the introduction of paraunitary filter banks, are such that
E(z) is “approximately” paraunitary.

Outline

The presentation in this chapter is in terms of discrete-time language, and
will not require the electrical network theoretic background mentioned above.
In Sec. 6.1 we introduce the lossless and paraunitary properties. Section 6.2
studies the properties of filter banks with paraunitary E(z). In Sec. 6.3 and
6.4 the two channel case is studied in depth. We present design techniques
as well as robust lattice structures for FIR PR QMF banks with paraunitary
E(z). These results are extended to the M channel case in Sec. 6.5. In Sec.
6.6 we introduce transform coding and the lapped orthogonal transform
(LOT). Section 6.7 provides a summary and comparison of the many design
techniques introduced in this and the previous chapters.

In Sec. 8.5 we will return to the study of cosine modulated paraunitary
filter banks. A detailed study of paraunitary systems is presented in Chap.
14. As in Chap. 5, we will sometimes use the term "QMF' even for the M
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6.1

channel case. This is for simplicity, and is a misnomer unless M = 2.

LOSSLESS TRANSFER MATRICES

In Sec. 2.2 we introduced r-input p-output linear time invariant (LTI) sys-
tems. These are characterized by p x r 'transfer matrices' H(z). Such ma-
trices were used in Chap. 5 to characterize filter banks. For example, the
analysis bank was described by an M x 1 transfer matrix h(z), and synthesis
bank by a 1 x M matrix fT(z) [see Eq. (5.4.1)]. These two vectors were
expressed in terms of the polyphase matrices E(z) and R(z) according to

(6.1.1)

The matrices E(z) and R(z) were defined in Sec. 5.5.

In this chapter we will impose the “paraunitary” or “lossless” property
on E(z), and thereby obtain the perfect reconstruction property. Towards
this end, we give a brief review of lossless systems, which will serve the
purpose of this chapter.t For the interested reader, a detailed treatment can
be found in Chap. 14.

6.1.1 Definition and properties

A p x r causal transfer matrix H(z) is said to be lossless if (a) each entry
Hkm(z) is stable and (b) H(ejw) is unitary, that is,

(6.1.2)

for some d > 0. If in addition the coefficients of H(z) are real (i.e., H(z)
real for real z), we say that H(z) is lossless bounded real (abbreviated LBR).
Note that the phrase "H(z) is lossless" is equivalent to the phrase "the LTI
system with transfer function H(z) is lossless."

The property (6.1.2) is the unitary property. Thus, H(z) is unitary on
the unit circle of the z-plane. For p = r = 1 this reduces to the allpass
property (Sec. 3.4). In order to satisfy (6.1.2) we requirep = r. (Ifp <r
the rank of the left hand side in (6.1.2) is less than r, and the right hand
side cannot be dlr.) The subscript r on Ir, which is a reminder that it is an
r x r matrix, will be deleted unless there is room for confusion.

Paraunitary property. For rational transfer functions, it can be ver-
ified (Problem 14.1) that (6.1.2) implies

(6.1.3)

which is termed the paraunitary property. Conversely, (6.1.3) implies (6.1.2).
We can, therefore, define a lossless system to be a causal, stable paraunitary

t At this point, it is useful to review Sec. 2.3 on matrix notations, par-
ticularly Ht,H(z), H*(z) and so on.
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system. So, in order to prove that a causal system is lossless, it is sufficient
to prove (a) stability and (b) paraunitariness. If H(z) is square and lossless,

then H(z) is paraunitary but not lossless (unless it is a constant). Whenever
causality and stability are obvious from the context, we do not mention them;
we then use "lossless" and "paraunitary” interchangeably. Notice that any
constant unitary matrix is (trivially) paraunitary as well as lossless.

Columnwise orthogonality. Letting Hk(z) and Hm(z) denote the
kth and mth columns of H(z), we see that these columns are mutually

orthogonal, that is, Hk(z)Hm(z) = 0 for k # m. Moreover, each column

represents a set of p power complementary filters, i.e., Hk(z)Hk(z) = d. We
say “each column is power complementary.”

Normalized systems. If a lossless system has d = 1 in (6.1.2) we say
that it is normalized-lossless. Correspondingly the properties (6.1.2) and
(6.1.3) are termed normalized-unitary and normalized-paraunitary.

Square Matrices
For the case of square matrices, (6.1.3) implies

(6.1.4)

so that the inverse is obtained essentially by use of 'tilde' operation. More-
over, in this case we have H(z)H(z) = H(z)H(z) = dI. So every row is
power complementary, and any pair of rows is orthogonal.

For the special case where H(z) is 2 x 2, that is,

(6.1.5)

the paraunitary property H(z)H(z) = dl can be written explicitly in terms
of the elements Hkm(z) as:

(6.1.6)

Some properties of Paraunitary Systems

1. Determinant is allpass. Assume p = r, and let A(z) denote the deter-

minant of H(z). From (6.1.3) we get A(z)A(z) = dr for all z, proving
that A(z) is allpass. In particular, if H(z) is FIR then A(z) is a delay,

that is,

(6.1.7)
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2. Power complementary (PC) property. For an M x 1 transfer matrix
h(z) = [HO(z) . . . HM-1(2)]T, the paraunitary property implies the
power complementary property, that is,

(6.1.8)

This follows directly from h(z)h(z) = c.

3. Submatrices of paraunitary H(z). From the definition it is clear that
every column of a paraunitary transfer matrix is itself paraunitary (i.e.,
PC). In fact any p>L submatrix of H(z) is paraunitary (Problem 14.2).

These three properties also hold if we replace "paraunitary” with "loss-
less" everywhere.

6.1.2 Interconnections and Examples

We now consider examples of lossless systems, with particular emphasis on
filter banks. We begin by noting a number of operations and interconnections
which preserve the lossless property.

Operations Preserving Paraunitary and Lossless Properties

We can verify that if H(z) is square and paraunitary, then so are the
following matrices: (a) H(zM) for any integer M (b) HT(z), and (c) H(z).
If H(z) is lossless, then the first two are lossless as well.

Consider next the cascaded structure of Fig. 6.1-1. The overall transfer
matrix is H(z) = H1(z)HO(z). (The sizes of HO(z) and H1(z) can be dif-
ferent as long as the product makes sense.) This product is paraunitary if
HO(z) and H1(z) are. (Proof: H(z)H(z) = HO(z)H1(z)H1(z)HO(z) = dI,
since HO(z) and H1(z) are paraunitary.) Furthermore if HO(z) and H1(z)
are lossless, so is the product (as it does not have new poles). Thus, the
operation of cascading (or product) preserves losslessness.

Figure 6.1-1 A cascade of two paraunitary systems.

Example 6.1.1: Cascaded Paraunitary Systems

Consider the transfer matrix

(6.1.9)

Fig. 6.1-2(a) shows a flowgraph of this system. If y = Rmx, then y is
obtainable by rotating x by 8m, clockwise. This can be seen from Fig.
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6.1-2(b)), which shows the components of x and y in terms of 6m. In
this figure r is the 'length’ of x, that is, r = VXTx.

Figure 6.1-2 (a) The Givens rotation, and (b) demonstration of rotation.

The operator Rm is known as the Givens rotation [Givens, 1958],
[Golub and Van Loan, 1989], planar rotation or simply rotation. It is
easily verified that Rm is unitary (with RiImnRm = I). Next consider the
2 x 2 system of Fig. 6.1-3 with transfer matrix

(6.1.10)

We have
(6.1.11)

so that A(z) is paraunitary.
Figure 6.1-4 shows a cascade of the above paraunitary systems,
which is therefore paraunitary. Its transfer matrix is

(6.1.12)

As an example let N = 1 so that HN(z) = RINA(z)R0. With 80 = 01 =
w74 the transfer function of the cascaded system is

(6.1.13)

Sec. 6.1 Lossless transfer matrices 291



A second verification of the fact that (6.1.13) is paraunitary is obtained
by noting that the matrix

(6.1.14)

is unitary. In this example, the building blocks are also causal and FIR
so that HN(z) is lossless.

Figure 6.1-3 A simple, yet fundamental paraunitary system.

A2)

Figure 6.1-4 A cascade of paraunitary building blocks. Rm is the planar
or Givens rotation shown in Fig. 6.1-2(a).

Example 6.1.2: Paraunitary Vectors

The system of Fig. 6.1-5(a) has transfer matrix

(6.1.15)

We have
(6.1.16)

so that e(z) is paraunitary. Next consider the system of Fig. 6.1-5(b)
with transfer matrix

(6.1.17)

We have PT P0 = 1 so that P0 is normalized lossless.

Finally consider the cascade of Fig. 6.1-6. Here the leftmost build-
ing block is as in (6.1.17) and the other building blocks have transfer
functions of the forms (6.1.9) or (6.1.10). Since all the building blocks
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are paraunitary, the cascaded system is paraunitary. It has transfer
matrix
(6.1.18)

This system is essentially a power complementary analysis bank.

Figure 6.1-5 Examples of 2 x 1 paraunitary systems.

Figure 6.1-6 Example of more general 2 x 1 FIR paraunitary system. Each
Rm is as in Figure 6.1-2(a).

Example 6.1.3: More on Paraunitary Filter Banks

Consider the system of Fig. 6.1-7 which is a cascade of two systems with
transfer matrices e(z) and W™* respectively. Note that W represents the
M x M DFT matrix so that W* is unitary. Moreover e(z)e(z) = M so
that e(z) is paraunitary. The overall transfer matrix

(6.1.19)

is thus paraunitary. This implies in particular that ht (ejw)h(ejw) = M2,
so that the set Hk(z) is power complementary. Recall (example 4.1.1)
that HO(z) is lowpass with approximately 13 dB stopband attenuation,
and that the filters Hk(z) form a uniform-DFT analysis bank.

IR lossless systems. One can obtain examples of IR lossless systems
simply by replacing each delay z-1 in the above examples with a stable
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unit-magnitude allpass function Ak(z). For instance, in Example 6.1.1 if the
building block A(z) is replaced with the IIR lossless system

(6.1.20)

we obtain an IR lossless system.

Figure 6.1-7 An M-channel filter bank. This is M x 1 paraunitary.

6.2 FILTER BANK PROPERTIES INDUCED BY PARAUNITARINESS

We now study some consequences of constraining the polyphase matrix E(z)
to be paraunitary. Whenever E(z) is paraunitary, we often express it by
saying that “the analysis filters form a paraunitary set,” or “the analysis
bank is paraunitary”, or “paraunitary QMF bank” (whenever R(z) is also
paraunitary). In the two channel case, we often say "[HO(z),H1(z)] is a
paraunitary pair".

The paraunitary property implies
(6.2.1)

So we choose R(z) as
(6.2.2)

for some ¢ # 0, to satisfy the perfect reconstruction condition (5.6.6). Nei-
ther ¢ nor K is fundamental, but choice of a positive K serves to ensure
that R(z) [hence Fk(z)] is causal. For example, we know from the previous
section that if E(z) is a cascade as in Fig. 6.1-4, and if the matrices Rm
satisfy

(6.2.3)

then E(z) is paraunitary. With E(z) so chosen, we can satisfy (6.2.2) by
taking R(z) to be

(6.2.4)
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where
(6.2.5)

This corresponds to (6.2.2) with ¢ =1 and K = N.
Stability. If the analysis filters (hence E(z)) are stable and IIR, then
the choice (6.2.2) results in unstable filters. This is because the poles of

the (k,m) element of E(z) are reciprocal conjugates of those of Emk(z),
and therefore are outside the unit circle. So R(z) in (6.2.2) is unstable. We
cannot therefore build useful perfect reconstruction systems with IIR lossless
E(z). We therefore restrict attention to the FIR case. (However, see Problem
6.12 where the adjugate of E(z) is used to define R(z), thereby eliminating
stability problems).

6.2.1 Relation Between Analysis and Synthesis Filters

The condition R(z) = cz-KE(z) between the analysis and synthesis banks
implies a very important relation between the analysis and synthesis filters.
This relation enables us to find fk(n) simply by "tipping' and conjugating
the coefficients hk(n). More precisely we will show that the relation R(z) =

cz-KE(z) implies
(6.2.6)

where L = M -1 + MK. For the FIR case this means, in particular, that the
synthesis filters have same length as the analysis filters! In the z-domain,
(6.2.6) is equivalent to

(6.2.7)

that is, Fk(z) is the Hermitian image of Hk(z) (up to scale). To prove this,
just substitute R(z) = cz-KE(z) into (6.1.1) to obtain

(6.2.8)

from which the desired result follows. As the proof shows, the relation (6.2.6)
is induced by (6.2.2), and really has nothing to do with paraunitariness of
E(z). Moreover, it holds whether the filters are FIR or IIR. If Hk(z) are IR
with poles inside the unit circle, then the synthesis filters given by (6.2.7)
have poles outside the unit circle.

Frequency domain implication. Eqg. (6.2.7) implies
(6.2.9)

which means that the magnitude response of Fk(z) is exactly the same as
that of Hk(z) (up to scale).
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Converse of the above property. As mentioned above, the relation
(6.2.6) follows entirely from (6.2.2), and not from paraunitariness. In fact if
(6.2.6) holds for all k, the polyphase matrices are related as in (6.2.2). To
prove this converse, note that (6.2.6) is equivalent to

(6.2.10)
In terms of E(z) and R(z) this becomes
(6.2.11)

This implies (6.2.2) indeed (Problem 6.6).

The following theorem [Vaidyanathan, 1987a] summarizes the crucial re-
lations between paraunitariness, perfect reconstruction, and the condition

(6.2.6).

& Theorem 6.2.1. Consider the maximally decimated QMF bank with
causal FIR analysis filters Hk(z), and let E(z) be the polyphase matrix for
the analysis filters. Consider the following three statements.

1. E(z) is lossless (that is, paraunitary).
2. The synthesis filters are given by fk(n) = ch*k(L — n),0 = k < M - 1,

for some ¢ # 0 and some integer L.

3. The system has perfect reconstruction property.
If any two of these statements are true, then the remaining statement also
holds. o

Proof. (Not very entertaining!) Suppose the first two statements are
true. Paraunitariness implies E(z)E(z) = dI, whereas the second statement

implies R(z) = cz-KE(z) (as proved above). Combining these we arrive at
R(z)E(z) = c0z-m0Ol, implying statement 3.

Next let statements 2 and 3 be true. Statement 2 implies the relation
R(z) = cz-KE(z) whereas statement 3 implies R(z)E(z) = c0z-m0l. Com-
binining these we arrive at E(z)E(z) = dI, that is, E(z) is paraunitary. We
can prove that statements 1 and 3 imply 2 in a similar manner.

6.2.2 Other Properties Induced by Paraunitary E(z)

Power Complementary Property

Consider the vector of analysis filters given by h(z) = E(zM)e(z). Pa-
raunitariness of E(z) implies that E(zM) is paraunitary. Moreover, the delay
chain e(z) is also paraunitary. So, the product h(z) is paraunitary as well.
This in turn implies that the analysis filters Hk(z) are power complementary,
that is,
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With E(z) chosen to be paraunitary, the only choice of synthesis filters Fk(z)
to obtain perfect reconstruction is given by (6.2.6) (use Theorem 6.2.1).
Since this implies (6.2.9), the M synthesis filters are also power complemen-
tary.

The AC Matrix is Paraunitary if, and only if, E(z) is

Recall from Section 5.5 that the alias component (AC) matrix H(z) and
polyphase matrix E(z) are related as

(6.2.12)

where
(6.2.13)

and W is the M <M DFT matrix. By using the facts that WW1 = MI and
D(z)D(z) = I, we conclude that H(z)H(z) = Bl if and only if E(z)E(z) =
M. Summarizing, the AC matrix H(z) is paraunitary if and only E(z) is
paraunitary.

As an application, we can show that if E(z)E(z) = I, then each analysis
filter has unit energy, that is, Ji2zn Hk(ejw) 2dw2m = 1. This is because

E(z)E(z) = I implies H(z)H(z) = MI, that is, in particular,

If we integrate both sides over the range [0,211), each term on the left hand
side yields the same answer. From this we arrive at the desired result.

Another simple application of the above result is this: suppose the
analysis filters are ideal and nonoverlapping, with

Then the AC matrix H(z) is paraunitary (why?). So E(z) is paraunitary as
well.

Relation to M-th band [or Nyquist(M)] filters

From the above property, we obtain a very interesting relation between
paraunitary filter banks and Mth band filters (or Nyquist(M) filters; these
were defined in Sec. 4.6.1): if E(z) is paraunitary, then each analysis filter
Hk(z) is a spectral factor of a (zero-phase) Mth band filter. In other words,
the filter Gk(z) defined as

(6.2.14)
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6.3

is an Mth band filter.
To prove this, recall that the Mth band property is essentially defined
by the property (4.6.6) (for zero phase systems). Thus it is sufficient to prove

(6.2.15)

Since paraunitariness of E(z) implies that of H(z), each column of H(z) is
paraunitary, that is,

(6.2.16)

Using the definition of Gk(z), the desired property (6.2.15) follows.

TWO CHANNEL FIR PARAUNITARY QMF BANKS

In this section we consider the two channel QMF bank (Fig. 5.1-1(a)) in
which the analysis filters are causal and FIR, that is,

(6.3.1)

We know that if the 2 x 2 polyphase matrix E(z) is paraunitary, then all
properties stated in Sec. 6.2 are true. For the two channel case, some
additional properties are satisfied, which we study next.

6.3.1 Further properties

Power Symmetric Property
We know the alias-component (AC) matrix (defined in Sec. 5.4) is given
by
(6.3.2)

From Sec. 6.2.2 we know that paraunitariness of E(z) (i.e., E(z)E(z) = dI)
implies that of H(z), i.e., H(z)H(z) = BIl, where B = 2d. From this we
obtain the three equations

(6.3.3a)
(6.3.3b)
(6.3.3c)
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Using the decimation notation A(z) 12 defined in (4.1.14), we can rewrite
the above three equations as

(6.3.4)
Thus paraunitariness of E(z) is equivalent to (6.3.4). From the first of the

above equations we see that HO(z)HO(z) is a half-band filter (Sec. 4.6.1). In
other words, HO(z) is power symmetric. (This property was defined in Sec.
5.3. The original definition had 3 = 1, but it is convenient to allow arbitrary
B > 0.) Same comment holds for H1(z).

Order of HO(z) is necessarily odd. Assume h0(0O),hO(N) and N are
nonzero (as in any useful design). Then the order N is necessarily odd, that

is, N = 2J + 1. This is because HO(z)HO(z) is a zero-phase half band filter
and has order of the form 4J + 2 (Sec. 4.6.1).

Relation Between the Two Analysis Filters

From Sec. 6.2.2 we already know that the two analysis filters are power
complementary if E(z) is paraunitary. We will show that the analysis filters
are also related as

(6.3.5a)
In other words, in the time domain,
(6.3.5b)

In view of this, we can find h1(n) from h0(n) by inspection. (In practice we
do not lose anything by setting ¢ = 1.)

Derivation of (6.3.5a). If E(z) is paraunitary then the AC matrix

H(z) is paraunitary, so that (6.3.3) holds. Furthermore H(z)H(z) = Bl as
well. From this we obtain three equations similar to (6.3.3), two of which
are

(6.3.6a)
(6.3.6h)

From (6.3.6b) we have
(6.3.6¢)

Equation (6.3.6a) implies that there are no common factors between HO(z)

and H1(z) (since the right hand side is constant). So HO(-z) and H1(-2)
have no common factors either. From (6.3.6c) we therefore conclude that
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H1(z) = cz—LHO(-2z). By substituting this into (6.3.6a) and using (6.3.3a)
we obtain ¢ = 1. By substituting H1(z) = cz-LHO0(-2z) into (6.3.6b), it can
further be verified that L has to be odd.

Frequency domain implication. The relation (6.3.5a) implies that
the two analysis filters are such that

(6.3.7)

So the magnitude response of H1(z) is obtained by shifting that of HO(z) by
1. For the real coefficient case this means that if HO(z) is lowpass then H1(z)
is highpass; both filters have the same ripple sizes, and same transition band
widths.

Example 6.3.1

Let E(z) = I, which is paraunitary. The analysis filters are HO(z) = 1,
and H1(z) = z-1, and can be verified to satisfy all the above properties.
For example, (a) each of these is power symmetric, (b) they are related
as in (6.3.5a) for L = 1, and (c) they form a power complementary pair.
The synthesis filters for perfect reconstruction can be found from (6.2.7),
where ¢ # 0 and L is odd. Choosingc =1and L = 1 we get FO(z) = z-1
and F1(z) = 1.

Example 6.3.2

As a second example let E(z) = which is paraunitary. Then,

HO(z) = 1 + z-1 and H1(z) = 1 — z-1, and again the three properties
listed in the previous example are satisfied. We can find a set of synthesis
filters for perfect reconstruction, by settingc =1 and L = 1 in (6.2.7).
Thus FO(z) =1 + z-1 and F1l(z) = -1 + z-1.

Power Symmetry of HO(z) Implies E(z) is Paraunitary

We now consider the converse of some of the above results. We will
show that, given any power symmetric HO(z), we can always force E(z) to
be paraunitary by defining H1(z) as in (6.3.5a). For this, note that power
symmetry of HO(z) implies that the Oth column of the AC matrix H(z) is

paraunitary. In view of the relation H1(z) = cz-LHO(—z), the 1st column
of H(z) is also paraunitary. By using this relation we can also verify that
the two columns of H(z) are mutually orthogonal, that is,

(6.3.8)

In other words, H(z) satisfies the three properties (6.3.4), that is, we have
H(z)H(z) = BI. This implies that E(z) is paraunitary.
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We summarize all the above results as follows:

& Theorem 6.3.1. Let HO(z) and H1(z) be causal FIR and let E(z)
be the 2 x 2 polyphase matrix of the analysis bank [HO(z), H1(z)]. Then the

following statements are equivalent:
1. HO(z) is power symmetric (i.e., HO(z)HO(z) 12 = 0.5B3,3 > 0), and
H1(z) = cz-LHO(-z) for some ¢ =1 and odd L.
2. E(z)E(z) = 0.5BI, that is, E(z) is paraunitary, (same as 'lossless’ since
E(z2) is causal FIR).
3. H(z) is paraunitary, that is, HO(z) and H1(z) together satisfy (6.3.4).©

Comments. It is also true that, for a given power-symmetric HO(z),
the function H1(z) which forces E(z) to be paraunitary must have the form
(6.3.5a). This follows from the steps of the derivation of (6.3.5a).

Summary of Properties Induced by Paraunitary E(z)

Summarizing, the two-channel causal FIR QMF bank with paraunitary
E(z) has the following properties.

1. HO(z) is power symmetric. This statement is equivalent to any one of
the following:
a) HO(z) is a spectral factor of a half band filter, that is, HO(z)HO(z)
is a half band filter.
b) HO(z)HO(z) 12 = 0.50.
2. H1(z) has all the properties of HO(z). Together they satisfy (6.3.4), that
is, the AC matrix H(z) is paraunitary.
3. H1(z) = cz-LHO(-z) where ¢ = 1, and L is odd.
4. HO(z) and H1(z) form a power complementary pair.
5. HO(z) has odd order N (as long as h0(0O),hO(N) and N are nonzero).

6.3.2 Design of Perfect Reconstruction QMF Bank

The above results place in evidence the following procedure for the design ofa
two channel FIR perfect reconstruction QMF bank: first design a zero-phase
half-band filter H(z) with H(ejw) = 0, by using any standard technique
(Sec. 4.6.1). Then compute a spectral factor HO(z) by using any method
mentioned in Sec. 3.2.5 or Appendix D. This gives one of the analysis filters
HO(z) = =Nn=0 hO(n)z-n (a power-symmetric function), with order N =
2J + 1. Obtain the other analysis filter H1(z) and the two synthesis filters
FO(z) and F1(z) as

(6.3.9a)
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6.4

or, equivalently, in terms of impulse response coefficients as:

(6.3.9b)

This system is identical to the one presented in Section 5.3.6! In this
section we have obtained an independent derivation starting from the pa-
raunitary property. This derivation enables us to generalize the technique
for M channels, as we will see. In addition, it gives rise to lattice structures
which preserve perfect reconstruction in spite of quantization (see below).

Properties of the Above Filter Bank

If the above four filters (6.3.9) are used in the QMF bank of Fig. 5.1-1(a)
then the following are true:

1. There is perfect reconstruction, and x(n) = 0.5Bx(n — N).

2. The analysis filters are power complementary, and furthermore satisfy
the relation Hl(ejw) = HO(-ejw) .

3. The synthesis filters Fk(z) satisfy Fk(ejw) = Hk(ejw), and are also
power compementary.

4. All filters have order N = 2J + 1 which is automatically odd.

5. The polyphase matrix E(z) is paraunitary. Since the synthesis filters
are chosen as in (6.3.9), the polyphase matrix R(z) of the synthesis

bank is given by R(z) = z-JE(z), and is paraunitary as well.

Completeness. It is worth emphasizing that, every filter bank de-
signed according to the design procedure in Sec. 5.3.6 has paraunitary E(z).
Conversely, whenever E(z) is FIR and paraunitary, the four filters in the
QMF bank are such that they can, in principle, be obtained by the above
design procedure (Theorem 6.3.1).

THE TWO CHANNEL PARAUNITARY QMF LATTICE

We now consider the specical case of the above FIR two channel QMF bank,
with real coefficient filters. In this case the paraunitary matrix E(z) has real
coefficients. From Example 6.1.1 we know that a cascaded structure of the
form in Fig. 6.1-4 is paraunitary whenever Rm has the form given in (6.1.9)
(Givens rotations), and A(z) is as in (6.1.10).

It turns out that the above cascade is very general in the sense that every
paraunitary system can be implemented like this! More precisely, we will
show in Sec. 14.3.1 that any 2 x 2 real coefficient (causal, FIR) paraunitary
matrix can be factorized as

(6.4.1)

where a is a positive scalar. To obtain the synthesis bank which would result
in perfect reconstruction, we have to use (6.2.2). Let us choose K = J (so
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that R(z) is causal), and ¢ = 1. We then have

(6.4.2)

where '(z) is as in (6.2.5). Fig. 6.4-1 shows the complete lattice structure
for the QMF bank. This is called the QMF lattice [Vaidyanathan and Hoang,
1988]. The analysis and synthesis filters have order N = 2J + 1.

Figure 6.4-1 The QMF lattice structure. (a) Analysis bank, (b) synthesis bank,
and (c) details of the unitary matrix Rm.
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The Two Multiplier QMF Lattice

In practice a more efficient version of the lattice structure can be used
to implement this system. For this note that the rotation matrix Rm can
be written as

(6.4.3)

if cos6m # 0, and as
(6.4.4)

otherwise. Assume for simplicity of discussion that cos 8m # 0 for any m. We
can then redraw the lattice structure as in Fig. 6.4-2 with S = o(I'lm cos 8m).
Notice that we have also moved the decimators and expanders in accordance
with the noble identities. The quantity S can be expressed directly in terms
of am as

(6.4.5)

Notice that the element *1 in (6.4.2) has been replaced with *—1." The
reason is that, the other choice of sign would be equivalent to replacing z
with —z. This means that H1(z) becomes lowpass and HO(z) highpass. This
does not add generality, as it can also be covered by renumbering the filters.
Also see Problem 6.5.

6.4.1 Properties of the Paraunitary QMF Lattice

Most of the properties of the lattice structure follow immediately from the

fact that E(z) is paraunitary and that R(z) = z-JE(z). These are summa-
rized below, with notations adapted to the real coefficient case.

1. HO(ejw) 2 + Hl(ejw) 2 = 202.

2. H1(z) = =z-NHO0(-z-1), that is, h1(n) = (-1)nhO(N - n), with N =
2+ 1

3. Fk(z) = z-NHk(z-1), that is, fk(n) = hk(N — n) for k = 0,1. So the
synthesis filters have same lengths as the analysis filters.

4. Hl(ejw) = HO(-ejw). Also Fk(ejw) = Hk(ejw) ,k = 0,1.

5. HO(z) is power symmetric, that is, HO(z)HO(z) is a half-band filter.

6. The system satisfies x(n) = a2x(n — N), that is, it is an FIR PR QMF
bank.

Completeness

It is worth emphasizing that every two channel (real-coefficient, FIR)
paraunitary QMF bank can be represented using the above lattice structure.
It is also important to note these points:
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1. Given a real coefficient power symmetric FIR filter HO(z), we can al-
ways define H1(z) = —z-NHO(-z-1), and implement the analysis bank
using the above lattice; the polyphase matrix E(z) is guaranteed to be
paraunitary.

2. Any system designed as in Sec. 5.3.6 (by spectral factorization of a
half-band filter) can be represented using the above lattice structure.

Hierarchical Property

Figure 6.4-3(a) is a redrawing of the analysis bank of Fig. 6.4-2(a),
with decimators moved to the right for convenience of discussion. Suppose
we eliminate the Jth stage, that is, just delete the lattice section which has
the multiplier aJ, along with its delay element. We now have a new system
with analysis and synthesis filters of reduced order N — 2. The polyphase
matrix for the analysis filter is still paraunitary. Similar comment holds for
the synthesis bank. So the reduced system is a perfect reconstruction system
and satisfies all the properties listed above, with N replaced by N — 2.

So if we “cut” the lattice structure after m stages, we still have a FIR
PR QMF bank with filters of order 2m + 1. In practice the only thing that
happens as m increases is that the filters HO(z) and H1(z) have better and
better attenuation characteristics (i.e., sharper cutoff and higher attenua-
tion). Referring to Fig. 6.4-3(b), the analysis filters for the m-stage lattice
are given by

(6.4.6)

Figure 6.4-3 (a) The analysis bank of the QMF lattice, and (b) schematic for
the m-th stage.
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So the new lowpass filter HO(m)(z) (order 2m+1) is obtained from the old
lowpass filter HO(m-1)(z) (order 2m—1) by adding a “correction” proportional

to am. The same holds for the highpass filter Hi(m)(z). Summarizing, the
lattice structure represents a whole sequence of perfect reconstruction pairs

[HO(m)(z),H1(m)(z)] with improved frequency responses as m grows. (How-
ever, given a lattice structure with good frequency responses, if we delete
the rightmost section, the resulting responses are not necessarily good, even
though the perfect reconstruction conditions are preserved.)

Such a hierarchical property is not possible if we implement the filters
HO0(z),H1(z),F0(z),F1(z) using a direct-form structure. For example, if we
merely replace the highest impulse response coefficient hO(N) with zero [and
adjust the remaining filters to satisfy (6.3.9b)], the result is not a perfect
reconstruction system.

Robustness to Coefficient Quantization

Suppose that we implement the lattice using finite precision arithmetic.
So the coefficients am have to be quantized to some value Q[am]. Now the
matrix

(6.4.7)

remains unitary, that is, QmQm = cll,cl > 0. So the cascaded lattice
structures for E(z) and R(z) remain paraunitary, and all six properties in the
preceding list continue to hold including (a) the power symmetric property
of HO(z) and (b) the perfect reconstruction property of the QMF bank.

Such robustness to quantization is however not offered by the direct-
form implementation of the filters. Direct quantization of the coefficients
hO(n) [with other filters re-adjusted to satisfy (6.3.9b)] results in loss of
power symmetric property of HO(z), which is crucial to perfect reconstruc-
tion. Properties 2-4 in the preceding list are retained by the direct form
under quantization, but these are only of secondary importance.

6.4.2 Calculating Lattice Coefficients from the Impulse Response

Suppose the power symmetric filter HO(z) has been designed somehow, say
as in Sec. 6.3.2. We can now define hl(n) as in (6.3.9b) and write down
E(z). From Theorem 6.3.1 we know that E(z) is paraunitary. So we are
assured of the existence of a lattice structure as in Fig. 6.4-2(a) for the
analysis bank (as we show in Sec. 14.3.1).

One can find the coefficients am by inverting the recursion (6.4.6) to
obtain

(6.4.8)
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We initialize this recursion by setting HO())(z) = HO(z) and H1(J)(z) = H1(z2).
The coefficient am is chosen so that the highest power of z-1 in HO(m)(z) —
amH1(m)(z) is canceled. The fact that the lattice exists in this case assures

the following things: (a) the next highest power of z-1 is also canceled (so
that the order is reduced by two), and (b) the coefficients of z0 and z-1 in

amHOm)(z) + H1(m)(z) are reduced to zero so that Him-1)(z) in (6.4.8) is
indeed causal. Problem 6.7 develops a direct proof that the recursion (6.4.8)
works for any power symmetric filter HO(z).

Table 6.4.1 shows the lattice coefficients calculated in this manner for
Design example 5.3.2 presented earlier. Notice that am gets smaller and
smaller as m gets large. Also note that the sign of am alternates. This alter-
nation property is consistently observed in all good designs with minimum
phase HO(z), but has not yet been theoretically explained!

TABLE 6.4.1 Lattice coefficients
for the perfect reconstruction anal-
ysis bank example

m am

-0.2588883 e+01
0.8410785 e+00
-0.4787637 e+00
0.3148984 e+00
-0.2179341 e+00
0.1522899 e+00
-0.1046526 e+00
0.6906427 e-01
-0.4258295 e-01
0.3111448 e-01

O© 0O N O ol h W N — O

Numerical Accuracy

The lattice structure of the above form exists only if HO(z) is the spec-
tral factor of a half-band filter. In practice, due to numerical errors (e.g.,
accuracy of spectral factorization, degree of quantization of h0(n) etc), this
property does not hold. So the lattice generated by the above recursion rep-
resents HO(z) only approximately. The numerical accuracy can be improved
considerably as follows: since [HO(z), H1(z)] is a power complementary pair,
we can synthesize a paraunitary lattice as shown later in Fig 14.3-3. And
since HO(z) is almost power symmetric, the even numbered coefficients sat-
isfy cm = 1 and sm = 0 (why?). If we replace these with cm = 1 and sm = 0,
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then the resulting structure resembles Fig. 6.4-1(a) (and can then be denor-
malized as in Fig. 6.4-2(a)). In our experience, this lattice represents HO(z)
more accurately than the lattice obtained by direct use of (6.4.8).

6.4.3 Direct Design Technique Based on Lattice

Since the lattice guarantees perfect reconstruction regardless of values of am,
we can use it to design the transfer function HO(z). Thus, we optimize am
in order to minimize

(6.4.9)

which is proportional to the stopband energy of HO(z). The remaining three
filters are completely determined by HO(z) because of (6.3.9b). We do not
have to worry about the passband of HO(z) because the power symmetric
property, which is guaranteed by the structure, ensures that the passband is

good.

There are many standard optimization programs which can be used to
minimize a specified nonnegative function of several parameters [Press, et
al., 1989]. These programs require the designer to supply a routine which
can calculate the objective function ¢ for a given set of coefficients am. The
first step in this calculation would be to compute the coefficients of HO(z)
using the recursion (6.4.6). The recursion is initialized with

After J steps we get HO() which is the desired HO(z). The quantity ¢ can
now be written as

(6.4.10)
where r(k) is the autocorrelation of hO(n), that is,

(6.4.11)
We interchange the summation with the integral to rewrite (6.4.10) as

(6.4.12)
So for a given set of am, we can evaluate the objective function ¢ without

having to perform numerical integration. Standard optimization techniques
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[Press, et al., 1989] can now be employed to minimize ¢ with respect to the
coefficients am. The resulting HO(z) is a power symmetric FIR filter with
smallest possible stopband energy. Note that in this design procedure no
computation of spectral factors is required.

TABLE 6.4.2 Design example 6.4.1.
Optimized lattice coefficients for the per-
fect reconstruction analysis bank

m
0 -0.3836487 e+0l
1 0.1247866 e+0l1
2 -0.7220668 e+00
3 0.4951553 e+00
4 -0.3688423 e+00
5 0.2885146 e+00
6 -0.2327588 e+00
7 0.1913137 e+00
8 -0.1598938 e+00
9 0.1348106 e+00
10 -0.1140321 e+00
11 0.9681786 e-01
12 -0.8223478 e-01
13 0.6963367 e-01
14 -0.5867790 e-01
15 0.4913793 e-01
16 -0.4081778 e-01
17 0.3353566 e-01
18 -0.2713113 e-01
19 0.2149517 e-0l
20 -0.1658255 e-01
21 0.1238607 e-01
22 -0.8895189 e-02
23 0.6072120 e-02

Design example 6.4.1. Perfect Reconstruction QMF Lattice

In order to demonstrate the above ideas, consider a lattice structure
with 24 sections (J = 23) so that the filters have order N = 2J + 1 = 47.
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Let the stopband edge be at wS = 0.54m. Table 6.4.2 shows the coefficients
am, optimized in order to minimize the stopband energy (6.4.12). Notice
that am| gets smaller as m grows, and that the sign of am alternates. The
impulse response h0(n) can be calculated from am by using (6.4.6). Figure
6.4-4(a) shows the analysis filter responses, which have a minimum stopband
attenuation of 32 dB.

Figure 6.4-4(b) shows plots of HO(ejw) 2 + Hl(ejw) 2 (which is twice
the amplitude distortion, that is, 2 T(ejw) ), with quantized coefficients. For
this example, the quantization was done by rounding the mantissa part to
two decimal digits. For example, in Table 6.4.2, a20 was replaced with [-0.17
e—01]. The solid curve is for the direct form implementation of the analysis
and synthesis filters, whereas the broken curve is for the lattice structure.
This demonstrates the perfect reconstruction property of the lattice inspite
of coefficient quantization. The only effect of quantization in the lattice
structure is a deterioration of the attenuation characteristics of the filters,
as demonstrated in Fig. 6.4-4(c).

Figure 6.4-4(d) shows the response of another analysis bank designed
using the same technique. The lattice has J = 31 (i.e., 32 sections) so that
the filter order is N = 63. The value wS = 0.58m was used in the opti-
mization. The minimum stopband attenuation of the resulting system is 74
dB. This example demonstrates that we can design perfect reconstruction
systems with very large attenuation. If this filter were designed by starting
from a half-band filter H(z) (as in Design example 5.3.2), the required at-
tenuation would be 148 dB. Finding a spectral factor of such a half-band
filter is subject to severe numerical errors, and the resulting analysis filter
will not satisfy the PR condition. The lattice structure on the other hand
avoids these steps, and provides the designer with filter coefficients which
are guaranteed to have the PR property. The lattice coefficients for this
and many other designs can be found in Vaidyanathan and Hoang [1988]; in
this reference, the above two designs have been numbered as 48E and 64D,
respectively.

6.4.4 Complexity of the Paraunitary QMF Lattice

The total number of multipliers required to implement the lattice sections
in the analysis bank is equal to 2(J + 1) + 2. Each of these operates at half
the input sampling rate so that we have an average of J + 2 MPUs, which
simplifies to 0.5(N + 3) for the analysis bank. With each lattice section
requiring two additions, the number of APUs can be verified to be 0.5(N + 1).
The synthesis bank has same complexity. So the lattice structure is much
more efficient, requiring half as many MPUs as the direct form. For a given
filter order N, the lattice has nearly the same complexity as the polyphase
implementation of Johnston’s QMF bank (Sec. 5.2.2).

For a given set of specifications (e.g., stopband attenuation, transition
bandwidth etc.) Johnston’s filters may have higher or lower order (as com-
pared to the above perfect reconstruction system) depending on the accept-
able level of amplitude distortion. See Sec. 6.7.2 for more comparisons.
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Figure 6.4-4 Design example 6.4.1. (a) Magnitude responses of analysis filters,
(b) amplitude distortion after quantization, and (c) response of HO(z) after lattice
quantization.

312 Chap. 6. Paraunitary perfect reconstruction filter banks



Figure 6.4-4 (continued) (d) Another example of lattice-optimized H0(z).

6.4.5 Summary of Advantages of the QMF Lattice

1.

The lattice has the lowest implementation complexity (in terms of MPUs
and APUs) among all known (real coefficient FIR PR QMF) structures
with paraunitary E(z).

All six properties listed at the beginning of Sec. 6.4.1 are retained in
spite of the values of coefficients am.

In particular, perfect reconstruction property is preserved inspite of
coefficient quantization.

Moreover the lattice can be used as a design tool. We can optimize the
lattice coefficients to minimize the stopband energy. This method has
the advantages that (a) there is no need to compute spectral factors
of high order half-band filters, (b) the resulting filter HO(z) is auto-
matically power symmetric with smallest stopband energy, and (c) the
resulting filter bank is guaranteed to have perfect reconstruction regard-
less of the quality of convergence of optimization.

In fact, if we want the power symmetric filter HO(z) to have minimum
energy (rather than equiripple as in Design example 5.3.2), then there
is no other known technique to design it, other than optimization of the
above lattice.

Hierarchical property. If we delete an arbitrary number of lattice sec-
tions, the resulting structure still satisfies all the six properties listed
earlier, including perfect reconstruction. Thus, as we add more stages
to the lattice, the frequency responses of Hk(z) improve, while retaining
perfect reconstruction property.
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6.5

For an arbitrary FIR filter HO(z) of order N, it is possible for all the
N zeros to be on the unit circle. However, if HO(z) is power-symmetric,
then the maximum number (nmax) of zeros on the unit circle is restricted.
The number nmax can be easily found. For example, if N = 47 (as in
Design example 6.4.1), then nmax = 24. See Appendix A of Vaidyanathan
and Hoang [1988] for details. From the plot of Fig. 6.4-4(a) we see that
there are indeed 24 zeros on the unit circle (as there are twelve in the range
0 < w < m). Experience shows that, in all the examples obtained by lattice
optimization, the filter HO(z) has this maximum permissible number (nmax)
of zeros on the unit circle. The same is true if HO(z) is generated as a
spectral factor of a optimal equiripple half band filter.

M-CHANNEL FIR PARAUNITARY FILTER BANKS

We now consider the case of M-channel filter banks. If the analysis filters
Hk(z) are constrained to be FIR with paraunitary E(z), then the choice of
synthesis filters as in (6.2.7) results in perfect reconstruction. In this section
we outline some methods for finding the analysis filter coefficients hk(n), so
that they have good bandpass responses, under the constraint that E(z) be
paraunitary.

6.5.1 The Basic Optimization Problem

In Chap. 14 we will develop several systematic techniques for representing
(or implementing) paraunitary systems in terms of simple budding blocks.
in this section, we state and use one of these results.

A Characterization of Paraunitary Matrices
Consider the transfer matrix

(6.5.1)

where vm are column vectors (size M x 1), with unit norm, that is, vimvm =
1. Using this unit norm property, it is easy to verify that Vm(z)Vm(z) = |
so that Vm(z) is paraunitary. This matrix can be implemented as in Fig.

6.5-1 using one delay, and therefore has degree equal to one. t
It can be shown that any causal degree-J FIR paraunitary E(z) can be

expressed as
(6.5.2)

where Vm(z) are paraunitary systems as above, and U is a constant unitary

matrix, that is, UtU = dl. This factorization result [Vaidyanathan, et al.,
1989] will be proved in Sec. 14.4.2. Fig. 6.5-2 shows the cascaded structure

t The degree of a transfer matrix is the minimum number of delays re-
quired to implement it.
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corresponding to this. We will also show (Sec. 14.6.2) that any constant
unitary matrix U can be expressed as

(6.5.3)

where D is a diagonal matrix with diagonal elements Dii = ej0i, and

(6.5.4)

Here ui are unit-norm column vectors. Matrices of the form (6.5.4) are

unitary with UtUi = I, and are called Householder matrices. Fig. 6.5-3
shows a structure implementing the building block Ui.

Figure 6.5-1 Implementation of paraunitary VVm(z) using one delay.

Figure 6.5-2 Factorization of paraunitary E(z). Building blocks are as in Fig.
6.5-1.

Figure 6.5-3  Cascaded structure for unitary U with Householder building
blocks.
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These representations hold whether the coefficients of E(z) (i.e., co-
efficients of analysis filters) are real or complex. For the important real
coefficient case, the vectors vk and ui are real.

Optimization of the Coefficients vm and ui

It now remains only to optimize the components of vm and ui such
that the responses Hk(ejw) represent ‘good' filters. For this we formulate
an objective function ¢ as in the two channel case, representing the attenu-
ation characteristics of the filters. We optimize vm and ui using nonlinear
optimization techniques (e.g., see [Press, et al, 1989]), so as to minimize @.
The resulting vectors vm and ui completely determine E(z), thereby de-
termining all the analysis filters Hk(z). The synthesis filters are then found
from (6.2.7), resulting in a perfect reconstruction system.

Completeness. The characterization (6.5.2) is complete in the sense
that all (causal FIR) paraunitary E(z) of degree J are covered. Moreover,
the matrix E(z) is guaranteed to be paraunitary regardless of the values of
the quantities vm and ui as long as they have unit-norm. As a result, the
filter-bank system is guaranteed to have the perfect reconstruction property
regardless of the values of these unit norm vectors, as long as the synthesis
filters are chosen as in (6.2.7). So when the vectors vm and ui are being
optimized, we are searching precisely over the complete class of FIR filter
banks with paraunitary E(z).

Objective Function to be Minimized

For simplicity assume that the filters have real coefficients, so that
Hk(ejw) is an even function of w. (Extension to complex coefficient case
is easy.) Figure 6.5-4 demonstrates for M = 3, a typical set of desired mag-
nitude responses for the analysis filters. The passbands of the filters are
nonoverlapping. In the frequency region designated as “passband” for the
filter Hk(z), all other filters have their stopbands.

The paraunitary property of E(z) ensures that the analysis filters are
power complementary (Sec. 6.2.2), that is, satisfy (6.1.8). Consequently, if
the stopband responses are sufficiently small, then the passband responses
of Hk(ejw) are sufficiently close to unity (assuming ¢ = 1 in (6.1.8) for
simplicity). This means that, if we minimize an objective function ¢ which
reflects the stopband energies of Hk(ejw), then the passbands of all the
filters will automatically be “good”. Based on this logic we conclude that it
is sufficient to formulate an objective function of the form

(6.5.5)

Minimizing ¢ (by optimization of the parameters ui and vm) results in filters

which have good stopbands as well as passbands.
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Design example 6.5.1

Figure 6.5-5 shows the magnitude responses of the analysis filters for a
three channel system designed in this manner. This is obtained by minimiz-

ing

(6.5.6)

The impulse responses of the optimized analysis filters hk(n) are given in
Table 6.5.1, with filter order N = 14. The coefficients of the synthesis filters
for perfect reconstruction are given by fk(n) = hk(14-n). Notice that about
20 dB stopband attenuation has been obtained for each filter.

Figure 6.5-4 Typical magnitude responses for an analysis bank with M = 3.

Figure 6.5-5 Design example 6.5.1. Magnitude responses of optimized analysis
filters for a 3 channel FIR perfect reconstruction system. Filter order N = 14.
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TABLE 6.5.1 Design example 6.5.1. The optimized filter
coefficients for the FIR perfect reconstruction analysis bank.
Here N = 14 and M = 3.

n ho(n) h1(n) h2(n)
0 -0.0429753 -0.0927704 0.0429888
1 0.0000139 0.0000008 -0.0000139
2 0.1489104 0.0087654 -0.1489217
3 0.2971954 0.0000226 0.2972354
4 0.3537539 0.1864025 -0.3537496
5 0.2672266 -0.0000020 0.2672007
6 0.0870758 -0.3543303 -0.0870508
7 -0.0521155 -0.0000363 -0.0520909
8 -0.0875973 0.3564594 0.0875756
9 -0.0427096 -0.0000049 -0.0427067
10 0.0474530 -0.1931082 -0.0474452
11 0.0429618 0.0000230 0.0429677
12 0.0 0.0 0.0
13 -0.0232765 -0.0000026 -0.0232749
14 0.0000022 0.0 0.0000022

6.5.2 Incorporation of Symmetry

In most practical designs the response MM-1-k(ejw) can be taken to be
the image of Hk(ejw) with respect to /2, that is,

(6.5.7)

This is demonstrated in Fig. 6.5-6 for M = 5. (We assume the filter coef-
ficients to be real so that the magnitude responses are automatically sym-
metric with respect to 1t.) Indeed, in Design example 6.5.1 the responses
HO(ejw) and H2(ejw) do satisfy this property approximately, (and more-
over Hl(ejw) is self-symmetric with respect to &2) because the stopband
regions [regions of integration in (6.5.6)] were chosen with such symmetry.

This opens up an idea. Suppose we modify the polyphase structure
such that the symmetric constraint is built into the structure. Because of
this constraint, the number of degrees of freedom (i.e., vm's) will be reduced
by almost a factor of 2, which reduces the number of parameters to be
optimized for a given filter order. This in turn will result in drastic reduction
of optimization time [Nguyen and Vaidyanathan, 1988].
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For the three channel real coefficient case, we can incorporate the sym-
metry condition (6.5.7) by the constraint

(6.5.8)
[This is not the only way to achieve (6.5.7), but it works.] In particular H1(z)
is constrained to be a function of z2. These imply H2(ejw) = |HO(ej(T-w))|

and Hl(ejw) = HIl(ej(m-w)), so that (6.5.7) is satisfied. Notice from Table
6.5.1 that the filter coefficients of the previous design example almost sat-
isfy (6.5.8)! It will, therefore, be judicious to force this symmetry prior to

optimization.
Figure 6.5-7 shows a structure for imposing (6.5.8). Here the transfer

functions are given by
(6.5.9)

Figure 6.5-6 Demonstrating the symmetry of responses with respect to w2.

Figure 6.5-7 The three-channel analysis bank, with Hk(z) = H2-k(-z).

Retaining the Perfect Reconstruction Property
It only remains to ‘worry about' the perfect reconstruction property of
this modified structure. Note that the analysis bank can be written as

(6.5.10)
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The real matrix A is unitary, with ATA = 21. So if we force E'(z) to be
paraunitary in the usual way, and choose the synthesis bank as in Fig. 6.5-
8, then the complete analysis/synthesis system is equivalent to Fig. 6.5-9.
This, indeed, is a perfect reconstruction system, since the integers 2 and 3
are relatively prime (see Fig. 5.6.3 and associated comments). The synthesis
filter vector is given by

(6.5.11)

from which we verify that the relation
(6.5.12)

holds for appropriate c0 and L.

Figure 6.5-8 The synthesis bank corresponding to Fig. 6.5-7. This results in a
perfect reconstruction system when E'(z) is paraunitary. (See text.)

Figure 6.5-9 The analysis bank of Fig. 6.5-7 followed by the synthesis bank of
Fig. 6.5-8 is equivalent to the above structure when E'(z) is paraunitary. Here ¢
is a nonzero constant, and a = integer.

Paraunitariness of E(z). Notice that the polyphase component ma-
trix E(z) is not the same as E'(z). In the above design problem, it is not
necessary to know what E(z) is, as it does not directly enter the optimiza-
tion. It turns out, however, that E(z) is paraunitary. [This follows from
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Theorem 6.2.1 because the system under consideration is a perfect recon-
struction system satisfying (6.5.12)].

An extension of this idea for arbitrary M is possible [Nguyen and
Vaidyanathan, 1988]. The details depend on whether M is even or odd.
Figure 6.5-10 shows the structure for odd M (of which Fig. 6.5-7 is a special
case), which forces the condition

(6.5.13)

and hence (6.5.7). Here A is a generalization of the matrix A in (6.5.10).
For example, with M = 5, we have

(6.5.14)

Clearly A is unitary with ATA = 21. If E'(z) is constrained to be parau-
nitary, we have to choose the synthesis filters as fk(n) = cOhk(L — n) for
perfect reconstruction. Notice that for a given filter order N, the number
of parameters which enter the optimization problem is nearly halved, when
compared with the direct approach [which uses E(zM) rather than E'(z2M)].

Figure 6.5-10 Extension of the symmetric analysis bank for arbitrary odd M.

Design example 6.5.2

Figure 6.5-11 shows the frequency response of an FIR perfect reconstruc-
tion system designed in the above manner, using an optimization program
from [IMSL, 1987]. The analysis filters have order < 55, and the impulse
response coefficients can be found in Table | of Vaidyanathan, et al. [1989].

In order for the optimization to converge to an acceptable solution in
reasonable time, it is very important to ‘initialize’ the unknown parameters
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6.6

in ajudicious way. This initialization can be done by designing approximate
reconstruction systems (called pseudo QMF designs, Sec. 8.1). In Sec. 8.5
we return to a more systematic design procedure (cosine modulated perfect
reconstruction systems), and provide further details.

Figure 6.5-11 Design example 6.5-2. Magnitude responses of analysis filters for
a three channel FIR perfect reconstruction system. Analysis filters are related as
in (6.5.8), and filter order N = 55. (© Adopted from 1989 IEEE.)

TRANSFORM CODING AND THE “LOT”

Before the introduction of FIR QMF banks with paraunitary E(z), some
authors have independently reported other techniques for perfect recovery
systems, which work for the case where the filter order is N = 2M— 1. One of
these is the lapped orthogonal transform (LOT) studied in Cassereau [1985],
Malvar and Staelin [1989], and Malvar [1990a]. The second is a special case
(introduced in [Princen and Bradley, 1986]) of the pseudo QMF bank to be
discussed in Chap. 8. The polyphase matrices in these methods have the
form E(z) = e0 + elz-1 so that the analysis filters have order N = 2M — 1.

It was observed in Vetterli and Le Gall [1989] that the above two systems
have paraunitary E(z), thereby offering a very simple explanation of the
perfect reconstruction property. We now elaborate this point.

6.6.1 Review of Transform Coding

In the area of waveform quantization and coding, there exists a popular tech-
nique called transform coding [Jayant and Noll, 1984]. In this technique, a
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signal x(n) is divided into blocks of length M, and each block transformed
into a new block of length M by a linear (nonsingular) transformation T.
This can be schematically represented as in Fig. 6.6-1, using multirate no-
tation. Let us denote a block of length M as

(6.6.1)
Then the transformed block is obtained as
(6.6.2)

Notice that successive blocks of input do not overlap, that is, x(n) and
x(n + 1) do not have overlapping samples. If we take T = W¥*, the above
system becomes the familiar uniform-DFT bank.

Figure 6.6-1 The transform-coder/decoder schematic.

The components of the transformed data y(n) are typically quantized
and transmitted. With y(n) denoting the quantized y(n), the reconstructed
signal is obtained by using the inverse transformation T-1, and unblocking
the resulting vector x(n) by use of expanders and delay chain as shown in
the figure. In the absence of quantization of y(n), the system has the perfect
reconstruction property, i.e., X(n) = x(n — M + 1).

The aim is to quantize the components of y(n) in such a way that
the quantization error in the reconstructed signal x(n) is minimized. In

practically all applications, the transformation matrix T satisfies TTT =
I (orthogonal transform coding). Under this condition, and with suitable
statistical assumptions one can solve for the best set of quantizers, resulting
in the so called optimal bit-allocation schemes (Appendix C).

The main advantage of transform coding is that, an appropriate choice
of T results in reduced number of bits per second, after quantization. (The
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extent of this reduction is quantitatively measured by the so-called coding

gain. t A related problem in transform coding is the choice of best unitary
T. This has been solved for the case of wide sense stationary x(n): the
best T is the one whose rows are equal to the eigenvectors of the M x M
autocorrelation matrix E[x(n)xt(n)]. This T is called the Karhunen-Loeve
Transform (KLT) (see Appendix C for details).

A commonly observed disadvantage of transform coding is the blocking
effect, caused by the encoding of x(n) block-by-block without overlap. In im-
age coding, this manifests in the form of visible discontinuities across block
boundaries; in speech coding it is perceived as extraneous tones. Elegant
techniques for reducing the blocking effect have been proposed based on the
so-called lapped orthogonal transforms (LOT) [Cassereau, 1985], [Malvar
and Staelin, 1989]. We shall now define the LOT in the framework of multi-
rate systems, and observe that it is a filter bank with paraunitary polyphase
matrix E(z).

6.6.2 Transforms with Overlap

Figure 6.6-2(a) shows a modification of the transform coder, where the matix
T is M x L rather than M x M, with L = M. This means that the input is
partitioned into overlapping blocks

of length L, and each block transformed into a block of (smaller) length M.
Fig. 6.6-2(b) demonstrates this overlap for L = 5,M = 3. The existence
of overlap between blocks has been shown to reduce the 'blocking effect' in
speech and image processing.

The 'inverse' transform operation is also indicated in the figure (where
Q has to be chosen appropriately; see below). Note that the process of
obtaining y(n) from x(n) is equivalent to the use of an analysis bank, with
the analysis filter vector h(z) [egn. (5.4.1)] given by

(6.6.3)

with el(z) = [1 z-1 ... z-(L-1)]T. In all known applications we have
L < 2M. We shall let L = 2M, (with the provision that some columns of T
are allowed to be zero, permitting the L < 2M case). Evidently the analysis
filters have lengths < 2M. By partitioning T as

(6.6.4)

t Notice the similarity of this philosophy to subband coding. We can
think of subband coding as a generalization of this transform coding idea,
with T replaced by E(z) [Fig. 5.5-3(b)].
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where T0 and T1 are M x M, we can write

(6.6.5)

where e(z) is the delay chain vector [1 z-1 ... z-(M-1)]T. By com-
paring with (5.5.2b), we see that the analysis bank has M x M polyphase

component matrix
(6.6.6)

Figure 6.6-2 (a) The transform-coder/decoder with successive blocks overlap-
ping. For appropriate choice of T, this leads to the Lapped Orthogonal Transform
(LOT) technique. (b) Demonstration of overlap, with L =5 and M = 3.

We know that if E(z) is paraunitary, we can obtain perfect reconstruc-
tion (in absence of quantization) by taking the synthesis filters to be

Paraunitariness of E(z) implies E(z)E(z) = cl. In terms of T0 and T! this
simplifies to
(6.6.7)

Sec. 6.6 Transform coding and the LOT 325



6.7

and
(6.6.8)

After making appropriate notational changes, we find that these are precisely
the conditions (4) and (5) given by Malvar and Staelin, [1989]. So the LOT
structure is a subclass of filter banks with paraunitary E(z), with analysis
filter length = 2M.

We know that the above choice of fk(n), which results in perfect recon-

struction, corresponds to the choice R(z) = z-1E(z) [Fig. 5.5-3(b)]. This
in turn helps us to identify the matrix Q in Fig. 6.6-2(a) (Problem 6.17).

The LOT has been extended by Malvar to obtain the extended LOT
(abbreviated ELT). This system, again, is a paraunitary filter bank with
some additional structure on the filters, namely the cosine modulation prop-
erty. We will return to this in Sec. 8.5.

SUMMARY, COMPARISONS, AND TABLES

In this and the previous chapters several types of filter banks have been
presented. In Chap. 5 a number of techniques for the design of two-channel
QMF bank were studied, and the general theory of M-channel maximally
decimated filter banks was developed. In Tables 5.10.1-5.10.4 we already
summarized these results.

In this chapter we have concentrated on filter banks with paraunitary
polyphase matrix E(z). The main points are summarized in Table 6.7.1. Spe-
cial properties of two-channel paraunitary filter banks were studied in Sec.
6.3, and various results summarized at appropriate places in that section. In
Sec. 6.4 we presented a lattice structure for these systems. This structure
is such that, perfect reconstruction (PR) is preserved inspite of multiplier
quantization.

6.7.1 Venn Diagram for Perfect Reconstruction Systems

Paraunitariness of E(z) is not a necessary condition for obtaining the PR
property in FIR QMF systems. From Chap. 5 we know that (5.6.10) is
really necessary and sufficient. Indeed, in Chap. 7 we will show for the two
channel case, that if the analysis filters are required to have linear phase, it
iS necessary to give up the paraunitary property.

In Fig. 6.7-1 we show a Venn diagram which summarizes various possi-
bilities with FIR E(z). Set 2 here is the set of E(z) for which the determinant
is a strictly minimum phase polynomial, that is, has all zeros inside the unit
circle (except possibly some zeros at z = oo, as in the function z-1). In this
case if we take R(z) = E-1(z), we obtain perfect reconstruction with stable
synthesis filters. But the synthesis filters are IIR, and typically have very
high order (for large M). Set 3 is further constrained by the requirement
that the determinant of E(z) be a delay. In this case the synthesis filters are
also FIR but still can have very high order for large M. Set 4 represents
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TABLE 6.7.1 Perfect reconstruction filter banks with paraunitary E(z)

Any M-channel QMF bank (Fig. 5.4-1) can always be redrawn as shown

in Fig. 5.5-3(a), where E(z) and R(z) are the polyphase component matrices
of the analysis and synthesis banks.

1.

We say that E(z) is paraunitary if E(z)E(z) = dI for some d > 0. Ifin
addition E(z) is causal and stable (as we assume in following summary),
we say that it is lossless. We use 'lossless' and ‘paraunitary' interchange-
ably whenever causality and stability are clear from context.

Paraunitariness of E(z) is not necessary for perfect reconstruction. If

E(z) is paraunitary, the choice R(z) = cz-KE(z) results in perfect
reconstruction. Assuming E(z) is FIR, this choice of R(z) is also FIR
and results in causal synthesis filters Fk(z) for proper choice of K.

. The condition R(z) = cz-KE(z) is equivalent to

with L = MK + M — 1. That is, coefficients of Fk(z) are essentially
obtained by writing the coefficients of Hk(z) in reverse order and con-
jugating; c is just a scale factor.) This choice of Fk(z) also implies
Fk(ejw) = cHk(ejw) .

if E(z) is FIR and paraunitary, we obtain perfect reconstruction by
choosing the synthesis filters as above, i.e., fk(n) = ch*k(L - n). See
Theorem 6.2.1 for further complete summary.

Factorization. An FIR paraunitary system E(z) of degree J can al-
ways be factorized as in (6.5.2), in terms of unit norm vectors vm and
ui (see (6.5.1)-(6.5.4)). Conversely, (6.5.2) always represents a parau-
nitary system as long as vm and ui have unit norm. The vectors vm
and ui can be optimized to obtain good analysis filters Hk(z) for perfect
reconstruction.

Paraunitariness of E(z) induces further properties (Section 6.2.2).
b) The analysis filters are power complementary: =Ml Hk(ejw) 2 =
nonzero constant.
¢) The function Hk(z)Hk(z) is an Mth band (Nyquist(M)) filter.

d) The alias component matrix H(z) is paraunitary. In fact H(z)
is paraunitary if and only if E(z) is paraunitary because of the
relation (6.2.12).

Results on two-channel paraunitary QMF banks.

These were derived in Sections 6.3 and 6.4, and the main results are

summarized at appropriate places in these sections.
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E(z) of the form

(6.7.1)

where Rm are nonsingular (not necessarily unitary) matrices, and A(z) is a
diagonal matrix of delay elements [e.g., as in (6.1.10)]. This is a convenient
subset of all matrices satisfing [det E(z)] = delay.

Finally set 5 is the paraunitary set, and has many advantages explained
in this chapter. These advantages are summarized below, and hold for two-
as well as M-channel cases.

Figure 6.7-1 Summary of various ways to force the perfect reconstruction
property in FIR QMF banks.

Advantages of Paraunitary E(z) in FIR Filter Banks

1. No matrix inversions are involved in the design.

2. The synthesis filters are FIR, have the same length as the analysis filters,
and can be obtained by time-reversal and conjugation of the analysis
filter coefficients.
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3. If the paraunitary matrix E(z) is implemented as a cascaded structure
(Fig. 6.5-2), the perfect reconstruction property can be retained in spite
of multiplier quantization. For the two-channel case, this was justified
in Sec. 6.4.1. For the M channel case, see Sec. 14.11.2.

4. The cascaded paraunitary structure also ensures that the computational
complexity (for implementing the analysis bank) is low. This was justi-
fied in Sec. 6.4.4 for the two channel case. For the M channel case, see
below.

5. The objective function to be optimized during design is simple, and
does not have to explicitly include passband error. (It is implicitly there
because of power complementary property of analysis filters, induced by
paraunitariness of E(z).)

6. Filter banks with paraunitary E(z) can be used to generate an orthonor-
mal basis for the so-called wavelet transforms. See Chap. 11.

6.7.2 Complexity comparisions

For each of the methods studied in this and the previous chapters, we also
presented design examples, and counted the number of multiplications and
additions per unit time (MPU and APU). Table 6.7.2 gives a summary of
the major features of various two-channel QMF banks, along with compu-
tational complexities. Table 6.7.3 provides a comparison for a chosen set of
specifications for the response of HO(z). It is clear that the perfect recon-
struction QMF bank implemented with lattice structures (Method 2) is quite
competetive with the approximate reconstruction systems (Method 1). Fi-
nally Table 6.7.4 compares the FIR PR lattice with the IR power-symmetric
method (Sec. 5.3). The IIR system has the lowest complexity among all the
methods with given specifications on HO(z).

Complexity of M-channel Paraunitary QMF Bank

First suppose that we implement the filters Hk(z) in direct form. Even
though the filters are constrained by the fact that E(z) is paraunitary, there
is no obvious relation among the coefficients of these filters (except the op-
tional relation (6.5.13), if symmetry has been imposed through the struc-
ture). So the cost of a direct form implementation is roughly proportional
to MN where N is the filter order and M is the number of channels. Since
each Hk(z) is followed by a decimator, we can implement it in polyphase
form (Sec. 4.3). So the analysis bank requires N MPUs and N APUs.

The second method is to implement the system using polyphase matri-
ces, that is, exactly as in Fig. 5.5-3(b). In this manner, the implicit relation
between the analysis filters, induced by the paraunitariness of E(z), can be
exploited. We will show below that the complexity of this system is only

(6.7.2)

For example if J = 10 and M = 5, then N = 54 and the analysis bank
requires 26.6 MPUs and 24.8 APUs. For the first method where each Hk(z)
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TABLE 6.7.2 Comparison of three types of two-channel QMF banks.

Note: ALD = Aliasing distortion; AMD = Amplitude distortion; PHD = Phase distortion.
N = Order of HO(z)

Relation between

filters
Phase response
of HO(z)

Distortions
in QMF bank

Features of
HO(z)

Method 1 (FIR)

Section 5.2.2

)
HO(2).F 1(28— -Hl(2)

) Hléz) HO

linear

ALD canceled
AMD minimized
PHD eliminated

Method 2 (FIR)
Perfect Reconstruction
with lossless E(z)
Section 6.4

H1(z) = -z-NH0(-2)
FO(z) = z-NH0(z),
Fl(z) = z-NH1(z)
HO,H! power comp.

nonlinear

ALD canceled
AMD eliminated
PHD eliminated

HO(zZ¥H0(2) is a
(zergz-);ﬁage)FlR)
half-band filter, i..,

HO(z) is power symmetric

Method 3
lIR AIIpass
based.
Section 5.34

Same as
method 1

_ nonlinear
since HO(z) 1IR

ALD canceled
AMD eliminated
PHD remains

2H0( % aO?zZ)
a0( z) al}_izz

allpass.
power symmetnc.

ml&lexny ie., 0.5(N +1),0.5(N + 1), (N + 1),N using 0.25(N - 1),
No., of (MPU APU for using polyphase direct form polyphase.
analy5|s bankt 0.5(A +3),0.5(N + 1) 05N + 1)
using paraunitary lattice
Group delay
of entire N samples N samples nonconstant
analysis/synthesis
system

f In each case, compIeX|ty of the sythesis bank is essentially same as that of the analysis bank.
MPU = multiplications per unit time. APU = additions per unit time.
One unit of time = separation between samples of input x(n).
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TABLE 6.7.3 Comparison of Design examples for two FIR two-channel QMF banks.
In both methods, HO(z) has AS  40dB and wS  0.586m.

Method 1 Method 2
(Johnston’s 32D filter) (Vaidyanathan and Hoang)
i.e., imperfect reconstruction Perfect reconstruction lattice
with linear phase with nonlinear phase
analysis and sythesis filters analysis and synthesis filters

Required order
of HO(z) N = 31 for N =31
peak amplitude distortion = 0.025 dB

Group delay
of entire 31 31
analysis“synthesis
system

No. of (MPU, APU)

for analysis bank (16, 16) (17,16)
Price paid by Amplitude distortion not HO(z) and H1(z)
the method equal to zero do not have linear-phase

TABLE 6.7.4 Comparison of Methods 2 and 3.
In both cases, AS 40dB and wS 0.62m.

Method 2 Method 3
FIR Perfect reconstruction IR allpass based system
QMF lattice with nonzero

phase distortion

Required order N
for HO(z) 21 5

No. of (MPU, APU)

for analysis bank (12, 11) 1,3
Group delay Difference between
distortion None largest and smallest

delays =14 samples

Other distortions None None
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is implemented independently in polyphase form, we require 54 MPUs and
APUs. This shows that the implementation based on E(z) is more efficient.

To justify (6.7.2), recall that any FIR paraunitary E(z) of degree J can
be implemented in cascade form as in Fig. 6.5-2. Here Vm(z) and U are M x
M matrices. Each of the building blocks \m(z) requires 2M real multipliers
(since vm is real for real-coefficient case). The unitary matrix U can be
implemented as a cascade of M — 1 Householder matrices [egn. (6.5.3)].
Each Householder matrix is implemented as in Fig. 6.5-3. The unit-norm
vectors ui appearing in these Householder matrices have a restricted number
of nonzero entries as elaborated in Sec. 14.6.2. From these details, we can
verify that E(z) (hence the analysis bank) requires 2N+M2 multipliers. The
number of additions is 2N + (M - 1)2. Since E(z) is operating at M times
lower rate, the matrix E(z) (hence the analysis bank) has the complexity
given in (6.7.2). Ifthe filters are constrained by symmetry conditions such as
(6.5.13), we obtain a further saving by about a factor of 2 (since the degree
of E'(z) in Fig. 6.5-10 is nearly halved for fixed filter order N).

The implementation in terms of the cascaded structure for E(z) has the
additional advantage that when the multipliers are quantized, the perfect
reconstruction property is unaffected (Sec. 14.11). The same is not true for
the direct form implementation of Hk(z).

Cosine modulated FIR PR systems. In Chap. 8 we will study a
class of FIR perfect reconstruction systems in which all analysis filters are
derived from a single prototype by cosine modulation. This has the advan-
tage that during the design (optimization) phase the number of parameters
to be optimized is very small, even for large M. Another advantage is that
the complexity of the implementation is very small. Indeed, among all tech-
niques for designing (perfect or approximate) QMF banks for arbitrary M,
this method appears to have least complexity (both during design and im-
plementation). The perfect reconstruction property in this scheme is again
acheived by exploiting paraunitariness of E(z), as we shall see in Sec. 8.5.
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PROBLEMS

6.1. Consider the following FIR analysis bank.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

Figure P6-1

a) Find E(z), and the analysis filters H0(z),H1(z). Is E(z) paraunitary?
What is its determinant?

b) Find a set of causal FIR synthesis filters which result in perfect recon-
struction.

Find an example of a real-coefficient two-channel FIR perfect reconstruction
QMF bank, with the following features: (i) E(z) is paraunitary, and (ii) HO(z)
is causal, with order = 3. You must explicitly indicate the values of the filter
coefficients H0(z),H1(z), FO(z) and F1(z).

Consider the example generated in Problem 6.2.
a) Verify that HO(z) is power symmetric.

b) Draw the lattice structures for the analysis and synthesis banks, and indi-
cate the values of the lattice coefficients am.

Let E(z) denote the polyphase matrix of an M-channel analysis bank.

a) Suppose E(z) is normalized lossless. Show that all the analysis filters
Hk(z) have unit energy, i.e., =n hk(n) 2 = 1.

b) Conversely, let all the filters Hk(z) have unit energy, and furthermore let
them be power complementary. This does not necessarily mean that E(z)
is paraunitary. Prove this by counter example.

Consider the lattice structure of Fig. 6.+3(a). Suppose we perform the fol-
lowing changes: (a) replace the multiplier "—1" (just prior to stage 0) with a
multiplier equal to “+1,” and (b) exchange each ak with —ak. Show then that
the analysis filter HO(z) remains unchanged, and that H1(z) gets replaced with
—H1(z). This shows that the multiplier with value "—1" in the figure is not of
major importance.

Let R(z) and E(z) be matrices with rational entries, and let e(z) be the delay
chain vector [as in (5.4.1)]. Prove that the relation (6.2.11) implies R(z) =

cz-KE(2).

In this problem we obtain a second, independent, proof that the recursion
(6.4.8) for synthesizing the perfect reconstruction lattice works. Let HOm)(z) =
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6.8.

6.9.

> en-h(m)(n)z-n be a transfer function with real coefficients, satisfying

(P6.7a)

where cm is a nonzero constant. This is nothing but the power symmetric
property, except that cm is not necessarily unity. Define

(P6.7b)

Assume h(m)(0) # 0. Suppose we define HO(m-1)(z) as in (6.4.8) where am =
—h(m)(2m+ 1LyH(m)(0). Prove the following.
a) H1(m-1)(z) defined in (6.4.8) satisfies a relation similar to (P6.7b) with m
replaced by m — 1
b) HOm-1)(z) satisfies a property similar to (P6.7a) with m replaced by m—1.
c) h(m-1)(0)=0.
d) HOm-1)(z) and H1(m-1)(z) are causal with degree <2m - 1.

Summarizing, the pair [HOm-1)(z), HIim-1)(z)] satisfies all the properties of
the higher order pair [HOm)(z), H(m)(z)]. So the recursion can be repeated.
After a finite number of recursions we obtain H0(0)(z) and HI1(0)(z). Write

down the forms of these. Hence show that the pair [HO(m)(z), H1(m)(z)] can be
implemented in the form of the following lattice structure.

Figure P6-7

The system in (6.5.1) can be written as h(0) + h(1)z-1 where h(n) are the
'impulse response' coefficients of Vm(z). Let

This is a unit norm vector. By using this in (6.5.1), evaluate the coefficients
h(n). Hence fill all the nine entries of Vm(z).

Consider the paraunitary system VVm(z) of Problem 6.8. Suppose we take this
as the polyphase matrix E(z) of a three channel maximally decimated filter
bank.
a) Find the coefficients of the analysis filters.
b) Find the coefficients of a set of FIR synthesis filters, which would result in
perfect reconstruction.
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6.10.

6.11.

6.12.

6.13.

6.14.

6.15.

Consider the product Vm(z) ... \V1(z) where Vm(z) are M x M matrices as

in (6.5.1). Let vm be chosen so that vivk = d(m - k). Show that the product
reduces to z-11.

Consider the M-channel maximally decimated system of Fig. 5.4-1. Let H(z)
be the alias component (AC) matrix for the analysis bank, and let E(z) be the
polyphase component matrix for the analysis bank. Show the following:

a) [det H(z)] = cz-K for some ¢ # 0 and integer K if and only if [det E(z)] =

dz-L for some d # 0 and integer L.
b) [det H(z)] is allpass if and only if [det E(z)] is allpass.

In a certain QMF bank suppose the M x M polyphase matrix E(z) is lossless.
Let the polyphase matrix for the synthesis bank be given by R(z) = Adj [E(z)],
where 'Adj' denotes the adjugate matrix (Appendix A). Show that the system
is alias-free. Find an expression for the distortion function T(z) and hence
show that amplitude distortion has been eliminated.

Consider an analysis bank Hk(z),0 < k < M — 1, with paraunitary polyphase
matrix E(z). Define a new analysis bank H'k(z),0 < k < M - 1, by replacing
z with zej® where 0 is an arbitrary real number. In other words, H"*(z) =
Hk(zejB). Show that the polyphase matrix E'(z) of the resulting system is
paraunitary. [Note. In general E'(z) # E(zej0).]

Consider Fig. 5.2-5, where ai(z) are causal stable with ai(ejw) = 1. This
represents a two channel QMF bank. Let E(z) and R(z) be the polyphase
matrices of the analysis and synthesis banks.

a) Ildentify E(z) and R(2).

b) Is E(z) lossless?

c) Write down R(z2) in terms of E(z2).

d) What is the product R(z)E(z)?
We now look into some deeper properties of tree structured QMF banks. Con-
sider Fig. 5.8-1 again. Let HO(k)(z) = =NMn=0 h(k)(n)z-n and let the filters be
related as

(P6.15a)

and
(P6.15b)

for k = 1,2. Assume Nk to be odd. Let the synthesis filters be chosen as
(P6.15c)

Prove that the system has perfect reconstruction property.
Consider the equivalent four channel system of the form in Fig. 5.4-1. Verify
that Fm(z) and Hm(z) are related as Fm(z) = cz-LHm(z) for 0 < m < 3, for

some c and L.
Show that the 44 polyphase matrix E(z) of the equivalent four channel

system is paraunitary.

Note. This problem is not tedious, if the properties in Sec. 6.2 are used judi-
ciously. These results can also be generalized to tree structures with arbitrary
number of levels, and arbitrary number of channels in a given level.
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6.16.

6.17.

336

Consider Fig. 5.4-1. Find an example of a FIR perfect reconstruction system
for which Fk(z) = Hk(z) for each k. To avoid trivialities, make sure M = 2 in

the example.

Consider the LOT structure of Fig. 6.6-2(a). Let T = [T0 T1], where T0
and T1 are M x M, and assume that (6.6.7) and (6.6.8) hold. Find Q in terms
of T0 and T1, in order to have perfect reconstruction.
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7.0

7.1

Limear Phase
Perfect Reconmnstruction

ONF Banks

INTRODUCTION

In some applications it is desirable to have a filter bank in which the analysis
filters Hk(z) are constrained to have linear phase. Such systems are called
linear phase filter banks. These should not be confused with filter banks free
from phase distortion, that is, filter banks for which the distortion function
T(z) has linear phase. For example the system in Design example 5.3.2
is not a linear phase filter bank (since the impulse response coefficients in
Table 5.3.3 do not exhibit any symmetry), yet it is a perfect reconstruction
system. On the other hand, the system in Desigh example 5.2.1 is a linear
phase QMF bank (all filters have linear phase), but it is not a PR system
since there is residual amplitude distortion (Fig. 5.2-4(b)).

In this chapter we show how to design linear phase filter banks which at
the same time satisfy the perfect reconstruction (PR) property. The basic
results were independently reported in Nguyen and Vaidyanathan [1989] and
Vetterli and Le Gall [1988, 1989].

SOME NECESSARY CONDITIONS

In both the design examples mentioned above, the analysis filters H1(z) and
HO(z) are constrained in some manner. In Design example 5.3.2 they are
power complementary, whereas in Design example 5.2.1, H1(z) = HO(-2z).
It turns out that, in order to design FIR linear phase QMF banks which at
the same time enjoy the PR property, it is necessary to give up the power
complementary property, as well as the relation H1(z) = HO(-z). We begin
the chapter by explaining why.
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Power Complementary Constraint Must be Avoided

Suppose H(z) and G(z) are linear phase FIR filters, which at the same
time satisfy the power complementary property. We will show that H(z)
is a sum of two delays, that is, H(z) = az-K + bz-L, where K and L are
integers. G(z) has similar form. As a result, the responses H(ejw) and

G(ejw) are very restricted.

To prove this we assume that H(z) and G(z) are causal with the impulse
response coefficients h(0) # 0,g(0) # 0. If this is not the case, we can
redefine H(z) and G(z) by shifting the impulse responses, which does not
affect either the linear phase property or the power complementary property.
Let N denote the order of H(z), so h(N) # 0. Let N > 0. (Otherwise there
is nothing to prove.) The power complementary property implies

(7.1.1)

Equating like powers on both sides we see that G(z) also has order N. So

H(z) = =M=0 h(n)z-n and G(z) = =N=0g(n)z-n, with g(N) # 0. From
Sec. 2.4.2 we know that the linear phase property of H(z) and G(z) implies

(7.1.2)
for real a,3. Substituting into (7.1.1) and simplifying we get

(7.1.3)
Since all quantities on the left hand side are FIR, this implies

(7.1.4)

where pq = ¢2, and K+ L = N. Adding and subtracting these two equations
we get
(7.1.5)

for appropriate a,b and y, with y = 1.

Consequences. As a consequence of this result, we have to remove the
power complementary restriction on the analysis filters in order to obtain
good responses. Since paraunitariness of the polyphase matrix E(z) (Sec.
6.2.2) implies that HO(z),H1(z) are power complementary, it is necessary to
give up paraunitariness of E(z) as well.

The Relation H1(z) = HO(-z) Must be Avoided

In Sec. 5.2 we studied alias-free FIR QMF banks with analysis fi-
ters related as H1(z) = HO(-z). The overall distortion function is T(z) =
0.5[HQ(z) - HA(-2z)]. If HO(z) has linear phase, then T(z) has linear phase,
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7.2

and phase distortion is eliminated. This system however suffers from ampli-
tude distortion, that is, T(ejw) is not perfectly flat. The residual amplitude
distortion can be made very small using Johnston’s procedure (Design ex-
ample 5.2.1). This means that we have already seen examples of linear phase
FIR QMF banks which “almost” satisfy the PR property. By increasing the
order of HO(z) we can decrease the amplitude distortion to any desired de-
gree [while maintaining the attenuation requirements of HO(z)], so that the
system gets as close to PR as we wish.

With this system, however, we can never achieve PR property exactly!
We proved this in Sec. 5.2.1 by showing that the distortion function of the
alias-free system has the form T(z) = 2z-1E0(z2)E1(z2), where HO(z) =
EO(z2) + z-1E1(z2). For perfect reconstruction T(z) has to be a delay, that
is, H(z) has to be a sum of two delays, which is not useful. As a result, it is
necessary to give up the condition H1(z) = HO(-z) as well.

LATTICE STRUCTURES FOR LINEAR PHASE FIR PR QMF BANKS

Recall that neither the relation H1(z) = HO(-z) nor the power complemen-
tary property is necessary for perfect reconstruction in FIR QMF banks.
The condition (5.6.10) is really (necessary and) sufficient. It turns out that
we can design very good linear phase analysis filters which at the same time
satisfy this condition. As a first step, we generate an example with nontriv-
ial analysis filters, such that neither the power complementary property nor
the relation H1(z) = HO(-z) is satisfied.

Example 7.2.1 An FIR Linear-Phase PR QMF Bank
Consider the analysis bank of Fig. 7.2-1(a). Here the polyphase matrix
E(z) = TIN(Z)TO, where

(7.2.1)

Assume k is real and k # 1. This ensures that TO0 is nonsingular. A
corresponding synthesis bank which gives rise to perfect reconstruction
is shown in Fig. 7.2-1(b). This is obtained by taking

for appropriate c. The analysis and synthesis filters are verified to be

(7.2.2)
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Many points are worth noting here. The synthesis filters satisfy FO(z) =
H1(-z) and F1(z) = -HO0(-z), consistent with the alias cancelation
condition (5.1.7). The analysis filters evidently have linear phase, and
are nontrivial in the sense that they are not just sums of two delays.
However, they are not power complementary, nor is the relation H1(z) =
HO(-2z) satisfied. Finally, the synthesis filters are not given by Fk(z) =
z-3Hk(z-1) as in a paraunitary perfect reconstruction system.

Figure 7.2-1 Example of linear phase PR QMF bank (a) Analysis bank, and
(b) synthesis bank.

What is the trick behind the success of this example? The matrices T0
and T! have, no doubt, been ‘carefully’ chosen. The choice of T0 is such
that QO0(z) is the Hermitian image of PO(z) (see Fig. 7.2-1(a). The choice of
T1 is such that HO(z) and H1(z) are the sum and difference of the image pair
PO(z), z-2Q0(z), so that hO(n) is symmetric and h1(n) is antisymmetric!

Example 7.2.2

We can in fact generate similar examples of arbitrary order. To demon-
strate this, consider Fig. 7.2-2(a) in which
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Figure 7.2-2 More general linear phase FIR PR QMF bank. (a) Basic
generation technique for analysis bank (b) Complete analysis bank. (c)
Complete synthesis bank. (d) Details of the building blocks.
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(7.2.3)

are real coefficient polynomials and km is real. Let Qm-1(z) be the
Hermitian image of Pm-1(z), i.e., Qm-1(z) = z-(2m-1)Pm-1(z-1). Then
the transfer functions

(7.2.4)

are also Hermitian images, i.e., satisfy Qm(z) = z-(2m+1)Pm(z-1). (This
can be verified by substitution.) By repeated application of this, we
see that the cascaded lattice structure shown in Fig. 7.2-2(b) has the

property

(7.2.5)
The analysis filters in this figure are given by

(7.2.6)
From this it is easily verified that these filters satisfy

(7.2.7)
that is, in terms of impulse response coefficients,

(7.2.8)

so that they have linear phase. Figure 7.2-2(c) shows a synthesis bank
which results in perfect reconstruction. This is obtained by choosing the
polyphase matrix of the synthesis bank to be R(z) = cz-JE-1(z). Here
Sm = (1 - k&) TrL The synthesis filters satisfy (5.1.7) within a scale
factor (Problem 7.1).

The main point of the example is that we can generate linear phase
FIR PR QMF banks in which the analysis filters are nontrivial (i.e., not
restricted to be a sum of two delays). The next design example shows that
these analysis filters can provide excellent attenuation as well.

Design Example 7.2.1. Linear Phase FIR PR Lattice
Consider a lattice with J = 31 so that the filters have order N = 63.
The lattice coefficients should now be optimized in order to minimize an
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appropriate objective function. The simple function (6.4.9) is not suitable
any more because HO0(z) is not power symmetric, and moreover there is no
power complementary relation between HO(z) and H1(z). It is necessary to
define an objective function which reflects the passbands and stopbands of
both filters. For example we can take

(7.2.9)

Figure 7.2-3(a) shows the analysis filter responses of the optimized design.
The filter coefficients are tabulated in Nguyen and Vaidyanathan [1989]. The
transition bandwidth is about 0.1721. For comparison, we show in Fig. 7.2-
3(b) the responses of Johnston’'s 64D filters (which also have order 63, and
the same transition bandwidth). Johnston’s filters offer a minimum stopband
attenuation of 65 dB, in comparison to only 42.5 dB offered by the perfect
reconstruction system. t The peak amplitude distortion of Johnston’s 64D
QMF bank is about 0.002 dB. Johnston’s 32D filter, on the other hand, has
nearly the same attenuation as the PR system.

Even though the PR system has higher order for a given attenuation, it
can be implemented more efficiently than Johnston’s filters, because of the
lattice structure (see computational complexity below).

Recall that in order to obtain perfect reconstruction using linear phase
filters, we had to give up the relation H1(z) = HO(-z) as well as the power
complementary property. Also the plot of HO(ejw) 2 + Hl(ejw) 2 is very 1at
for Johnston’s design but not for the linear phase PR pair (see Fig. 7.2-4).
In spite of this the linear phase lattice structure enjoys perfect reconstruc-
tion because the quantity HO(ejw) 2 + Hl(ejw) 2 is not proportional to the
amplitude distortion unlike in Johnston’s design!

Computational Complexity of Linear Phase QMF Lattice

The lattice structure of Fig. 7.2-2(b) has J + 1 sections, with two
multipliers per section. However, each section can be rearranged, permit-
ting an implementation with only one multiplier (and three adders) per
section (Problem 7.2)f. From this we deduce that the analysis bank requires
0.25(N + 1) + 1 MPUs and 0.75(N + 1) + 1 APUs (where N = filter order).
In our example N = 63 so this reduces to 17 MPUs and 49 APUs. For com-
parison suppose we consider Johnston’s 32D filter, which has nearly the same

t Improved optimization has recently been reported by Nguyen [1992a],
whereby the perfect reconstruction system can provide almost as good at-
tenuation as Johnston’s filters of the same order.

t This is unlike in the paraunitary lattice (Fig. 6.4-2), which required a
minumum of two multipliers per section.

Sec. 7.2 Linear phase lattice structures 343



Figure 7.2-3 Design example 7.2.1 (Linear phase QMF banks). Magnitude re-
sponses of analysis filters for (a) perfect reconstruction system, and (b) Johnston's
64D system. Both systems have analysis filters of length 64. (© Adopted from
1989 IEEE.)

specifications (including minimum stopband attenuation) as the linear-phase
lattice filters, and has a peak amplitude distortion of 0.025 dB. This can be
implemented with a total of 16 MPUs and 16 APUs for the analysis bank.
Summarizing, the linear phase PR QMF lattice has about the same num-
ber of MPUs as Johnston’s filters with same specifications (and amplitude

344 Chap. 7. Linear phase perfect reconstruction systems



distortion of 0.025 dB). The number of APUs, however, is higher.
Table 7.2.1 summarizes the comparison between the linear phase PR
QMF bank and Johnston'’s design.

Figure 7.2-4  Pertaining to Design example 7.2.1. (© Adopted from 1989
IEEE.)

Initialization of the Lattice Parameters for Optimization

Since Johnston’s filters have linear phase and “almost” satisfy the PR
property, it is possible to obtain a lattice structure for these, which “almost”
resembles Fig. 7.2-2(b). This can be used to initialize the parameters km.

Let us make the above statement more precise. Given the Nth order pair
HO(z),H1(z) from Johnston’s design, suppose we define PJ(z) and QJ(z2)
according to (7.2.6). Then (7.2.5) is satisfied because (7.2.7) holds. Define
PN(z) = PJ(z), Q'N(z) = QJ(z) for convenience. We can now construct a
pair of lower order transfer functions as follows:

(7.2.10)

We choose €N = p'N(N)/gN(N) so that P'N-1(z) has degree N — 1. Because
of the relation (7.2.5), this same value of €N ensures that Q'N-1(z) defined

in (7.2.10) is causal with degree N - 1 or less. Assuming &N # 1 we can
invert (7.2.10) to get

(7.2.11)
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This gives rise to the lattice representation of Fig. 7.2-5(a). It can be verified
from above that Q'N-1(z) = z-(N-1)PN-1(z-1), so that we can repeat the
process, resulting in Fig. 7.2-5(b).  Here the scale factors (1 — 2m) have all

been lumped together into a.

TABLE 7.2.1 Comparison between the linear-phase perfect
reconstruction design and Johnston’s 32D design.

Feature

Phase response
Filter order
Stopband
Attenuation
Peak amplitude
distortion
Number of MPU
for analysis bank
Number of APU
for analysis bank
Power Comple-
mentarity
Relation between
Analysis Filters

Overall Group
Delay of
QMF bank
Abasing

Phase distortion

Amplitude
distortion

Johnston’s 32D
Pair of Filters
Linear
31
38dB
0.025dB
16
16
Approximately

holds
H1(z) = HO(-2)

31
Canceled
Eliminated

Minimized

Linear phase
QMF lattice
Linear
63
42.5dB

No error
17
49
Does not
hold
Not explicit.

Implicitly
such that

det E(z)=delay

63

Canceled

Eliminated

Eliminated

1 Readers familiar with linear predictive coding will notice the resem-
blance to the LPC lattice [Markel, and Gray, Jr., 1976]. However, there
are two differences. In the LPC lattice the coefficients €m (called reflection
coefficients) are typically bounded as #m < 1. Also the rightmost section,
which generates HO(z),H1(z), is absent.
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7.3

So Johnston’s analysis bank can be represented in this manner, pro-
vided m # 1 for any m (and this is the case in all practical examples).
This structure, however, is not in polyphase form because the system inside
broken lines in Fig. 7.2-5(b) is not a function of z-2 (so that it is not equal
to E(z2)). However, since the filters have linear phase and almost satisfy the
PR property, the coefficients €2, 24, ... and so on, turn out to be very close to
zero. By setting these to zero, the remaining coefficients £2m+1 can be used
to initialize the coefficients kn in the linear-phase lattice of Fig. 7.2-2(b).
Such initialization leads to significantly faster convergence of optimization,
as compared to random initialization. This method was used in the above
design example.

Figure 7.2-5 Lattice structure for an arbitrary (i.e. not necessarily PR) linear
phase pair [HO(z), H1(z)].

FORMAL SYNTHESIS OF LINEAR PHASE FIR PR QMF LATTICE

In Example 7.2.2 HO(z) and H1(z) are filters with odd order (N = 2J + 1)
satisfying (7.2.7) and the PR condition [det E(z)] = delay. The next question
is, given such a pair of FIR filters, is it always possible to find a structure
like Fig. 7.2-2(b)? In other words, does the lattice cover every analysis bank
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satisfying the said properties? The answer is yes with some minor exceptions
which will be made clear soon.

The given set of filters HO(z), H1(z) can always be expressed as in (7.2.6)
by defining PJ(z) and QJ(z) as

(7.3.1)
With analysis filters expressed in polyphase form (5.6.11), we have

(7.3.2)
In other words

(7.3.3)
and the PR condition (5.6.10) is equivalent to the condition

(7.3.4)

The linear phase condition (7.2.7) is, of course, equivalent to (7.2.5).

So the problem of designing linear phase FIR PR QMF banks can be
transformed to that of finding a lattice structure for [PJ(z) QJ(z)]T which
satisfies the properties (7.3.4) and (7.2.5). For convenience of discussion let
us write

(7.3.5)

so that (7.2.5) is equivalent to

(7.3.6)

The following Lemma is crucial to our discussion.

alemma 7.3.1. Let PJ(z) and QJ(z) be as in (7.3.5), and satisfy
(7.3.6) and (7.3.4), where FJ(z) is defined as in (7.3.3). Let N be odd, that
is, N = 2J + 1. Assume pJ(n),qJ(n) are real, and 0 # pJ(0) and pJ(0) #

+pJ(N). Then we can find two FIR filters PJ-1(z) = =N=@pJ-1(n)z-n
and QJ-1(z) = =n-2- gJ-1(n)z-n and a real kJ # £1 such that

(7.3.7)
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Moreover QJ-1(z) = z-(N-2)PJ-1(z-1) and pJ-1(0) # 0. o

Remark. The condition k2 # 1 automatically ensures that the 2 x
2 matrix in (7.3.7) is nonsingular. By inverting it, we can obtain the
lattice structure of Fig. 7.2-2(a) with J in place of m. The remainder
[PJ-1(z) QJ-1(=2)]T has all the properties of [PJ(z) QJ(2)]T so that we
can repeat this process provided pJ-1(0) # £pJ-1(N - 2). So we can obtain

the lattice structure shown in Fig. 7.2-2(b), for the system [PJ(z) QJ(=2)]T
provided that each one of the remainders satisfies

(7.3.8)

This means that we can implement the analysis bank [HO(z) H1(z)]T as
m Fig. 7.2-2(b).

Proof of Lemma 7.3.1. From (7.3.7) it is clear
that kJ has to satisfjN) =0 so that

(7.3.9)

With this choice of kJ, the coefficient of z-N in PJ(z) - kJQJ(z) drops off.
We now show that the coefficient of z-(N-1) in PJ(z) - k]l QJ (z) is also zero,

so that PJ-1(z) has order N-2 as claimed. For this note that this coefficient is

by (7.3.9). With (7.3.10)

(7.3.110)
the condition (7.3.4) implies

(7.3.11b)
But we have
(7.3.12)
where M = (N - J20mhbetefiok(i.8f12b) is
(7.3.13a)
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The coefficient of z-2M is, on the other hand,

(7.3.13Db)

Since N = 3, we have 2M > 0. So (7.3.11b) implies that at least one of
(7.3.13a), (7.3.13b) is zero. By using the image property (7.3.6) it is verified
that (7.3.13a) and (7.3.13b) have the same value. Setting this zero we see

that (7.3.10) is indeed zero. So PJ-1(z) has the stated form.

We can verify that QJ-1(z) = z-(N-2) PJ-1(z-1) by substituting (7.3.6) into
(7.3.7). So QJ-1(z) has the state form too. Inverting (7.3.7) one obtains

(7.3.14)

from which it follows that pJ(0) = pJ-1(0), so pJ-1(0) # 0 indeed.

Condition on HO(z),H1(z) for Lattice Realization

The analysis filters have the form HO(z) = =Nn=0 hO(n)z-n, H1(z) =

> N=0hl1l(n)z-n, N = 3. The condition pJ(0) # xpJ(N) in Lemma 7.3.1
can be satisfied by assuming that neither of hO(N),h1(N) is zero. Now what
does pJ(0) = 0 mean? Since (7.3.13a) equals zero, this means qJ(0) = 0
or pJ(1) = 0. This means that either h0(0) = h1(0) = 0 or that PJ(z) and
QJ(z) have the form PJ(z) = z-2Pj-1(z) and QJ(z) = QJ-1(z). The former
case is trivial and can be avoided by shifting. The latter case implies that
we can interchange the roles of PJ(z) and QJ(z) and then take kJ = 0. So
the situations created by violation of the condition '0 # pJ(0) # *pJ(N)’,
can be handled easily. It is, however, still possible to find examples where
(7.3.8) is violated for some value of m < J. In such cases the lattice cannot
be synthesized.

It nevertheless remains a significant fact that the lattice of Fig. 7.2-2
can be used to generate a wide class of linear phase FIR PR systems. More
general study of two-channel linear phase FIR PR systems can be found in
Nguyen and Vaidyanathan [1989] For instance, it can be shown that one can
take both hO(n) and hl(n) to be symmetric (provided their orders are even
and unequal). Such systems have a different type of lattice structure. Also
see [Vetterli and Le Gall, 1989] and Nguyen and Vaidyanathan [1990] for
M-channel linear phase FIR perfect reconstruction systems. For a general
theory of M-channel linear phase FIR paraunitary filter banks see [Soman,
Vaidyanathan, and Nguyen, 1992].
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7.1.

7.2.

7.3.

7.4.

PROBLEMS

The lattice structure shown in Fig. 7.2-2 (b) and (c) represents a perfect
reconstruction QMF bank. Express the synthesis filters Fk(z) in terms of the
analysis filters Hk(z).

Consider the two multiplier lattice section shown in Fig. P7-2(a).

Figure P7-2

Show that this can be redrawn as shown in Fig. P7-2(b) where 3 = o~ {1 — 0),
assuming a Z 1. Hence show that the linear phase perfect reconstruction system
(Fig. 7.2-2) can be rearranged so that the analysis bank requires a total of
0.25(N+ 1) + 1 MPUs and 0.75(N + 1) + 1 APUs.

Consider the analysis bank structure given below, where am,f3n are real.

Figure P7-3
The building block B(z) has the form
(P7.3a)

Evidently the analysis filters H0(z) and H1(z) are causal and FIR. Show that
they have linear phase. More specifically show that the impulse responses
satisfy

(P7.3b)

where NO = 2J, N1 = 2J + 2. Find a set of FIR synthesis filters [in terms of
HO(z) and H1(z)] which result in perfect reconstruction. (Note. this prob-
lem shows that we can obtain an FIR perfect reconstruction QMF bank in
which both analysis filters are symmetric unlike in Sec. 7.2 where H1(z) was
antisymmetric.)

Let H(z) and G(z) be two real coefficient linear phase FIR filters satisfying
H(ejw) 2 + G(ejw) 2 = 1 for all w. Prove that H(ejw) 2 = arcos2(aw + b) for
some real a, a, b.
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7.5. Let H(z) be a linear phase FIR filter, and let H(z)H(z) satisfy the Mth band
property.
a) For M = 2 (i.e., H(z)H(z) is half-band) show that H(z) can have at most
two nonzero coefficients.

b) For M > 2, a similar statement is not true. Show, by construction, that

the number of nonzero coefficients of H(z) can exceed L, for any arbitrary
integer L.

Hints. Use the results of Sec. 4.6.3 and 7.1.
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8.0

Cosine Nodulated

Filter Banks

INTRODUCTION

In Chap. 5 and 6 we considered M channel maximally decimated analy-
sis/synthesis systems, and studied various errors, as well as techniques to
eliminate these. In particular, we studied the concept of perfect reconstruc-
tion (PR) in detail, and presented techniques to design FIR PR systems.

In this Chapter we will present filter banks based on cosine modulation.
In these systems, all the M analysis filters are derived from a prototype filter
PO(z) by cosine modulation. Two outstanding advantages of these systems
are:

1. The cost of the analysis bank is equal to that of one filter, plus modu-
lation overhead. The modulation itself can be done by fast techniques
such as the fast discrete cosine transform (DCT). See, for example, Yip
and Rao [1987]. The synthesis filters have the same cost as the analysis
filters.

2. During the design phase, where we optimize the filter coefficients, the
number of parameters to be optimized is very small because only the
prototype has to be optimized.

Two classes of such systems will be studied — approximate reconstruc-
tion systems (pseudo QMF) and perfect reconstruction systems.

A. Cosine Modulated Pseudo QMF Banks (Sec. 8.1-8.3)

Prior to the development of perfect reconstruction systems, several au-
thors have developed techniques for designing approximate reconstruction
systems. These are called the pseudo QMF systems, introduced by Nuss-
baumer [1981] and developed further by Rothweiler [1983], Chu [1985], Mas-
son and Picel [1985], and Cox [1986]. In these systems the analysis and
synthesis filters Hk(z) and Fk(z) are chosen so that only "adjacent-channel
aliasing” (to be explained below) is canceled, and the distortion function

353



8.1

T(2) is only approximately a delay. Such approximate systems, called pseudo
QMF banks, are acceptable in some practical applications.

B. Cosine Modulated Perfect Reconstruction Systems (Sec. 8.5)

More recently, cosine modulated systems with the perfect reconstruction
property have been developed independently by Malvar [1990b and 1991],
Ramstad [1991], and Koilpillai and Vaidyanathan [1991a and 1992]. These
are paraunitary systems. They retain all the simplicity and economy of the
pseudo QMF system, and yet have the perfect reconstruction property. In
Sec. 8.4 we study some properties of cosine modulation matrices. These
are then used in Sec. 8.5 to derive cosine modulated perfect reconstruction
systems. These two sections can be studied independently of the pseudo QMF
derivations, with Sections 8.1-8.3 serving only as references.

THE PSEUDO QMF BANK

In this section we present the theory of pseudo QMF banks. In Sec. 8.2
and 8.3 we will outline design procedures and structures for these. Readers
interested only in perfect reconstruction systems can go directly to Sec. 8.4
(and use sections 8.1-8.3 only as a reference).

8.1.1 Generation of M Real Coefficient Analysis Filters

In Sec. 4.3.2 we saw how a set of M filters can be derived from one prototype
filter by use of the structure of Fig. 4.3-5(a). In that structure, the filters
E€(z) represent the Type 1 polyphase components of the prototype filter
HO(z), and the filters Hk(z) are related to HO(z) as Hk(z) = HO(zWkM),
where WM = e-j2n/M. This means that the frequency responses Hk(ejw)
are uniformly shifted versions of the prototype, as demonstrated in Fig. 4.3-
5(b). Since hk(n) is obtained by exponential modulation of hO(n), (that is,
hk(n) = hO(n)ej2nkn/M), the coefficients hk(n) are in general complex even
if hO(n) is real. This means that the output of Hk(z) could be a complex
signal even if the input x(n) is real.

We now derive a class of filters with real coefficients, by using cosine
modulation rather than exponential modulation. This can be done by first
obtaining 2M complex filters using exponential modulation, and then com-
bining appropriate pairs of filters.

Consider Fig. 8.1-1 which is a modification of Fig. 4.3-5(a) (replace M
with 2M). This is a uniform-DFT analysis bank, with the 2M filters related
as

(8.1.1)

In this section, unsubscripted W stands for W2M, that is,
(8.1.2)
Also, W is the 2M x 2M DFT matrix.
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PO(z) is called the prototype filter. Throughout this chapter, its impulse
response pO(n) is real so that PO(ejw) is symmetric with respect to w = 0.
This filter is typically lowpass, with cutoff frequency =2M [Fig. 8.1-2(a)].
The polyphase components of PO(z) are Gk(z),0 < k < 2M - 1.

From (8.1.1) we have

(8.1.3)

that is, the response Pk(ejw) is the right-shifted version of PO(ejw) by an
amount kM [Fig. 8.1-2(b)]. From the figure we see that the responses
Pk(ejw) and P2M-k(ejw) are images of each other with respect to zero-
frequency, so that they are suitable candidates to be combined, to get a real
coefficient filter. The typical passband width of such a ‘combined filter' is
equal to 2-M, which is twice that of PO(z) (which is not combined with
any other filter).

Figure 8.1-1 Generation of 2M uniformly shifted filters from prototype P0(z).
Here Gm(z), 0 < m < 2M - 1, are the polyphase components of P0(z).

Figure 8.1-2 (a) Magnitude response of the prototype P0(z), and (b) Magnitude
responses of shifted versions.
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In order to make all the filter bandwidths equal after combining pairs, we
use a right-shifted version of the original set of 2M responses [Fig. 8.1-3(a)],
the amount of right-shift being m2M. This is accomplished by replacing z
with zZWO0.5 as indicated in Fig. 8.1-3(b). (The quantity z2M is replaced
with —z2M since WM = WM = —1.) The complex filters Qk(z) are given
in terms of the prototype PO(z) by

(8.1.4)
The magnitude responses of Qk(z) and Q2M-1-k(z) are now images of each
other with respect to zero-frequency, that is, Qk(ejw) = |Q2M-1-k(e—jw)|.

The impulse response coefficients of Qk(z) and Q2M-1-k(z) are conjugates
of each other, that is,

Figure 8.1-3 Shifting the responses by 2M, by replacing z with zZW1/2

Figure 8.1-4 Magnitude response of the kth analysis filter Hk(z). Synthesis
filter Fk(z) is chosen to have similar magnitude response. See text.
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Definition of the Real Coefficient Analysis Filters

Define
(8.1.5)
and
(8.1.6)
We then generate the M analysis filters as follows:
(8.1.7)

Here ck and ak are unit-magnitude constants, whose purpose will be clarified
soon. (Actually, we could have done away with ck by absorbing it in ak, but
the above form is more convenient for discussion.) Fig. 8.1-4 summarizes

the situation.
We will assume the prototype to be of the form

(8.1.8)

that is, Nth order FIR. All analysis filters are then FIR with order < N,
that is,

(8.1.9)

Since the coefficients of PO(z) are real, the coefficients of Vk(z) and Uk(z)
are conjugates of each other. So hk(n) are real.

8.1.2 Alias Cancelation

Recall the intricacies of alias cancelation (Sec. 5.4.2). The decimated
output of Hk(z) gives rise to the alias components Hk(zWR)X(zWEM),
[i.e., frequency-shifted versions of Hk(z)X(z)]. The synthesis filter Fk(z),
whose passband coincides with that of Hk(z), retains the unshifted version
Hk(z)X(z), and also permits a small leakage of the shifted versions. When
we add the outputs of all M synthesis filters, these leakages should "some-

how" be canceled.
Remembering that the passbands of Fk(z) should coincide with those

of Hk(z), we generate Fk(z) as

(8.1.10)

where bk are unit-magnitude constants. (The choice of ak,bk and ck will

soon be settled.)
In general, the output of Fk(z) has the components Hk(zWeM)X(zWEM)
for all values of £, i.e., 0 < £ < M — 1. However, if the stopband attenuation
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of Fk(z) is sufficiently high, only some of these components are of practical
significance. The other components, though not exactly equal to zero, will
be ignored, giving rise to the term “approximate alias cancelation.”

Figure 8.1-5 shows some of the shifted versions Uk(zW¢M) and Vk(zW<EM).
Notice that, the response of Uk(zWM) does not overlap with that of Uk(z).

However, the responses of Uk(zWM and Uk(zWMkeerlap with the re-

sponse of Vk(z). Similarly, the responses of Vk(zWM) and Vk(zW{#{¥have

overlap with that of Uk(z). This means that the alias-components X(zW¢£2M),
which are significant at the output of Fk(z), correspond to

(8.1.11)

Similarly, at the output of Fk-1(z), the significant alias components are for
(8.1.12)

Note that negative values of £ should be interpreted modulo M. For example,
€= —lis equivalentto £ =M — 1.

Figure 8.1-5 Demonstration of alias components which overlap with main
synthesis filter response Fk(ejw) .

Constraint on ak and bk to Cancel Aliasing

Here, then, is the fundamental principle behind the approximate alias
cancelation scheme: since the outputs of Fk(z) as well as Fk-1(z) have the
common alias components X(zWM¥k we try to choose Fk-1(z) and Fk(z)
such that this component is canceled when these outputs are added. In fact,
such cancelation can be accomplished just by appropriately constraining ak
and bk, as we show next.
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The negative-frequency part of Fk(z), [i.e., bkVk(z)] has the following
significant alias components:

(8.1.13)
and the negative-frequency part of Fk-1(z) has

(8.1.14)
The alias component X(zWM can therefore be eliminated if

(8.1.15)

By using the definitions for Uk(z) and Vk(z), and the condition ck =
ck-1 = 1, we can rewrite (8.1.15) entirely in terms of Vi(z)'s as

(8.1.16)
This condition can be satisfied by constraining ai and bi such that
(8.1.17)

By considering the signal at the output of the positive frequency component
bkUk(z) of Fk(z), we again obtain the same condition for alias cancelation.
More specific choice of ak and bk will be given soon.

8.1.3 Eliminating Phase Distortion

Having canceled aliasing, we now turn to the distortion function T(z). From
Sec. 5.4.2 we know that T(z) can always be expressed as

(8.1.18)

The QMF bank is free from phase distortion if T(z) has linear phase. We
can ensure this if the synthesis filters are chosen according to the mirror

image condition
(8.1.19a)
or equivalently as

(8.1.19b)
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In this case (8.1.18) becomes

(8.1.20)

Clearly

(8.1.21)

which shows that T(z) has linear phase.

We know that Hk(z) and Fk(z) are already related in some way because
of their definitions in terms of the same set of components Uk(z) and Vk(z).
By careful choice of the constants ak,bk,ck, we can satisfy the additional
relation (8.1.19) as well. We do this in two steps as follows.

Choice of ck to Ensure Linear Phase of Uk(z) and Vk(z)

The phase response of PO(z) has not entered our discussion so far. We
will now restrict PO(z) to be a linear phase filter with symmetric pO(n), that
is, pO(n) = pO(N — n), so that

(8.1.22)

[Antisymmetric pO(n) would be inconsistent, since PO(z) is lowpass.] We
then have

(8.1.23)

where PR(w) is real-valued (Sec. 2.4.2). We will choose ck so that the
complex-coefficient filters Uk(z) and Vk(z) have same (linear) phase as P0(z).
(This will make it easier to determine the appropriate choice of ak and bk
later.) From (8.1.5) we have

(8.1.24)
If we choose

(8.1.25)
then

(8.1.26)

Since PR(w) is real, Uk(z) is a linear phase filter with phase response @(w) =
-wb2. Thus the phase responses of the modulated filters Uk(z) are identical
to that of the prototype PO(cjw). Same is true of Vk(z), with ck chosen as
above.
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Choice of bk to Ensure the Relation Fk(z) = z-NHk(z-1)

The linear phase nature of Uk(z) and Vk(z) permits us to write
(8.1.27)
analogous to (8.1.22). By using these relations in (8.1.7) we can verify
(8.1.28)

If we now choose
(8.1.29)

then the RHS of (8.1.28) reduces to Fk(z) [defined as in (8.1.10)]. This
proves that the mirror image condition (8.1.19b) can indeed be satisfied by
enforcing the constraint bk = gk. The distortion T(z) now takes the form
(8.1.20), and hence has linear phase.

Figure 8.1-6 Demonstration of overlap of V0(ejw) with U0(ejw), and overlap of
VM-1(ejw) with UM-1(ejw).

Choice of ak

It only remains to choose ak. The alias cancelation constraint (8.1.17)
can be simplified by using the further relation (8.1.29) to obtain aR = -a2k-1,

that is,
(8.1.30)

This can be used to determine all ak's, provided a0 is somehow determined.
To make this final choice, we note that the components Uk(z) and Vk(z) do
not overlap significantly except when k = 0 or M — 1 (Fig. 8.1-6). So the
expression (8.1.18) can be simplified into

(8.1.31)

by using the condition akbk = akak = 1. The cross-terms UO(z)V0(z) and
UM-1(z)VM-1(z) can create significant distortions around the frequencies
w = 0 and w = T, respectively. By constraining a0 and aM-1 such that

(8.1.32)
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we can eliminate these cross-terms, yielding

(8.1.33)

Based on these considerations we choose

(8.1.34)

This implies ak = (—1)kjak-1, satisfying (8.1.30). Evidently (8.1.32) is also
satisfied. We also choose bk and ck as stated above. All constants are now
determined.

Summary

1. The condition for alias cancelation is given by akbk = —ak-1bk-1.

2. The choice ck = W(k+0.5N/2 (where W = e—jni/M) ensures that Uk(z)
and VKk(z) have the same (linear) phase response as the propotype PO(z).
(This is a convenience which simplifies further design rules.)

3. The further constraint bk = ak forces the relation Fk(z) = z-NHk(z-1).
This in turn leads to the linear phase form (8.1.20) for T(z).

4. The constraint ak = (-1)kjak-1, together with bk = ak ensures that
the above alias cancelation condition is satisfied. Consistent with this
constraint on ak, we choose ak = ejok, 6k = (-1)km4. This also en-
sures (8.1.32) so that T(z) is further simplified to (8.1.33) (i.e., the two
cross-terms given by U0(z)V0(z) and UM-1(z)VM-1(z), which can cause
amplitude distortion around w = 0 and T, are eliminated).

5. Summarizing, the M analysis filters are given by (8.1.37) (see below),
with 6k = (—1)km4. With the synthesis filters chosen as in (8.1.19a), we
have approximate alias cancelation and complete elimination of phase
distortion. Amplitude distortion still remains, and should be minimized
as shown in the next section. Notice finally that all the analysis and
synthesis filters have real coefficients.

8.1.4 Closed Form Expressions for the Filters

We now find expressions for the analysis filters hk(n). The first term in
(8.1.7) is

(8.1.35)

so that its impulse response coefficients are

(8.1.36)
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8.2

The coefficients of the second term in (8.1.7) are obtained by conjugating
this. So hk(n) equals two times the real part of the first term, that is,

(8.1.37)

(since pO(Nn) is real). The synthesis filters fk(n) are obtained by replacing ak
with bk. Since bk = ak, this is equivalent to replacing 6k with -0k, that is,

(8.1.38)

We can obtain this same fk(n) by using the mirror image relation (8.1.19),
which we imposed in the above derivation. The analysis and synthesis filters,
in general, do not have linear phase (even though the prototype P0(z) has
linear phase). The distortion function T(z), however, has linear phase.

As all the analysis and synthesis filters are related to the prototype
p0(n) by cosine modulation, the only design freedom for the QMF bank is in
the choice ofp0(n). This design issue will be addressed in the next section.

DESIGN OF THE PSEUDO QMF BANK

In the previous section we considered the pseudo QMF bank, and eliminated
phase distortion and (approximately) eliminated aliasing. It only remains
to reduce amplitude distortion. Recall that amplitude distortion arises if
T(ejw) is not exactly flat. The prototype P0O(z) should now be designed in
such a way that T(ejw) is acceptably flat.

8.2.1 Reducing Amplitude Distortion

We begin by pointing out some subtleties about the behavior ofthe distortion
function T(z).

Unit-Circle Zeros of T(z)

We know that it is undesirable for T(z) to have zeros on the unit circle,
as this would imply severe amplitude distortion. From the expression (8.1.21)
we see that T(ejw0) is nonzero unless all the M filters satisfy Hk(ejw0) = 0.
This unfortunate situation will not arise, unless the passband width of the
prototpe PO(ejw) is unreasonably narrow.

Periodicity of T(ejw)

Consider the linear phase prototype (8.1.23). From Sec. 2.4.2 we know
that P2R(w) has period 2m for any N. Define F(ejw) = P2R(w) and G(z) =
F(zWO0.5). We can then express (8.1.33) as

(8.2.1)
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by using the simplified expression for Uk(z) [i.e. egn. (8.1.26)] and the fact
that vk(n) = uk(n). With G(z) = Xg(n)z-n, the summation in the above
equation simplifies to

(8.2.2)

showing that the variable z appears only in powers such as z2M. This shows
that T(z) has the form

(8.2.3)
for some FIR f(z). In particular, therefore, T(ejw) has period 2m2M.
Origin of Amplitude Distortion

Consider the expression (8.1.33). If w is a frequency belonging to pass-
band of some filter Uk(z), then T(ejw) = UR(ejua}»M. This shows that

T(ejw) is nearly the same at all frequencies which belong to the passbands
of Uk(z)'s (or Vk(z)'s). However, if w is at the transition between Uk(ejw)
and Uk+1(ejw) [see Fig. 8.2-1(a)], then

(8.2.4)

Substituting from (8.1.26), this reduces to

(8.2.5)

Figure 8.2-1 (a) Overlapping responses Uk(ejw) and Uk+1(ejw), and (b) two
possible behaviors of UR(ejw) + UR+1(ejw) , explaining the origin of amplitude to
distortion.
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Typical behaviors of this quantity are illustrated in Fig. 8.2-1(b). Assuming
the prototype PO(z) to have ‘good’ stopband attenuation, this quantity is
significant only in the frequency interval

It can exhibit a ‘bump’ or ‘dip’ around the transition frequency (k + 1)M.
This is the source of amplitude distortion, that is, nonflatness of T(ejw) .

An Objective Function Representing the Flatness Requirement

Notice that the quantity in paranthesis in (8.2.5) is nothing but a
frequency-shifted version of

(8.2.6)

It follows that if we force this to be sufficiently ‘flat,” then T(ejw) will be
“sufficiently flat” for all frequencies. This can be accomplished during the
design of the prototype pO(n) by including a term in the objective function,
to reflect the nonflatness of (8.2.6). Such an objective function is given by

(8.2.7)

The above limits of integration are justified because T(ejw) has period =M
as shown above.

8.2.2 Design of the Prototype Filter

The prototype PO(z) is a real coefficient linear phase FIR lowpass filter with
cutoff =2M [Fig. 8.1-2(a)]. By designing it to have good stopband attenu-
ation, we improve the attenuation characteristics of all the filters Hk(z) and
Fk(z). Our choice of constants ak,bk,ck above already ensures that aliasing
and phase distortion are eliminated. By designing PO(z) such that (8.2.7) is
small, one can reduce the amplitude distortion as well.

An appropriate measure of stopband attenuation of P0O(z) is given by

(8.2.8)

(The choice of e > 0 depends on the acceptable transition bandwidth.) So
we optimize the coefficients pO(n) of PO(z) to minimize

(8.2.9)

where a is a tradeoff parameter with 0 < a < 1. Standard nonlinear opti-
mization packages [Press, et al, 1989] can be used for this.
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TABLE 8.2.1 Design example 8.2.1. Im-
pulse response of the FIR prorotype filter
for pseudo QMF design.

n Po(n)
0 —2.9592103 e-03
1 —4.0188527 e-03
2 -4.9104756 e-03
3 -5.4331753 e-03
4 -5.3730961 e-03
5 -4.5222385 e-03
6 -2.6990818 e-03
7 2.3096829 e-04
8 4.3373153 e-03
9 9.6099830 e-03
10 1.5951440 e—-02
11 2.3175400 e—02
12 3.1013020 e—02
13 3.9127130 e—02
14 4.7132594 e-02
15 5.4622061 e-02
16 6.1194772 e-02
17 6.6485873 e-02
18 7.0193888 e-02
19 7.2103807 e-02

Design example 8.2.1: Pseudo QMF Bank

We now show details of an 8-channel system (M = 8), with prototype
filter order N = 39. The coefficients of the prototye P0O(z), designed as de-
scribed above, are shown in Table 8.2.1. (Only the first halfis shown due to
linear phase). Fig. 8.2-2 shows the prototype magnitude response PO(ejw) ,
whereas Fig. 8.2-3 shows the magnitude responses of the analysis filters.
Adjacent filter responses intersect approximately at the 3 dB level. This is
consistent with the expression
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because, at the transition between two filters, only two of the M terms in
the above summation are significant, and these are required to add up to
unity.

Figure 8.2-2 Design example 8.2.1. Pseudo QMF design. Magnitude response
of the FIR linear phase prototype P0(z). Filter order N = 39.

Peak distortions Ea and Epp. Let us now look at various distor-
tions. Recall that (5.4.7) represents the gain for the £th alias component
X(zW?e),t > 0. Fig. 8.2-4 shows a plot of

(8.2.10)

which demonstrates that each of the terms Af(ejw) is very small for all w.
This shows that aliasing has been reduced satisfactorily. The quantity Ea,
which is the maximum value of (8.2.10) over all w, is the worst possible peak
aliasing distortion.

Next, Fig. 8.2-5 shows a plot of M T(ejw) . This is very close to unity
for all w, verifying that amplitude distortion has been reduced satisfactorily.
As argued earlier, T(ejw) is seen to have period 22M — 8. By design,
T(z2) has linear phase, so we need not worry about phase distortion. The
maximum peak to peak ripple of M T(ejw) , denoted Epp, is usually taken
to be a measure of worst possible amplitude distortion.

From (8.1.20) we see that T(z) has order 78, i.e., T(z) = =®&=0 t(n)z-n.
Because of the form (8.2.3), only a subset of the coefficients t(n) are nonzero.
The coefficients Mt(n) are shown in Table 8.2.2, which also verifies the linear
phase nature of T(z). In fact, we see that T(z) is nearly a delay.
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Figure 8.2-3 Design example 8.2.1. Pseudo QMF design. Magnitude responses
of the analysis filters. (a) HO(z) only, and (b) all eight filters. Filter order N = 39;
number of channels M = 8.
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Figure 8.2-4 Design example 8.2.1. Plot of aliasing error in pseudo QMF design.
The quantity (8.2.10) is shown above.

TABLE 8.2.2

QMF design.

n

23
39
55
71

Sec. 8.2 Design of pseudo QMF banks

Design example 8.2.1.
Set of nonzero coefficients of MT(z) where
T(z) is the distortion function for the pseudo

Mt(n)

0.0022752
0.0008191
0.9988325
0.0008191
0.0022752
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8.3

Figure 8.2-5 Design example 8.2.1. Plot of amplitude distortion function in
pseudo QMF bank.

EFFICIENT POLYPHASE STRUCTURES

With the constants ak,bk and ck constrained as summarized at the end of
Sec. 8.1.3, we can rewrite the expression for the analysis filters as

(8.3.1)
with 0 <= k < M — 1. Here
(8.3.2)

Since the coefficients of Q2M-1-k(z) are conjugates of those of Qk(z), hk(n)
are real as intended. As the filters Qk(z) can be represented by the structure
of Fig. 8.1-3, we can implement the M analysis filters as in Fig. 8.3-1(a).
From this figure we can write

(8.3.3)

where

(8.3.4)
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Figure 8.3-1 (a) Polyphase implementation of the M-channel cosine modu-
lated analysis bank, (b) simplified drawing, where T is a real matrix, and (c)
corresponding synthesis bank. Here K = N — 2M + 1.
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The elements tkn simplify to

(8.3.5)

where 8k = (—1)km-4. Equation (8.3.3) permits us to draw the analysis bank
as in Fig. 8.3-1(b), where T is M x 2M with elements tkn. Note that the
coefficients tkn are precisely the elements which modulate pO(n) in (8.1.37) to
obtain hk(n). The M cosine modualted filters Hk(z) are therefore obtained
by implementing the polyphase components Gn(-z2M) which come from the
single prototype PO(z), and then using the cosine modulation matrix T.
In terms of matrix notation, the analysis bank vector h(z) defined in
(5.4.1) becomes
(8.3.6)

where

(8.3.7)

To obtain the structure for the synthesis bank we use the relation Fk(z) =
z-NHKk(z-1), and write the synthesis filter vector f(z) in terms of the anal-
ysis filter vector h(z) as

(8.3.8)

This system can be implemented as shown in Fig. 8.3-1(c), where the quan-
tity K=N - 2M + 1.

In practice, we have decimators following the analysis filters, and ex-
panders preceding the synthesis filters (Fig. 5.4.1). These devices can be
moved by employing the noble identities (Fig. 4.2.3) to obtain more effi-
cient polyphase structures. Figure 8.3-2 shows this scheme for the analysis
bank, where the filters Gn(-z2) operate at the lowest possible rate. Similar
arrangement can be obtained for the synthesis bank.

Figure 8.3-2 Improved polyphase implementation of the pseudo QMF analysis
bank, with decimators moved “all the way to the left.”
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8.4

Implementation Using the Discrete Cosine Transform (DCT)

A special case of interest arises when the filter length N + 1 is restricted
to be N + 1 = 2mM for some integer m. In this case, the polyphase struc-
ture can be redrawn in such a way that the main computational load is
represented by a M x M matrix called the discrete cosine transform (DCT).
Moreover, this matrix can be implemented using fast transform techniques
[Yip and Rao, 1987]. Details of this special case are developed in the next
few sections, where we also show how to modify the results of the present
section to achieve perfect reconstruction in cosine modulated QMF banks.

Computational Complexity of Pseudo QMF Systems

We can implement the analysis bank as in Fig. 8.3-1(b), where Gk(z) are
the 2M polyphase components of PO(z). The total number of multiplications
and additions required for these components is nearly equal to the order
N of the filter PO(z). So the complexity of the analysis bank is equal to
about N multipliers and adders, plus the overhead required to implement
the modulation matrix. The exact cost of this overhead depends on the value
of M and the details of the fast DCT. Assuming this cost is negligible for
simplicity, the complexity of the analysis bank is about N/M MPUs (and
the same number of APUs). Recall from Sec. 6.7 that, for this same filter
order N if N >> M, the perfect reconstruction system is only about two
times more expensive.

DEEPER PROPERTIES OF COSINE MATRICES

The cosine modulation matrix T which appears in the pseudo QMF struc-
ture of Fig. 8.3-2 satisfies some very useful mathematical properties. These
properties, while not obvious, are important in the design of perfect recon-
struction cosine modulated filter banks, as we see in Sec. 8.5. The purpose
of this section is to state and prove these properties.

8.4.1 The DCT and DST matrices

We first introduce the discrete cosine transform (DCT) matrix C, and the
the discrete sine transform (DST) matrix S. These will play a crucial role
in the theory as well as fast implementation of the cosine-modulated perfect
reconstruction systems to be studied in Sec. 8.5.

The discrete cosine transform has been known since the early seventies
[Ahmed, et al., 1974]. Four types of DCT and DST matrices have been
documented in the literature [Yip and Rao, 1987]. Of these only Type 4
matrices are relevant to our discussion. These are M x M matrices with
elements

(8.4.1)
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We omit the adjective 'Type 4' in all further discussions. Evidently C and
S are real. They satisfy the following properties.

1. Symmetry, that is, CT = C, and ST = S.
2. C and S are related as
(8.4.2)

where

(8.4.3)

and J is the reversal (or anti-diagonal) matrix defined in Appendix A
(Sec. A.2). In words, if we renumber the nth column of S as the
(M — 1 — n)th column (for each n), and insert a minus sign on all
elements of every odd numbered row, the result is the C matrix. We
can also rewrite (8.4.2) as S =I'CJ, since '-1 =T and J-1 =J.

3. C and S are orthonormal, that is, CTC = STS = |. By combining with
symmetry, we have C2 = S2 = | so that C-1 = C and S-1 = S.

Proofs

The first property is obvious. A proof of the second property is requested
in Problem 8.6. We will now prove the third property. It is sufficient to prove
orthonormality of C. Orthonormality of S then follows from S = I'CJ.

Orthonormality of C. Consider Fig. 8.4-1 which is a system with
2M inputs and M outputs. Here, W is the 2M x 2M DFT matrix, W =
e-j21/2M, and Bn = W-(n+0.5)/2. This system has a M><2M transfer matrix,
which we denote as V. This matrix has elements

So we can write
(8.4.4)

In other words, except for the scale factor v2M, the first M columns of vV
are the same as those of C. (The x denotes an M x M matrix whose details
are not relevant here.) By using the structure of Fig. 8.4-1 one verifies that

(8.4.5)
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where AP and Aw are diagonal matrices of sizes 2M x 2M and M x M
respectively, with diagonal elements

(8.4.6)

and U is the left 2M x M submatrix of W*. By using the fact that

we can verify

In Problem 8.7 we verify that the first term above is 2MI and the second
term is zero. This proves that CTC = 1.

Figure 8.4-1 Pertaining to the proof that the DCT matrix is orthonormal.

8.4.2 Cosine Modulation Expressed Using DCT and DST

Consider the cosine modulation matrix T in the pseudo QMF structure of
Fig. 8.3-2. We now show how this can be expressed in terms of the DCT
and DST matrices. Recall that T is M x 2M with elements tkn as in (8.3.5),

where N is the order of the prototype filter.
We consider only the special case where the filter length N + 1 and the
number of channels M are related as

(8.4.8)

for some integer m. Let us partition T as

(8.4.9)
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where A0 and Al are M x M. We will show that these matrices can be
expressed in terms of the DCT and DST matrices as follows:

(8.4.10)

(8.4.11)

Here /¢ and Ns are M x M diagonal matrices with diagonal elements
(8.4.12)

Notice that for fixed m, one of these two diagonal matrices is null, and the
other has diagonal elements +1. Using the above expressions for A0 and Al
we will also show that they satisfy

(8.4.13)
(8.4.14)
(8.4.15)
Readers interested only in the consequences of these relations can skip the
following proof, and proceed to Sec. 8.5.
Proof of the Relations (8.4.10)-(8.4.15)
For N = 2mM — 1, the elements tkn in (8.3.5) become

(8.4.16)
where

(8.4.17)
and

(8.4.18)
The elements of the M x M matrix A0 are therefore

(8.4.19)

The elements of Al are found by replacing n with n + M in (8.4.16), and
simplifying. Thus

(8.4.20)
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8.5

The quantities cos @k and sin @k can be simplified into

(8.4.21)

Using the diagonal matrices /\¢ and /\s we can then express

(8.4.22)

Depending on the value of m, this expression can be simplified further. If
m is even then As = 0 and [Aclkk = *1. If m is odd, then the opposite
situation prevails. This leads to the simplified relations claimed in (8.4.10)
and (8.4.11).

if m is even, we find from (8.4.10)

(8.4.23)
(8.4.24)
(8.4.25)

The three properties of C and S listed at the beginning of Sec. 8.4.1 imply,
in particular, C2 = S2 =1, and CI'S = SI'C = J. As a result the above
relations reduce to (8.4.13)-(8.4.15) indeed. For odd m the proof can be
carried out similarly.

COSINE MODULATED PERFECT RECONSTRUCTION SYSTEMS

By using the results of the previous sections, it is now very easy to ob-
tain a maximally decimated FIR perfect reconstruction system in which the
analysis filters are related by cosine modulation [as in (8.1.37)], and the syn-
thesis filters are as in (8.1.19a). This observation was made independently
by Malvar [1990b], Ramstad [1991] and Kaoilpillai and Vaidyanathan, [1991
and 1992]. Among all FIR perfect reconstruction systems known today for
arbitrary filter lengths, this system is perhaps the simplest (both in terms of
design and implementation complexities). It inherits all the simplicity and
elegance of the cosine modulated pseudo QMF system and yet offers per-
fect reconstruction property. We now proceed to derive this. Historically, a
special case of this result for N = 2M — 1 was first reported [Princen and
Bradley, 1986], [Malvar and Staelin, 1989], and is related to the concept of
lapped orthogonal transforms (LOT, Sec. 6.6). The result of this section
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can be considered to be a generalization of the LOT, and is presented in
Malvar [1990b] in that light. Our presentation here is based on Koilpillai
and Vaidyanathan [1991a, 1992].

Expression for the Polyphase Matrix E(z)

For the cosine modulated system the analysis bank has the structure
shown in Fig. 8.3-1(b), where Gk(z) are the 2M polyphase components of
the prototype PO(z) (see Fig. 8.1-1). Thus,

(8.5.1)

where e(z) is the delay chain vector [egn. (5.4.1)] and gi(z) are diagonal
matrices with

(8.5.2)

Comparing with h(z) = E(zM)e(z), we identify the polyphase matrix E(z)
of the analysis bank as

(8.5.3)

Using the partition T = [A0 Al] as before, we have

(8.5.4)

8.5.1 Forcing E(z) to be Paraunitary when N + 1 = 2mM

From Chapter 6 we know that we can achieve perfect reconstruction by
constraining E(z) to be paraunitary (i.e., E(z)E(z) = dl) and taking the
synthesis filter coefficients to be the time reversed conjugates as in (6.2.6).
Recall that the paraunitary property is the same as losslessness, since we
are discussing only causal FIR systems. The main result is summarized as
follows:

& Theorem 8.5.1. Let the prototype PO(z) be a real-coefficient FIR
filter with length N +1 = 2mM for some integer m. Assume p0(n) = pO(N -
n) (linear phase constraint). Let Gk(z), 0 < k < 2M — 1, be the 2M
polyphase components of PO(z). Suppose the M analysis filters Hk(z) are
generated by cosine modulation as in (8.1.37) with 8k = (—1)kz4. Then
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the M x M polyphase component matrix E(z) is paraunitary if, and only if,
Gk(z) satisfy the pairwise power complementary conditions

(8.5.5)
for some a > 0. <
Proof. From (8.5.4) we have
(8.5.6)
Since A0 and Al satisfy (8.4.13)-(8.4.15), this becomes
(8.5.7)

Since N+ 1 = 2mM, each polyphase component Gk(z) has length m, that is,
order m— 1. The relation pO(n) = pO(N —n) imposes the following constraint
on these polyphase components (Problem 8.8):

(8.5.8a)
In other words the diagonal matrices g0(z) and gl(z) are related as

(8.5.8b)
(Recall from Appendix A (Sec. A.2) that JDJ has the effect of reversing

the order of the diagonal entries of a diagonal matrix D.) If this relation is
used in (8.5.7), the second term vanishes, and

(8.5.9)

It is now clear that E(z) is paraunitary if, and only if,
(8.5.10)

This condition is equivalent to saying that the polyphase components Gk(z)
and GM+k(z) are power complementary, that is, that (8.5.5) holds.

Remark. The cosine modulated pseudo QMF system developed in Sec.
8.1 and 8.2 satisfies the relation (8.1.19a). Furthermore if the filters are
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well-designed as described in Sec. 8.2, the system is almost like a perfect
reconstruction system (as demonstrated by Design example 8.2.1). This
suggests, in view of Theorem 6.2.1, that E(z) is “almost paraunitary”. This

leads us to expect that E(z)E(z) is “almost a diagonal matrix,” and the
diagonal elements are "almost constant.” This, indeed, has been verified
with the help of several design examples. This also shows that, if we force the
matrix E(z) to be paraunitary apriori, that is, before optimizing the filter
coefficients, then the resulting filters are almost the same as the pseudo
QMF filters, except that they satisfy the perfect reconstruction property
“perfectly”!

8.5.2 The Design Procedure

We know that all the analysis filter responses are controlled by the prototype
response PO(ejw) . As in Sec. 8.2.2 we have to optimize the coefficients of
PO(z) to minimize an objective function. For pseudo QMF design we mini-
mized a linear combination of @l and @2 [defined in (8.2.7) and (8.2.8)]. But
in the present case, it is sufficient to minimize only the stopband energy ¢2.
The quantity @1 which represents the degree of nonflatness of T(ejw) is au-
tomatically zero, because of the perfect reconstruction property guaranteed
by paraunitariness of E(z).

Instead of minimizing the stopband energy @2, it is also possible to
minimize the maximum magnitude of PO(ejw) in its stopband region. Either
of these minimizations can be done using standard optimization routines
[Press, et al., 1989], [IMSL, 1987].

Imposing Paraunitary Constraint Using Two-Channel Lattice

During optimization it is however necessary to impose the paraunitary
constraint on E(z), which we have shown to be equivalent to the power com-
plementary constraint (8.5.5). Now the power complementary property is

equivalent to the condition that the FIR vector [6kiz)GM+kz)] be paraunitary.

In a manner similar to Sec. 6.4, this paraunitary vector can be implemented
with the cascaded lattice structure of Fig. 8.5-1. (This will be proved in
Sec. 14.3.2). Conversely, the transfer functions Gk(z) and GM+k(z) in this
structure remain power complementary [i.e., satisfies (8.5.5) with a = 1]
regardless of the values of the angular parameters 6k,8. This follows because
the matrices RKk,! are unitary; see Sec. 6.1.2.

The cosine modulated analysis bank, shown earlier in Fig. 8.3-2., now
takes the appearance shown in Fig. 8.5-2. We now optimize the angles
Bk,t so as to minimize @2. During optimization, each lattice section remains
paraunitary regardless of the values of 6k,t so that the pair (Gk(z), GM+k(z2))
remains power complementary (i.e., satisfies (8.5.5) with a = 1). Thus, at
the end of optimization, the matrix E(z) remains paraunitary, guaranteeing
perfect reconstruction.
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Figure 8.5-1 (a) Representation of the power complementary pair of functions
[Gk(z), GM+k(z)] using a lossless lattice. (b) Details of Rk,8. Here ck! = cos6k,!
and skt = sinBk,L.

Figure 8.5-2 Implementation of cosine modulated PR analysis filter bank.
Each polyphase component pair [Gk(-z2), GM+k(-2z2)] is implemented by a two-
channel lossless lattice.
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Number of parameters to be optimized. In view of the linear-
phase relation (8.5.8a), only M/2 lattice sections [(M - 12 for odd M; see
below] need to be optimized. For example, let M = 17. Since 2M = 34, there
are 34 polyphase components Gk(z). The pair [G0O(z),G17(z)] is generated
using one lattice structure, the pair [G1(z), G18(z)] using another lattice
structure, and so on. Thus the first eight lattice structures generate the

sixteen polyphase components

(8.5.11)

From these we can find the sixteen polyphase components

(8.5.12)

by use of the linear phase constraint (8.5.8a). There are two more compo-
nents G8(z) and G25(z) to be determined. But the linear phase constraint
implies

(8.5.13)

so that (8.5.5) reduces to

(8.5.14)

Thus we have to choose G8(z) = V0.5az-K and G25(z) = V0.5az(m-1-K).

For odd M, we can generalize this discussion and show (Problem 8.9)
that

Using the fact that PO(z) is a lowpass filter with cutoff =2M [Fig. 8.1-2(a)],
it can be shown (Problem 8.9) that the only acceptable choice of K is given

by

(8.5.15)

Thus, K is completely determined. Moreover a does not affect frequency re-
sponses except for a scale factor. Thus, the only parameters to be optimized
are the parameters 0kt of the eight lattice structures.

More generally, the number of parameters to be optimized is nearly
equal to mM/2 = D4, which is half the number required for the pseudo
QMF approach! This technique for design of perfect reconstruction systems
is, therefore, simpler than the pseudo QMF design, and dramatically simpler
than the (more general) perfect reconstruction design described in Sec. 6.5.

Hierarchial property. If we wish to increase the prototype length, we
have to do it in integer multiples of 2M (because of the constraint N + 1 =

382 Chap. 8. Cosine modulated filter banks



2mM). This can be done as shown in Fig. 8.5-3, where one new section is
added to each lattice structure. This hierarchial approach can be used in
the design process, to recursively intialize the parameters to be optimized.
Thus we optimize the angles 6k,2 for small m, and then use these as initial
values with m replaced by m + 1. (The newly introduced parameters 6k,m

have to be initialized rather arbitrarily.)

Obtaining the analysis and synthesis filters. Once the prototype
coefficients pO(n) are obtained as above, the M analysis filters are found
from (8.1.37). The synthesis filters are then obtained as fk(n) = hk(N — n).
In general these do not have linear phase, even though P0O(z) does.

Figure 8.5-3 Explaining the hierarchial property of lattice-based design. L +1
is the number of lattice sections to be optimized.

Design Example 8.5.1: Cosine Modulated PR Systems

Let the number of channels be M = 17. For this choice of M we showed
above that only eight lattice structures have to be optimized. Suppose the
prototype filter PO(z) has order N = 101, so that m = 3. The kth lattice
structure now has three angular parameters

These 24 parameters are optimized to minimize the peak stopband error
of PO(z). Figure 8.5-4 shows the magnitude responses of PO(z) and all the

i See Koilpillai and Vaidyanathan [1992], for further details about initial-
ization. A computer program, along with documentation, is available upon

request.
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17 analysis filters. Each analysis filter offers a stopband attenuation of
about 40 dB. The impulse response pO(n) of the optimized prototype P0(z)
is tabulated in Koilpillai and Vaidyanathan [1992].

Figure 8.5-4 Design Example 8.5-1. Magnitude responses for the 17-channel
cosine modulated perfect reconstruction system. (a) Prototype of order N = 101
and (b) the seventeen analysis filters. (© Adopted from 1992 IEEE.)

In this example the number of parameters to be optimized is equal to 24.
For the same filter length and number of channels, the pseudo QMF system
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(Sec. 8.2) has 51 parameters to be optimized, whereas the more general
perfect reconstruction system (Sec. 6.5) has as many as 216 parameters!
The method described in this section therefore has the fewest parameters,
resulting in much faster design time. A more thorough comparison is given
in the next section.

8.5.3 Complexity Comparison

We will now compare three types of M-channel maximally decimated filter
banks, in terms of design complexity as well as implementation complexity.
Recall that the filter coefficients are real. The quantity N denotes the order
of the analysis filters, and M is the number of channels. The three types
are:

Type 1. The general perfect reconstruction system with paraunitary
E(z) described in Sec. 6.5, where E(z) was represented as a cascade of
paraunitary building blocks of the form (6.5.1).

Type 2. The cosine modulated pseudo QMF (approximate reconstruc-
tion) system of Sec. 8.2.

Type 3. The cosine modulated perfect reconstruction (PR) system de-
rived in this section.

Design Complexity

The number of parameters to be optimized during the design of the
analysis filters depends on N, M, and the type of filter bank. In Table 8.5.1
we have listed these, for the three types of filter banks. Table 8.5.2 shows
this number for various choices of M and N. We see that for fixed N and
M, the cosine modulated PR system has significantly fewer parameters to
be optimized than either of the other methods.

Next, in Table 8.5.3 we compare the two cosine modulated systems for
the specific case where N = 101 and M = 17. To describe this table, first re-
call that the pseudo QMF system suffers from reconstruction errors, that is,
residual aliasing and amplitude distortions. In Sec. 8.2.2 we defined quan-
titative measures for the aliasing error Ea and the peak-to-peak amplitude
distortion Epp. By varying the parameter a in the composite objective func-
tion (8.2.9), we can obtain a tradeoff between As and these reconstruction
errors. In Table 8.5.3 we have shown a number of such tradeoffs. (The error
= 10-15 in the PR case is due to machine precision.) For the same N and
M, the table also shows the attentuation As obtainable for the perfect recon-
struction system. It is clear that, when we pass from the cosine modulated
pseudo QMF system to the perfect reconstruction system, we pay a price in
terms of the stopband attenuation As. This price however is not severe; it is
less than 5 dB in most practical examples.
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TABLE 8.5.1 The number of real valued parameters to be optimized

during the design phase, for the three tyEes of FIR M-channel maximally
decimated QMF banks.

General FIR paraunitary

perfect reconstruction Cosine modulated Cosine modulated
system (section 6.5) pseudo QMF perfect reconstruction
(Type 1) (Type 2) (Type 3)
(M =1)(N+1-M/M + M2) (\+112) (\+172) Q-ary, Modd

N + 1 = filter length, M = number of channels

48 33 24
60 4 30
40 38 20
60 54 0
42 51 21
84 87 42
64 165 32
96 195 48
68 184 34
102 216 51

Implementation Complexity

In Sec. 6.7 we summarized the cost of the Type 1 filter bank in terms
of the number of multiplications and additions per unit time (MPUs and
APUs). Both Type 2 and Type 3 systems are cosine modulated systems
with polyphase implementation as in Fig. 8.3-2. If these are implemented
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like this, the analysis bank requires nearly (N + 1Ly»M MPUs and N/M
APUs in both cases, plus the cost of implementing the modulation matrix.
This additional cost is independent of the filter order N, and depends only
on M. Table 8.5.4 is a summary of the implementation costs. Once again,
the cosine modulated pseudo QMF and PR systems have significantly lower
complexity than the Type 1 perfect reconstruction system.

TABLE 8.5.3 Comparison of the two cosine modulated systems
(pseudo QMF versus perfect reconstruction). N = 101 and M — 17.

Prototype Reconstruction Aliasing

AS (dB) wS Error (Epp) Error (Ea)

Pseudo- 40.65 0.0590T1t 6.790 e-03 3.794 e-04

QMF 38.68 0.05851 2.139 e-04 3.193 e—-04

bank 38.42 0.0581m 8.749 e—05 8.113 e—04
Cosine-

modulated 35.72 0.0586T1T 8.216 e—15 1.041 e—-15
PR bank

TABLE 8.5.4 Computational complexity of the analysis bank for three types of FIR
M-channel maximally decimated QMF banks. For cosine modulated system,
cost of modulation must be added to the above numbers.

General FIR paraunitary

perfect reconstruction Cosine modulated Cosine modulated
Complexity system (section 6.5) pseudo QMF perfect reconstruction
( Paraunitary cascade (Type 2) system
implementation) (Type 3)
(Type 1)
MPU
APU

N + 1 = filter length, M = number of channels
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Implementation using the lattice. The cosine modulated PR sys-
tem can be implemented directly using the lattice structures which generate
the pairs of polyphase components (Fig. 8.5-1). The schematic for this is
shown in Fig. 8.5-2. From Chapter 6 we know that the two-channel lattice
structure can be redrawn with two-multiplier sections (Fig. 6.4-2), by ex-
tracting some scale factors. If this is done, the complexity of the analysis
bank (i.e., the number of MPUs and APUSs) remains nearly the same as for
the direct polyphase implementation of Fig. 8.3-2.

8.5.4 Implementing Cosine Modulation with DCT and DST

In Sec. 8.4 we established a relation between the cosine modulation matrix
T =[A0 Al] and the DCT and DST matrices. These relations are given
in (8.4.10), (8.4.11), and hold when N + 1 = 2mM. Based on this we can
redraw the analysis bank entirely in terms of the DCT matrix C. This holds
for both types of cosine modulated systems, that is, Type 2 (pseudo QMF)
and Type 3 (perfect reconstruction).

Case When m is Even

The details depend on whether m is even or odd. We assume that m
is even. (We leave it to the reader to work out the odd m case.) Since
S = I'CJ we can rewrite these entirely in terms of C to obtain

(8.5.16)

The set of M analysis filters can be expressed as in (8.5.1), where e(z) is
the delay chain vector defined in (5.4.1). By using the above A0 and Al we
obtain

(8.5.17)
Here gi(z) are the diagonal matrices of polyphase components, defined as in
(8.5.2). Using (8.5.17) we can draw the analysis bank as in Fig. 8.5-5(a).
Fig. 8.5-5(b) shows the more explicit structure in terms of Gk(z). (The
decimators can be moved to the left as we did earlier in Fig. 8.3-2.)
Recall that the synthesis filters are given by fk(n) = hk(N — n). From
this we obtain the synthesis bank structure of Fig. 8.5-6, which the reader
is requested to justify in Problem 8.10.

Fast implementation of the DCT. The DCT matrix C in the above
figures can itself be implemented using fast techniques. A quick way to see
this is to note that C can be embedded into the matrix V as shown in
(8.4.4). This matrix can, in turn, be implemented as in Fig. 8.4-1. The
main cost here is the implementaion of W*, where W is the DFT matrix.
W=* can be implemented efficiently by use of the Fast Fourier Transform
(FFT) [Oppenheim and Schafer, 1989]. For more efficient and direct ‘fast
DCT algorithms', see Yip and Rao [1987] and references therein.
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Figure 8.5-5 The cosine modulated analysis bank in terms of DCT. (a) Using
matrix notations and (b) using more explicit notations. Here N + 1 = 2mM, and
m = even.
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Figure 8.5-6 The cosine modulated synthesis bank, when N + 1 = 2mM, with
m = even.

8.5.5 Advantages of the Cosine Modulated PR System

We now summarize the advantages of the FIR cosine modulated perfect
reconstruction system.

1. All analysis filters Hk(z) are obtained from a real coefficient prototype
PO(z), by cosine modulation as in (8.1.37). Only this prototype has to
be optimized during the design, so that the design complexity is low.
Due to the paraunitary constraint on the polyphase matrix, the number
of parameters to be optimized is in fact only about half the number used
in pseudo QMF design. Tables 8.5.1 and 8.5.2 give quantitative details.

2. With the synthesis filters chosen as fk(n) = hk(N — n), we have per-
fect reconstruction. (In particular the analysis and synthesis filters have
same order N). The objective function to be minimized during opti-
mization of the coefficients of PO(z) is therefore very simple, and has to
reflect only the stopband attenuation of PO(z).

3. If we optimize the lattice coefficients 6kt as in Sec. 8.5.2, then the
paraunitary constraint is automatically imposed during the design of the
prototype P0O(z). So we can use an unconstrained optimization routine
to compute 6k,

4. The implementation complexity for the entire analysis bank is equal to
the cost of the prototype PO(z) plus the modulation cost (which depends
on the number of channels M but not on the filter order N). This is
same as that of the pseudo QMF system.

5. The modulation cost can be reduced by expressing the analysis and
synthesis banks in terms of the DCT matrix (Figs. 8.5-5 and 8.5-6), for
which there exist fast implementations.

Summarizing, the system has all the advantages and simplicity of the
cosine modulated pseudo QMF system of Sec. 8.1, and in addition offers
perfect reconstruction. The price paid for this is in terms of reduced stop-
band attenuation of the prototype PO(z), but this is a minor loss in practice
(Table 8.5.3).

It should be emphasized that, even though the prototype filter has linear
phase, the cosine modulated analysis filters do not, in general, have linear
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phase. In fact, if we give up the linear phase property of the prototype,
there are some advantages [Nguyen, 1992b]. Also see [Mau, 1992] for further
generalizations.
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8.2.

8.3.

8.4.

8.5.

8.6.
8.7.

8.8.
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PROBLEMS

In the pseudo QMF system discussed in Sec. 8.1 and 8.2, there is some resid-
ual aliasing distortion, which is measured by the quantity (8.2.10). Suppose we
construct a new filter bank in which each Fk(z) is interchanged with the cor-
responding Hk(z). How is the measure (8.2.10) affected? How is the distortion
function T(z) affected?

For the pseudo QMF system we can find the synthesis filters either from (8.1.38)
or from the relation fk(n) = hk(N — n) where hk(n) is as in (8.1.37). Verify
that these two yield the same synthesis filter coefficients.

Let Hk(z) be a transfer function of the form

(P8.3a)

where K0 is a half-integer (i.e., k0 — 0.5 is an integer) and €! is arbitrary. Show
that the impulse response of Hk(z) has the form

(P8.3b)

where h(n) is the impulse response of H(z), which is defined by

(P8.3c)

Suppose we wish to design two-channel real coefficient FIR perfect reconstruc-
tion QMF banks using the method described in Sec. 8.5. Does this cover every
design that can be generated using the two channel lattice structure of Sec.
6.4.3?

Consider the three types of FIR filter banks summarized in Sec. 8.5.3. Suppose
M = 15 and filter lengths N + 1 = 60.
a) For each type, what is the number of parameters to be optimized during
the design phase?
b) For each type, what are the number of MPUs and APUs required to im-
plement the analysis bank?

Show that the DCT matrix C and DST matrix S are related as in (8.4.2).

Consider the expression inside the brackets in (8.4.7). Show that

(P8.7)

Note. the second equality requires more work.

Assuming that the prototype satisfies the linear phase condition, pO(n) =
pO(N — n), establish the relation (8.5.8a) among the 2M polyphase compo-
nents. (Note. N+ 1 =2mM.)
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8.9. Let the 2M polyphase components of P0(z) satisfy (8.5.5) as well as (8.5.8a).

8.10.

8.11.

Assuming N + 1 = 2mM and that M is odd, verify that
(P8.9)

Show further that K satisfies (8.5.15). You can use the fact that PO(z) is a
linear phase lowpass filter with cutoff =2M.

In the text we saw that the analysis bank represented by (8.5.17) can be im-
plemented as in Fig. 8.5.5. Let the M synthesis filters be chosen as fk(n) =
hk(N — n). Then show that the synthesis filter bank can be realized as in Fig.
8.5-6. Also draw the structure more explicitly in terms of polyphase compo-
nents (i.e., as we did in Fig. 8.5-5(b) for the analysis bank).

Let PO(z) be the FIR prototype described in Theorem 8.5.1. Let the polyphase

components of this prototype satisfy (8.5.5). Show then that P0O(z)P0(z) is a
Nyquist(2M) filter.
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9.0

9.1

PART 3 Special Topics

OOuUuantization effects

INTRODUCTION

In any digital filter bank implementation, the multipliers as well as internal
signals have to be represented in quantized form. The effect of this quan-
tization is that the filter output is different from the ideal one. Broadly
speaking, we can classify the quantization effects into three categories, viz.,
coefficient sensitivity effects, roundoff noise and limit cycles. In this chapter
we will analyze these effects quantitatively. In Appendix C we will deal with
another important effect in filter bank systems, arising due to quantization
of subband signals.

TYPES OF QUANTIZATION EFFECTS

Consider Fig. 9.1-1(a) which shows the implementation of a first order digital
filter with transfer function H(z) = {1 — az-1). If the signal yi(n — 1)
and multiplier a are represented with a certain precision, then the product
ayi(n - 1) in general requires a higher precision. So the signal yi(n) requires
higher precision than yi(n-21). Since yi(n) is circulated back during the next
cycle, this process continues indefinitely, implying infinite bit accumulation.

In a practical system this is not feasible, and the result of a computation
has to be quantized before recirculation. This is indicated schematically as
shown in Fig. 9.1-1(b), where the box labeled Q represents a quantizer. The
signal y(n) which is recirculated is the quantized version of an intermediate
signal w(n), and we write y(n) = Q[w(n)]. In general there could be more
than one quantizer in a system, but in order to avoid infinite bit accumulation
it is sufficient to make sure that there are no loops without quantizers.
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Figure 9.1-1 (a) A first order filter, and (b) implementation with a quantizer
in the loop.

Effects of Multiplier (or Coefficient) Quantization

Quantization of the multiplier coefficients, for example, a in the above
figure, results in a change of the transfer function from H(z) to Hq(z). Thus,
the passband and stopband ripples after quantization can be significantly
larger than the specified values. As an extreme case a stable filter may
become unstable after coefficient quantization.

In a filter bank system, coefficient quantization can result in deeper
consequences. For example, a QMF bank may lose the alias-free property,
or perfect reconstruction (PR) property, because of multiplier quantization.
It turns out, however, that in any perfect reconstruction system with pa-
raunitary polyphase matrix, the paraunitary property (and hence the PR
property) can be retained in spite of multiplier quantization. (In this sense
the structure is 'robust' to quantization.) This will be justified only in Sec.
14.11 where we show how the paraunitary property of an M x M matrix
can be retained in spite of coefficient quantization. A special case of this has
already been noticed in Sec. 6.4.1 (two channel QMF lattice). In Sec. 5.3.5
we also studied a two channel IR QMF bank which is free from aliasing as
well as amplitude distortion in spite of coefficient quantization.

Effects of Signal Quantization

The effect of quantizing internal signals is mote involved. Consider
again Fig. 9.1-1(b). The quantity

(9.1.1)

is called the quantizer error, and is a function of time n. We can model
the structure as shown in Fig. 9.1-2. We say that q(n) is the noise source
associated with the quantizer. Notice that the output y(n) in Fig. 9.1-2
is different from the ideal output yi(n) in Fig. 9.1-1(a). The difference
y(n) — yi(n) is not equal to the quantizer error q(n). This is because the
effect of quantizer accumulates with time as explained below.

We can think of q(n) as an input to the filter (just like u(n) is). Its
effect on the output is governed by the transfer function between q(n) and
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y(n), called the noise transfer function. This is given by

(9.1.2)

which, in this example, happens to be the same as the filter transfer function
H(z). Let e(n) denote the output of the system G(z), in response to the input
g(n). Then the signal y(n) can be written as y(n) = yi(n) + e(n), where yi(n)
is the output of the ideal system of Fig. 9.1-1(a). So the noise source affects
the filter output in a manner which depends on the noise transfer function.

Figure 9.1-2 The roundoff noise model for the structure of Fig. 9.1-1(b).

In order to understand the effect of q(n) on the filter output more quanti-
tatively, it is common practice to model g(n) as a random process (Appendix
B), satisfying a set of simplifying assumptions. This allows us to estimate
the variance of the noise which actually reaches the filter output, using sim-
ple and elegant techniques. The main point to note here is that the effect
of signal quantization is to contribute a random component e(n) to the fil-
ter output. Under some conditions, quantization also results in nonrandom
components, called limit cycles. We will return to this in Sec. 9.6.

Subband Quantization

In subband coding applications, a third source of noise exists, due to
quantization of the subband signals. This tends to dominate the total noise
whenever it is present, but its effect is difficult to analyze. We will study this
in Appendix C. In this chapter we will concentrate only on quantization noise
due to filter implementation. Such a study is useful in many applications, for
example, in voice privacy systems (Sec. 4.5.3) and transmultiplexers, where
subband quantization effects do not dominate.

Chapter Outline

In Sec. 9.2 we present a brief summary of well known techniques for
roundoff noise analysis. In Sec. 9.3-9.5 we use this to present a roundoff
noise analysis for multirate filter banks. In Sec. 9.6 we consider limit cycles.
We return to coefficient quantization effects in Sec. 9.7. It will be seen that
many filter bank structures exhibit low passband sensitivity to coefficient
quantization, particularly if the polyphase matrix E(z) is paraunitary.
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9.2

Special prerequisites. We review the standard noise analysis tech-
niques in Sec. 9.2. It is, however, assumed that the reader has some famil-
iarity with fixed-point binary number representation, and random process
representation of noise waveforms. Thus, we make free use of such terms as
(a) b-bit fixed point arithmetic, (b) uncorrelated white noise source, (c) noise
source with variance o2gand so on. There exist excellent treatements of this
material [Oppenheim and Schafer, 1989], [Jackson, 1989], and [Rabiner and
Gold, 1975]. Appendix B includes a brief review of random process, and we
will freely use the definitions and properties in that appendix (e.g., uniform
random variables, wide sense stationary random process, autocorrelation,
power spectrum, white noise, and so on).

REVIEW OF STANDARD TECHNIQUES

9.2.1 Quantizers and Noise Models

All signals are represented as fixed point binary fractions, as shown in Fig.
9.2-1. This is a b-bit binary representation, with s representing the sign bit.
We say that b is the wordlength. If s = 0 the number is nonnegative, whereas
with s = 1 the number is nonpositive, and its decimal value depends on
the convention chosen (e.g., two’s complement convention, sign magnitude
convention, etc.). All the numbers representable in this form are in the
range —1 < x < 1 (with x = —1 permitted only in some conventions, e.g.,
two’s complement). This is said to be the permissible dynamic range. The
quantity

(9.2.1)

is the smallest positive number permitted, and is also the smallest possible
increment. It is said to be the quantization step or stepsize.

Figure 9.2-1 Format for the b-bit fixed-point binary fraction.

Quantizers

A quantizer is a device which takes an arbitrary real number and con-
verts it into a b-bit fraction using some arithmetic rules. Thus, the quantizer
input [e.g., w(n) in Fig. 9.1-1(b)] need not be a b-bit fraction, but its out-
put is. In this process, some error is introduced, and is denoted as q(n)
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[see (9.1.1) and Fig. 9.1-2]. We say that q(n) is the noise source due to
the quantizer. If w(n) does not belong to the permitted dynamic range, we
say that a computational overflow has occured. The quantizer brings the
number back to the permitted dynamic range by using certain rules (called
overflow handling rules). So y(n) still belongs to the dynamic range, but the
error q(n) is large.

Assume that there is no overflow, that is, w(n) belongs to the dynamic
range. In general w(n) may still have more than b bits in its representation,
that is, there could be some extra bits to the right of the bth bit in Fig.
9.2-1. When this is converted to a b bit number, the error g(n) is 'small' and
is of the order of the quantization step A. The exact details depend on the
type of quantizer, that is, the rule used for quantization. Some rules are:
(a) roundoff arithmetic where y(n) is the quantized number closest to w(n),
(b) magnitude truncation, where the magnitude of quantized number y(n)
is no larger than that of the unquantized number w(n), and (c) truncation
arithmetic, where the extra bits to the right of the b bits are merely discarded.

The Noise Model Assumptions

Unless mentioned otherwise, we will assume roundoff arithmetic. In this
case, we have

(9.2.2)

We will assume that q(n) is a random variable, uniformly distributed in the
above range. Under this condition, it has zero mean and variance

(9.2.3)

We make the further assumption that the sequence q(n) is a white, wide
sense stationary (WSS) random process. Summarizing, the quantizer noise
source g(n) is zero-mean white, with variance o02q

Multiple noise sources. In most practical structures, there are many
quantizers. Fig. 9.2-2 shows the example of a cascade form structure (Sec.
2.1.3) with two quantizers. In such situations, each quantizer is replaced with
a noise source, as shown by broken lines. We assume that each noise source
satisfies the above model (i.e., white, etc.). To study the total effect of these
at the filter output, we assume that any two noise sources are uncorrelated,
and that each of them in turn is uncorrelated to the input u(n). These
assumptions will enable us to add the noise variances due to various sources,
in order to obtain the total output noise variance.

Examples which violate these assumptions are not hard to generate (e.g.,
when the filter input is a sinusoid). However, in a large number of situations,
the above assumptions have been verified to be reasonable [Barnes, et al.,
1985]. In any case, noise analysis under these assumptions gives a very
good qualitative idea of the nature of noise propagation. For example, one
of the useful conclusions obtainable is that, in a direct form structure, the
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output noise variace increases as the poles get closer to the unit circle [see
discussions following (9.2.6) later].

Figure 9.2-2 A cascade form structure, with two quantizers.

9.2.2 Noise Gain of a Filter

In Fig. 9.1-2 we associated a noise transfer function G(z) with the noise
source q(n). This transfer function governs the extent to which q(n) affects
the output. More generally let there be many quantizers in the structure,
each modeled by a noise source gk(n). Let Gk(z) denote the transfer function
from the noise source gk(n) to the filter output. We say that Gk(z) is the
noise transfer function for gk(n).

Let ek(n) denote the output of Gk(z) in response to the input gk(n).
Under the above noise model assumptions, ek(n) is a zero mean WSS random
process with variance

(9.2.4)

where gk(n) is the impulse response of Gk(z). The summation in (9.2.4) is the
energy of Gk(z). So the output noise variance is the quantizer noise variance
amplified by the energy of the noise transfer function (which is therefore

called the noise gain).

Each of the quantizer noise sources gk(n) contributes a noise component
at the filter output. In view of the uncorrelated assumption the output noise
e(n) has total variance

(9.2.5)
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Returning to the example of Fig. 9.1-2, the impulse response g(n) of the
noise transfer function is g(n) = anU(n), so that the noise gain is

(9.2.6)

This gain increases as the pole 'a’ (which is inside the unit circle) gets closer
and closer to the unit circle. As an example, if a = 0.99 then the noise gain
= 50. This demonstrates that the noise gain can be quite large indeed.

Effect of increasing the wordlength. If we increase the number of
bits from b to b+ 1, this results in a four fold reduction in the noise variance
(using (9.2.5)). On a dB scale, this is equivalent to 10log104.0 = 6.02 dB.
So the output noise variance decreases by about 6 dB per every additional
bit of internal precision.

9.2.3 Dynamic Range and Scaling

In a practical implementation we have to ensure that the signals do not
overflow the dynamic range permitted by the number system. In order to
study this issue, it is useful to find upper bounds on the magnitudes of various
signals. In such an analysis, the presence of quantizers can be ignored, as
they do not affect these bounds significantly.

Thus consider Fig. 9.1-1(b), and ignore the quantizer for this discussion.
If the input is in the range —1 < u(n) < 1 (consistent with fixed point
fractional representation), this does not imply that the signal w(n) is in this
range for all n. It can, however, be shown that w(n) is bounded as

(9.2.7)

where f(n) is the impulse response from u(n) to the node w(n). In our
example, this impulse response happens to be the same as h(n), that is,
f(n) = anU(N). So the right hand side of (9.2.7) reduces to {1 — a). For
example, if a = 0.99, this quantity equals 100. In other words, w(n) can
get as large as a hundred!

A simple way to ensure that w(n) does not overflow (i.e., does not exceed
the range —1 < w(n) < 1), is to insert a multiplier 1/L as shown in Fig.
9.2-3, with

(9.2.8)

We then say that the structure has been scaled. The price we pay for this
freedom from overflow is that the output signal level goes down. Since the
roundoff noise level is unaffected by scaling, the signal to noise ratio is re-
duced. This is an example of interaction between roundoff noise and dynamic
range in digital filter implementations.
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It is in principle possible to reduce the roundoff noise level simply by
inserting a scale factor at the output node, but this results in reduced signal
level as well. If we try to restore the signal level by insertion of another mul-
tiplier at the filter input, this will affect the probability of internal overflow.
So, ‘finite word length' will have its effect one way or the other.

Figure 9.2-3 Scaling a first order digital filter.

Scaling a Structure

In practice, digital filter structures are more complicated than Fig. 9.1-
1. There are several internal nodes, and one has to ensure that none of these
suffers from computational overflow. Let Fk(z) be the transfer function from
the filter input to the kth internal node, and let fk(n) be its impulse response.
We say that Fk(z) is the scaling transfer function for the kth node. If

(9.2.9)

then the kth node [or the transfer function Fk(z)] is scaled to be free from
overflow. If all nodes satisfy this property, then the entire structure is said
to be scaled. Scaling can be accomplished by rearrangement of the internal
structure, which may or may not involve explicit insertion of multipliers (as
in Fig. 9.2-3).

Which nodes to scale? With certain types of arithmetic conventions
(e.g., two’s complement), it can be shown [Jackson, 1970] that only those
nodes which are inputs to multipliers have to be scaled. For example, con-
sider Fig. 9.2-4. Here every multiplier input is a delayed version of the signal
s(n). So it is sufficient to scale this node and, of course, the output node
y(n). Even if there is an overflow at any of the other nodes, it will not affect
the final output y(n). (This has to do with the fact that two’s complement
arithmetic has similarities to modulo arithmetic).

Types of Scaling

If each of the scaling transfer functions Fk(z) satisfies (9.2.9), we say
that the strcuture is sum-scaled. The structure is completely free from over-
flow, but the price paid is in terms of the signal to roundoff noise ratio at the
filter output. There exist less stringent scaling rules (called p scaling rules)
which are sufficient under some conditions. We will not go into these details
(which can be found in [Jackson, 1970] and [Rabiner and Gold, 1975-]) but
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merely mention a scheme called the 2 scaling policy. In Problem 9.4 we
cover some of the other scaling rules.

Figure 9.2-4 Pertaining to the choice of nodes to be scaled.

2 scaling. In this scheme, instead of ensuring the condition (9.2.9),
we ensure that

(9.2.10)

(usually with equality), where fk(n) is the impulse response from the input
to the kth node to be scaled. This is called 2 scaling because the above
summation is the (square of) the 2 norm of Fk(z). t If a node xk(n) is scaled
(i.e., Fk(z) is scaled) in the 2 sense, then it can be shown that xk(n) <1
as long as the filter input u(n) has energy bounded by unity, that is,

(9.2.11)

Use of 2 scaling. 2 scaling is less stringent than sum-scaling (which
guarantees complete freedom from overflow), and therefore results in in-
creased signal to roundoff noise ratio in absence of overflow. However, the
chances of overflow are higher; note that the condition (9.2.11) is rather un-
realistic. (For example if u(n) is a sinusoid, its energy is infinite.) However,

2 scaling is still useful for several reasons.

First, in most practical cases, the sequence Tk(n) is significant only over
a finite duration. If the energy of u(n) over such a duration is properly
bounded, we can still control the possibility of overflow of xk(n).

Second, if we view the input as a wide sense stationary random process
(which is sometimes a realistic assumption, at least over short segments of

t For integer p the p norm of F(z) is defined as [JRT1E(ejw) pll]1/p.
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time), we can obtain some useful conclusions. In this case, the energy of
u(n) is not finite, but only the power spectrum of u(n) is of relevance. It is
possible to obtain a bound on the variance of xk(n) as follows:

This variance can in turn be used to bound the probability of overflow at
the node xk(n) [Jackson, 1970]. If all the scaling transfer functions satisfy
(9.2.10) with equality, then we can reduce the probability of overflow at all
the internal nodes to the same value, simply by inserting a common scale
factor (as we did in Fig. 9.2-3), in front of the input. For the rest of the
chapter, we consider only 2 scaling.

9.2.4 Some Useful Special Cases

FIR Direct Form Structures

Many of the filter banks we studied are FIR systems, for which noise
analysis is fairly simple. Consider the FIR direct form structure shown in

Fig. 9.2-5(a). The transfer function is H(z) = =N-0 h(n)z-n.

Figure 9.2-5 (a) The direct form FIR structure with quantizers, and (b) the
noise model.

Here the output of every multiply/add operation is quantized, and the
noise model is shown in Fig. 9.2-5(b). All noise sources gk(n) have the same
noise transfer function, that is, Gk(z) = 1 for all k. Under the usual (white,
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uncorrelated) assumptions, the output noise variance is thus (N + 1)o2qvhere
olgis the quantizer noise variance (9.2.3). For the case of linear phase FIR

filters where we require only half as many multiplications (e.g., see Fig. 2.4-
3), the output noise variance is approximately half the above value.

Since Gk(z) = 1 and since gk(n) are white as well as uncorrelated,
the output noise e(n) is also white! This is true regardless of the transfer
function H(z) (which does not affect the noise transfer function). This is
a somewhat unusual situation, which is not common with IIR filters. For
example, in Fig. 9.1-2 the noise transfer function G(z) is not constant, and
the output noise is not white.

A second quantization scheme for the FIR case would be to carry
higher internal precision and quantize only the output y(n). This scheme
has less output noise variance (= ogonly), at the expense of higher internal
wordlength. The extra internal wordlength depends on the number of multi-
pliers as well as the multiplier precisions, and complicates things in general.
We do not consider it here.

Scaling. Since the inputs to multipliers are derived by delaying u(n),
these are already scaled. The only extra scaling necessary is to ensure that
the output y(n) does not overflow. This can be done by insertion of a scale
factor 1/L as we did in Fig. 9.2-3. The value of L depends on the scaling
policy chosen.

Allpass Cascade form

Consider Fig. 9.2-6(a) which represents a cascade of L first order filters
Hk(z), each implemented in direct form. Assuming that ok are real, Hk(z)
are allpass so that the overall filter H(z) is allpass (with real poles only).
Such real-pole allpass functions find application in power symmetric IIR
QMF banks, as seen in Sec. 5.3. In that section, a two channel IR QMF
bank was introduced with analysis filters

Figure 9.2-6 (a) A cascade of L first order allpass filters, and (b) insertion of
scaling multipliers.
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9.3

The allpass functions ai(z) have only real poles, and can be implemented
using the above cascade form.

Scaling. In this structure, the only nodes to be scaled are the inputs to
the multipliers ak. If we wish to scale these nodes in the 2 sense, then we
define sk = 2-+/(1 — aR) and insert -8k at the input of the kth section. We
also insert sk at the output of the section to ensure that Hk(z) is unaffected.
Simplifying, we obtain the scaled structure of Fig. 9.2-6(b).

Noise variance. The noise model of the scaled structure is shown in
Fig. 9.2-7, assuming that a quantizer is inserted in each section (exactly as
we did in Fig. 9.2-2). The noise transfer function for the noise source gk(n)
is

(9.2.12)

which is allpass. Under the usual noise model assumptions, the output noise
component e(n) is therefore zero-mean and white, with total variance

(9.2.13)

Complex case. These discussions can be generalized to the case where
filter coefficients and inputs are complex. In this case we have to define a
complex quantizer (with b-bit real part and b-bit imaginary part). Under
proper assumptions, many of the above results can be extended.

Figure 9.2-7 Noise model for the cascaded allpass structure.

NOISE TRANSMISSION IN MULTIRATE SYSTEMS

The study of noise generation and propagation in multirate systems is fa-
cilitated if we first note a number of useful properties exhibited by random
processes in the presence of some familiar building blocks.

Sec. 9.3 Noise transmission in multirate systems 405



Decimators and Expanders

Let x(n) be a wide sense stationary (WSS) random process with mean
m and variance o2 > 0. The following properties are easily verified (Problem
9.5).

1. If x(n) is input to an M-fold decimator, then the output y(n) = x(Mn)
is also WSS, with mean m and variance o2. In fact the autocorrelations
of y(n) and x(n) are related as Ryy(k) = Rxx(Mk) so that the power
spectrum Syy(ejw) of y(n) is related to the power spectrum Sxx(ejw) of
the input x(n) in terms of the familiar aliasing relation (4.1.4) (i.e., sim-
ply replace YD(ejw) and X(ejw) in (4.1.4) with Syy(ejw) and Sxx(ejw)
respectively.)

2. If x(n) is input to an M-fold expander (M > 0), then the output y(n) is
not WSS. For example, the random variable y(0) [= x(0)] has variance
02, whereas y(1) = 0 (which is a ‘random variable' with variance = 0).
Since the variance is not constant with time, this rules out wide sense
stationarity.

Expander/Delay-Chain Combination

Consider Fig. 9.3-1 where xk(n),0 < k < M - 1 are WSS random
processes. The signal y(n) is an interlaced version of xk(n). (This is similar
to the time-domain multiplexer in Fig. 4.5-4(a)). In general y(n) is not
WSS. For example, if x0(n) and x1(n) have unequal variances, then y(n)
has variance changing with time, and it cannot therefore be WSS.

A special example of interest arises when xk(n) are zero-mean, white-
noise sources with variance o2 for all k. Assume further that xk(n) and xm(n)
are uncorrelated for k # m. In this case, the output y(n) is zero-mean and
white (since y(n0) and y(n1l) are uncorrelated for n0 # nl) with variance o2

Figure 9.3-1 The time domain multiplexing circuit.

Paraunitary Systems

Some of the filter banks we have studied contain lossless (i.e., stable
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paraunitary) building blocks. For example, consider Fig. 9.3-2 which is
the polyphase implementation of a synthesis bank (Section 5.5). In many
examples R(z) is paraunitary. We will derive a result which applicable in

such situations.

Figure 9.3-2 A synthesis bank in polyphase form.

Let xk(n),0 < k < M — 1 be WSS random processes. These may, for
example, represent the noise generated in the analysis bank. Suppose the
following assumptions are true:

1. Each sequence xk(n) is white.

2. Any two of these sequences are uncorrelated, that is, xk(n0) and xm(n1)
are uncorrelated unless k = m and n0 = nl.

3. xk(n) have zero mean.

4. All the M sequences xk(n) have equal variance, that is, oR = o2 for all

k.

We then say that the vector

(9.3.1a)

which is a vector-random process (Section B.5, Appendix B), is WUZE(c?2).
This is an abbreviation for white, uncorrelated, zero-mean, and equal variance
02. A zero-mean WSS random (vector) process x(n) is WUZE(o?2) if, and

only if, E[x(m)xTt(k)] = 026(m — Kk)I (Problem 9.6).
Now suppose that R(z) is stable, and R(z)R(z) = dlI (i.e., lossless).

Then the vector
(9.3.1b)

has all the four properties of x(n). More precisely, y(n) is WUZE(doc?2).
(This is a consequence of the theorem to be proved below.) In view of this,
the output signal y(n) [which is a time multiplexed version of yk(n)] is a
white, zero-mean process, with variance do2. We now state and prove a
more general result, which is useful in the study of filter banks.
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9.4

&« Theorem 9.3.1. Let T(z) be ap x r transfer matrix and let TT(z)

be lossless, that is, stable with T(z)T(z) = dlp. Let x(n) and y(n) denote

the input and output (vector-)sequences. If x(n) is WUZE(o2), then the
output is WUZE(do2). O

Proof. Let Sxx(ejw) and Syy(ejw) denote the power spectral density
matrices of the vector WSS processes x(n) and y(n). We then have

(9.3.2)

In view of the WUZE property of x(n), its autocorrelation sequence is

(9.3.3)

so that Sxx(ejw) = o2lr for all w. Substituting in (9.3.2), we get Syy(ejw) =
do2lp. This shows that y(n) is WUZE(do?2) indeed.

Here are some applications of this result in filter-banks. More can be
found in the next two sections.

1. When p = r, losslessness of TT(z) also implies that of T(z), and we can
apply this to Fig. 9.3-2 with R(z) = T(z). The special case where T(z)
is a constant M x M unitary matrix also arises in filter bank theory
(orthogonal transform coding, Appendix C).

2. Another useful example arises when p = 1 and r = M. In this case T(z)
is an M channel synthesis bank, with power complementary property.
If its input is WUZE(o2), then the output is zero-mean white with
variance do2.

NOISE IN FILTER BANKS

In a complete analysis/synthesis system (as in Fig. 5.4-1), roundoff noise is
generated both by the analysis bank and the synthesis bank. In addition,
the noise due to analysis bank propagates through the synthesis bank. We
therefore have to consider not only the noise generated by individual filters,
but also the way in which the synthesis bank transmits the noise entering its
inputs. In transmultiplexers, where the analysis bank follows the synthesis
bank (Fig. 5.9-1), the reverse situation prevails (Problem 9.7).

The effect of quantization of subband signals will be studied in Appendix
C. In this section, we will concentrate only on quantization noise due to filter
implementation. We will study the noise generated by some popular analysis
banks introduced in Chap. 5 and 6. In the next section, the total noise due
to analysis and synthesis filters will be considered.

Consider the QMF bank of Fig. 5.4-1, and let the analysis filters Hk(z)
be FIR with order N. Then each output has noise component which is white,
with variance (N + 1)o2q(Sec. 9.2.4). Since the decimated version of white
noise is white, the noise ek(n) contaminating the decimated signal vk(n) is
also white. The noise components ek(n) and em(n) (k # m) are in general

408 Chap. 9. Quantization effects



not uncorrelated (unless the filters Hk(ejw) and Hm(ejw) have completely
non overlapping frequency responses, which is not the case in most filter
banks; see Problem 9.12). Surprisingly however, in most filter banks, these
noise components turn out to be uncorrelated for various other reasons (as
we will elaborate).

Summary of Notations and Assumptions

a) olgdenotes the b-bit quantizer noise variance (9.2.3), and all noise com-
ponents have zero-mean.

b) Hk(z) denotes the kth analysis filter, and N denotes analysis filter order
(which equals the synthesis filter order in all cases considered).

c) As in Fig. 5.4-1, vk(n) denotes the M-fold decimated version of the
output of Hk(z). Also, ek(n) is the noise component affecting vk(n) due
to roundoff noise in the implementation of the analysis bank. Tn other
words, vk(n) = vk,ideal(n) + ek(n).

d) All filter coefficients are assumed to be real for simplicity.

& Main points of this section. We will justify the following conclu-
sions pertaining to the noise generated by some of the popular analysis bank

systems.

Case 1. Two channel FIR system of Fig. 5.1-1(a), with H1(z) =
HO(-z). This was considered in Sec. 5.2.2 (and listed as Method 1 in Table
6.7.2). The filter HO(z) is FIR with odd order N, and hO(n) = hO(N — n).
We assume that this is implemented in polyphase form [Fig. 5.2-2(b)], with
EO(z) and E1(z) implemented in direct form. Then €0(n) and €1(n) can
be assumed to be white and uncorrelated with each other, and have equal

variance (N + 1)o2q

Case 2. Two-channel FIR perfect reconstruction (PR) system (direct-
form). (Sec. 5.3.6.) The filters are related by (5.3.28), and the order N
is odd. Here ¢0(n) and €1(n) can be assumed to be white and uncorrelated

with each other, with equal variance (N + 1)o2q

Case 3. Lattice implementation of the PR QMF bank. (Sec. 6.4). We
know that the above perfect reconstruction system can be implemented using
the lattice structure of Fig. 6.4-1. The analyis bank is reproduced in Fig.
9.4-1 (with quantizers), by setting a = 1 and n = -1 in Fig. 6.4-1. In this
system €0(n) and €1(n) can again be assumed to be white and uncorrelated,
with equal variance. But now the variance is 0.5(N + 1)o2q

Case 4. M channel FIR PR system with paraunitary E(z). (Sec. 6.5.)
Let E(z) be implemented as a cascade of simpler paraunitary building blocks
(e.g., as in Fig. 6.5-2). Assume that there is no quantization inside a building
block, and that there are M b-bit quantizers at the output of each building
block (Fig. 9.4-2). (This can be arranged by employing higher precision
for all arithmetic inside the building block; the extra precision is finite,
since there are no loops. The reader can modify the analysis for the case
where there are more quantizers.). Then, €k(n) can again be assumed to be
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white (and e€k(n) uncorrelated with €@(m) for k # £), with equal variance

(N + 1)a2e™ for all k.

Figure 9.4-1 (a) Lattice structure for the analysis bank of the two channel PR
QMF bnak. (b) Details of Rm.

Figure 9.4-2 The anlaysis bank of a FIR PR QMF bank, with paraunitary
polyphase matrix E(z). The paraunitary matrix is implemented as a cascade of
simpler building blocks U and VVm(z).

Case 5. Two channel IR QMF bank with power symmetric analysis
filters. (Sec. 5.3). We know that this can be implemented as in Fig. 5.2-5
where a0(z) and al(z) are unit-magnitude allpass. Each allpass filter can
be implemented as in Fig. 9.2-7, with slight change of notations. Thus, let
sO,m and sl,m be the scale factors used to scale the internal nodes. Also let
ki stand for the order of ai(z). In this case, €0(n) and €1(n) can be assumed
to be white, and have equal variance given by

(9.4.1)
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where

(9.4.2)

However €0(n) and €1(n) are not uncorrelated with each other.

Justifications

Case 1. Consider the polyphase implementation of Fig. 5.2-2(b). Since
N is odd, the FIR filters EO(z) and E1(z) have (N + 1}y?2 coefficients each.
So their outputs have noise components which are white, with equal variance
Ko2gwith K = 0.5(N +1). Now, the linear phase condition hO(n) = hO(N —
n) implies that the coefficients of E1(z) are time reversed versions of those
of EO(z). Inspite of this, the noise components at the outputs of EO(z) and
E1l(z) can be assumed to be uncorrelated because, the samples entering
EO(z) and E1(z) are even and odd numbered subsets of x(n), respectively.
The multipliers in EO(z) and E1(z) cannot be shared (as seen in Problem
5.3), and we cannot obtain a fifty-percent noise reduction (which is normally
obtainable in linear-phase filters).

The 2 x 2 matrix T which follows EO(z) and E1(z) in Fig. 5.2-2(b) can
be written as

This satisfies TTT = 21, and we can invoke Theorem 9.3.1 to conclude
that the noise components €0(n) and €1(n) are white and uncorrelated, with

variance 2Ko2og= (N + 1)o2q

Case 2. We know that the filter coefficients are related according to
h1l(n) = (-1)nhO(N — n), and since the same input x(n) enters both filters,
terms of the form x(i)hO(m) are shared by the filter outputs. So we cannot
claim that the roundoff noise components at the outputs of the filters are
uncorrelated. However, consider the decimated outputs

(9.4.3)

We will show that [for arbitrary x(n)] the same product hO(k)x(i) will not
be shared by the two summations. Suppose this is not true. Then we must

have
(9.4.4)

for some nO,n1,m0 and ml. Since hl(n) = (-1)nhO(N - n), this implies
m0 = N —ml and 2n0 - m0 = 2nl — ml This in turn means 2m0 =
2(n0 — nl1) + N, which contradicts the fact that N is odd. Summarizing, we
can assume that vO(n) and v1(n) are uncorrelated. Furthermore, we already
know (Sec. 9.2.4) that vO(n) and v1(n) are white with variance (N + 1)o2q
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Case 4. Since Case 3 follows from Case 4, we now proceed directly
to Case 4. The analysis bank is shown in Fig. 9.4-2, and there are J + 1
paraunitary building blocks in cascade. The Oth building block is a constant
unitary matrix U, whereas the remaining ones are degree-one paraunitary
systems. This cascade covers the situations in Fig. 9.4-1 as well, if we
replace U and Vm(z) appropriately. At the output of the mth building
block, we have the noise source vector em(n), generated by the M quantizers.
According to our noise model assumptions, each component of this noise
vector is white with variance o2gand any two components are uncorrelated.

So em(n) is WUZE(o2f The transfer matrix from em(n) to the output
terminal is a cascade of paraunitary systems and is therefore paraunitary.
As a result, the noise vector em,out(n) which contaminates the output vector

v(n) = [vO(n) ... VvM-1(n)]T is WUZE(o2}jJ Since any two noise vectors

em(n) and ef(n) are uncorrelated, the total noise vector contaminating v(n)
is WUZE((J + 1)o2f Using the relation N = MJ+ M-1 this can be written

as WUZE((N + 1)c2eM). Summarizing, the noise components ek(n) at the
analysis bank output are white and uncorrelated, with variance (N+1)o2~M.

Case 5. The allpass filters ai(z) are products of first order real coef-
ficient allpass filters, and can be implemented as in Fig. 9.2-7. From Sec.
9.2.4 we therefore conclude that the roundoff noise at the output of ai(z) is
white with variance Bio2gwhere (i is as in (9.4.2). Using standard assump-
tions, it follows that the noise components at the two allpass filter outputs
are uncorrelated. As a result, the noise components at the locations of vO(n)
and v1(n) are white, with variance (0 + B1l)o2q

FILTER BANK OUTPUT NOISE

In the QMF bank of Fig. 5.4-1, the roundoff noise components ek(n) gener-
ated by the analysis bank are propagated through the synthesis bank. This
contributes a noise component ea(n) at the output node [i.e., node labeled
X(n)]. In addition to this, the roundoff operations in the implementation of
the synthesis bank contribute a noise component es(n). So the total noise
component e(n) affecting x(n) can be written as

(9.5.1)

In other words, we can write x(n) = xi(n)+e(n) where xi(Nn) is the filter bank
output under ideal conditions (i.e., no quantizers). Under normal conditions,
we can assume that ea(n) and es(n) are uncorrelated, with zero mean. We
will now study further properties of ea(n) and es(n) for each of the five
cases listed in Sec. 9.4. In order to compare various structures on a common
ground, we will adopt some conventions:

9.5.1 Conventions and Assumptions

1. Scaling. We will insert scale factors at appropriate places to satisfy the
following requirement: signals that are inputs to appropriate computa-
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tional building blocks should be scaled in the 2 sense. This requirement
means that if the filter-bank input x(n) is white with unit variance, then
the variance at the scaled node is also unity.

2. Whenever necessary, we will insert a scale factor in front of x(n) so
that there is no discrepancy between x(n) and x(n) (except for possible
amplitude and/or phase distortions, etc.). For example, in a perfect
reconstruction system we will have x(n) = cx(n — n0), with ¢ = 1.0.

3. We will neglect the noise generated by the above scale factors, as their
contribution to total noise is small.

Figure 9.5-1 shows all the QMF banks of interest, with scale factors
inserted according to these conventions. Quantizers, which are inserted as
explained in earlier sections, are not shown just to keep the figures simple.
We now make some observations and leave it to the reader to verify them.

1. Fig. 9.5-1(a). In this system, the inputs to the filters EO(z) and E1(z)
in the analysis bank (in fact any nodes connected directly to x(n)) are
automatically scaled (in the 2 sense). The same is approximately
true of the filters E1(z) and EO(z) in the synthesis bank, under the
assumption that the analysis filter HO(z) has energy = 0.5. (This holds
to the extent that HO(ejw) = 1 in the passband and HO(ejw) = 0
in the stopband). So we do not require any scale factor except the '2'
inserted in front of x(n), to satisfy convention 2.

2. Fig. 9.5-1(b). Next consider Fig. 9.5-1(b). If we insert the three
scale factors V2 as shown, then the inputs to Fk(z) are scaled in the 2
sense, and furthermore convention 2 is satisfied.

3. Fig. 9.5-1(c). In Fig. 9.5-1(c), E(z) is implemented as in Fig. 6.5-2,
where U is unitary and Vm(z)Vm(z) = I. We assume U is normalized
such that UTU = 1. So E(z)E(z) = |. The same comments hold for the
paraunitary system R(z). As a result we have x(n) = x(n — n0), and
no scale factors are necessary to satisfy convention 2. Also, the inputs
to each of the paraunitary building blocks (Vm(z) and U) are scaled in
the 2 sense automatically.

4. Fig. 9.5-1(d). Finally, in Fig. 9.5-1(d), the allpass filters satisfy
ai(ejw) = 1. Insertion of 1/2 as indicated ensures that the inputs to
the allpass filters in the synthesis bank are scaled in the 2 sense. In
addition, each allpass filter (implemented as in Fig. 9.2-7) has its own
internal scale factors. For this figure, we have X(ejw) = ejp(w)X(ejw),
consistent with the fact that aliasing and amplitude distortion have been
eliminated.

9.5.2 Output Roundoff Noise e(n)

For each of the above cases, we can compute the output noise variance as
follows. We will freely use the standard noise model assumptions, as well as
the results in Sec. 9.2.4 (FIR roundoff noise, and allpass roundoff noise) and

Sec. 9.3.
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Figure 9.5-1 Examples of QMF banks, with scale factors inserted (a) case 1,
(b) case 2, (c) case 4 and (d) case 5.

Case 1

Each polyphase component Ek(z) in the synthesis bank, which is FIR
with length 0.5(N + 1), generates white noise dk(n) with variance 0.5(N +
1)o2gUnder normal assumptions, d0(n) and 41(n) are uncorrelated. The
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output noise es(n), which is the interlaced version of 30(n) and 41(n) (scaled
by two) is, therefore, white with variance 2(N + 1)o2q

The noises generated by EO(z) and E1(z) in the analysis bank are also
white and uncorrelated, with variance 0.5(N + 1)o2glf HO(ejw) = 1 in the
passband, then Ek(ejw) are "approximately' constant (= 0.5). We can then
verify that this contributes a noise component ea(n) (‘almost’ white) at the
output of the filter bank, with variance 2(N + 1)c2qThe total noise e(n) is
therefore essentially white, with variance 4(N + 1)o2q

Case 2

Each synthesis filter Fk(z) is FIR with order N, and its input is the
output of an expander. So only 0.5(N + 1) multiplication are involved per
computed output. Thus, the roundoff noise at the outputs of the two synthe-
sis filters Fk(z) are uncorrelated and white, with variance 0.5(N + 1)o2ceach.
So the output noise component es(n) is white, with variance 2(N + 1)o2q

To study the effect due to analysis filter noise, consider Fig. 9.5-2, which
is the synthesis bank in polyphase form. The noise entering the paraunitary
system R(z) from the analysis bank is WUZE(2(N + 1)o2fj By Theorem
9.3.1 the noise at the output of R(z) is WUZE((N + 1)o2y (This is because
R(z)R(z) = cl, with ¢ = 0.5, which is consistent with Fk(ejw) < 1). So
the noise component ea(n) is white with variance 2(N + 1)o2gSummarizing,
the total output noise e(n) is white with variance 4(N + 1)o2q

Figure 9.5-2 The synthesis bank of the PR QMF system, drawn in polyphase
form.

Case 4

We will proceed to Case 4, since Case 3 is covered by this. The synthesis
bank is implemented in a manner similar to Fig. 9.4-2 (i.e., as a cascade of
paraunitary building blocks). Here E(z)E(z) = R(z)R(z) = |. Proceeding
as in Sec. 9.4 we conclude that the noise vector at the output of R(z), due to
roundoffin synthesis bank, is WUZE((N + 1)o2¢fM). So the noise component
es(n) which is the interlaced version of these, is white with variance (N +
1)o2¢eM.

The noise entering R(z) from the analysis bank is also WUZE((N +
1)a2efM). Using Theorem 9.3.1 as before, this noise vector propagates to the
output of R(z) as WUZE((N + 1)a2efM). The interlaced version ea(n) is
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again white with variance (N + 1)o2¢M. So the total noise e(n) is white,
with variance 2(N + 1)o2¢M. For the special case of the two channel lattice
this reduces to (N + 1)o2q

Case 5.

The allpass filters ai(z) in Fig. 9.5-1(d) are implemented in cascade
form (Fig. 9.2-7), with scale factors si,m. The noise generated in the imple-
mentation of ai(z) contributes a white noise component at its output, with

variance Bio2gwhere Bi = >ki=0s2im. In the synthesis bank, the noises at
the outputs of ai(z) get interlaced. Since B0 # (31, the interlaced version
es(n) is not stationary. However, we will see that the total noise e(n) is
stationary.

Figure 9.5-3 The power symmetric QMF bank, redrawn for the purpose of
study.

Recall that the noise components €0(n) and €1(n) generated by the anal-
ysis bank are white but not uncorrelated. In order to study the properties of
ea(n) it therefore turns out to be convenient to use the equivalent structure
of Fig. 9.5-3. The noise from a0(z) in the analysis bank enters the filter al(z)
in the synthesis bank, and vice versa. So the noise at the output of ai(z) in
the synthesis bank is a white noise component with variance B1-io2qglf these
are interlaced to obtain ea(n), the result is again non stationary. However,
the total noise e(n) = ea(n) + es(n) has variance (B0 +PB1l)o2gwhich is same
for all n. Summarizing, e(n) is white with variance (0 + B1)o2q

Summary. Table 9.5.1 summarizes the output noise variance for all
the cases. It is interesting to note that the total noise e(n) at the output of
the QMF bank is white in each case. For M = 2 the variance for case 4 is
ony (N + 1)o2gwhich is four times smaller than for cases 1 and 2. This has
to do with the choice of scale factors, and is not a very significant difference.
It corresponds to about 6.02 dB improvement in noise (which is equivalent
to one additional bit of internal word length).

LIMIT CYCLES

Signal quantization in a digital filter usually generates a random error at
the filter output, as we have seen in the previous sections. Under some
conditions, however, signal quantization causes periodic oscillations called
limit cycles. The most well understood type of limit cycles are zero-input
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limit cycles. As the name implies, these are self sustained oscillations which
remain after the input u(n) has been turned off.

TABLE 9.5.1 Summary of properties of output noise e(n) in various QMF banks.

Case considered Case | Case 2 Case 4 Case 5
2-channel FIR 2-channel FIR M-channel 2-channel
linear phase QMF PRQMF FIR PRQMF 1R power
(direct form (direct form) with paraunitary E(z)  symmetric QMF
polyphase) (cascaded structure

for E(z))

Variance of output
noise e(n) 4N + 1)alq 4(N + )ozq 2(N + L)o2M (L(SO + 1)<)52q
see fext

In all cases e(n) has zero mean. For cases 2,4 and 5 e(n) is white.
For case 1, e(n) is "approximately' white (see text). N denotes filter order,
and ofis the basic quantizer noise variance.

Limit cycles arise because the quantizers, which are nonlinear elements,
are inserted in feedback loops. Even though the linear system (i.e., structure
without quantizer) is stable and therefore does not suffer from zero-input
limit cycles, the system with quantizers can support such oscillations. Two
types of limit cycles have been distinguished. The first is the granular or
“roundoff” type, which is due to the “small” error introduced by the quan-
tizer. The magnitude of this oscillation is proportional to the step size A,
and can be reduced by adding more bits of precision. The second type, called
overflow oscillations, can arise when the quantizer input exceeds the dynamic
range. These are “large” oscillations, (with magnitude close to unity!) and
cannot be reduced by adding more bits of precision. Examples of both types
can be found in Oppenheim and Schafer [1989].

It is clear that FIR filter structures are free from limit cycles, since they
have no feedback loops. Limit cycles arise only in IIR structures. In mul-
tirate filter bank systems, the only significant IIR filters we have seen are
power symmetric filters (Sec. 5.3). These systems can be implemented in
terms of allpass filters a0(z) and al(z) as shown in Fig. 5.2-5. In these ap-
plications, ai(z) are real coefficient filters and furthermore can be factorized
into first order allpass sections with real coefficients (Sec. 5.3.5). If these
first order sections are free from limit cycles, then so is the complete struc-
ture. We are therefore interested in suppressing limit cycles in first order
real coefficient sections. We will conclude this section by showing how.

First Order Sections

Consider Fig. 9.1-1(b) again, which shows a first order section with a
quantizer Q. Under zero-input conditions the behavior of the closed loop
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system is governed by the equations
(9.6.1)

and
(9.6.2)

Assume a < 1 (i.e., the system without quantizer is stable). We then have
(9.6.3)

unless y(n — 1) = 0. Suppose now that the quantizer has the property
(9.6.4)

for any number x. This is easily accomplished in practice. For example, if
the quantizer is of the magnitude truncation type, this is satisfied for any x
within the dynamic range. If x is outside the dynamic range (i.e., overflow
situation), then (9.6.4) is still satisfied because Q[x] is within the dynamic
range.
Quantizers satisfying (9.6.4) are said to be passive. With such quantiz-
ers, we have
(9.6.5)

Combining with (9.6.3) we see that y(n) < y(n - 1). But since y(n) is a
b-bit fraction with step size A, this implies

(9.6.6)

for any y(n — 1) # 0. This means that as n increases, the magnitude of y(n)
keeps decreasing (at least by A each time) until it becomes zero (in a finite
amount of time).

Summarizing, the first order section of Fig. 9.1-1(b) does not support
zero-input limit cycles of either type as long as the quantizer is passive and
a < 1

COEFFICIENT QUANTIZATION

Detailed presentations of coefficient quantization effects in digital filters can
be found in a number of references, for example, Oppenheim and Schafer
[1975], and Rabiner and Gold [1975]. So our presentation is brief, and we
will discuss only some special issues particularly relevant to multirate filter
banks. When the multiplier coefficients in a filter structure are quantized,
the transfer function changes, say from H(z) to Hq(z). This means that the
magnitude as well as phase responses have changed. In some extreme cases,
some of the poles, which are close to the unit circle, may move outside,
resulting in unstable filters. The IIR direct-form structure (demonstrated
in Fig. 2.1-5 for order N = 2) is known to be very sensitive to coefficient
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quantization, particularly for large N. The effect is less severe for FIR direct
form structures (Fig. 2.1-3), even though improved structures are available.

Magnitude response sensitivity. For linear phase FIR filter struc-
tures, the coefficient symmetry (hence linearity of phase) can be preserved in
spite of quantization (e.g., see Fig. 2.4-3). So only the magnitude response

H(ejw) changes due to quantization. For filters which do not have linear
phase (e.g., IIR), the phase response also changes, but this is usually not
of concern since it is not linear anyway. It is therefore important to discuss
only the sensitivity of the magnitude response H(ejw) .

Improved Structures

There exist structures for which the effects of quantization are less se-
vere. In general cascade form structures (Sec. 2.1.3) are less sensitive to
quantization. In these structures, quantization of a denominator coefficient
affects only one complex-conjugate pole pair (or real pole, as the case may
be). Similar comment holds for zeros. In Sec. 3.4.3 we introduced lat-
tice structures which have some other advantages. One of these is that the
transfer function remains stable as long as the quantized lattice coefficients
km (Fig. 3.4-8) satisfy km < 1. From Sec. 3.6 we know that many IIR
filters (including elliptic) can be implemented as a sum of two allpass fil-
ters (Fig. 3.6-2). Each allpass filter in turn can be implemented using the
lattice. Such structures are therefore stable even under quantization. It is
also known [Gray, Jr., 1980] that lattice structures are free from zero-input
limit cycles. Other structures with improved finite-wordlength behavior are
wave digital filters [Fettweis, 1971] and orthogonal filters [Deprettere and
Dewilde, 1980].

In this section, we will show that a number of filter bank structures
which we have presented in Chap. 5 and 6 exhibit low passband sensi-
tivity. This means that the passband response of the quantized system is
‘acceptably close' to the specified response. This is a consequence of a prop-
erty called structural passivity, which we will elaborate. In two-channel PR
QMF banks, since the analysis filters are power symmetric, this also implies
that the stopband response is well-controlled under quantization, provided
the structure retains power symmetry in spite of quantization.

9.7.1 Structural Passivity

Let mi denote the multiplier coefficients in the structure, and assume -1 <
mi < 1. (This can always be arranged, since we can write mi = integer
plus fraction, and eliminate the integer part by using adders.) Suppose
the structure is such that H(ejw) < 1 for all values of the coefficients
in the range —1 < mi < 1. (Assume further that the transfer function
remains stable for —1 < mi < 1.) We then say that the implementation
is structurally passive (or bounded) [Vaidyanathan and Mitra, 1984]. This
means, in particular, that the response is bounded by unity even if the
multipliers are quantized, as long as the quantized value does not exceed
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unity.
Consequence of Structural Passivity

Consider Fig. 9.7-1(a). This represents the ideal (unquantized) response
of a digital elliptic filter. The magnitude attains a maximum of unity at the
frequencies Bk in the passband, that is, H(ej6k) = 1. If we now quantize a
coefficient mi in the structure, the response H(ejok) can only decrease, as
demonstrated in Fig. 9.7-1(b). In other words, we have

(9.7.1)

This means that the sensitivity of the magnitude response with respect to the
coefficients, evaluated at the nominal coefficient values, is equal to zero. This
is true with respect to every coefficient, and at every extremal frequency 6k
in the pass band. If there are several extrema in the passband, we can expect
the sensitivity of H(ejw) with respect to the coefficients mi to be low for all
frequencies in the passband. (This has also been verified by simulation, as we
will demonstrate below.) This is the key behind the low passband sensitivity
of many structures, for example, wave filters and orthogonal filters mentioned
above.

Figure 9.7-1 (a) Example of an elliptic filter response, and (b) demonstrating
the effect of structural passivity.
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9.7.2 Application in QMF Banks

Power Symmetric HR QMF Bank

Consider the power symmetric IR QMF bank discussed in Sec. 5.3.
This system can be implemented as in Fig. 5.2-5 where a0(z) and al(z)
are unit magnitude allpass filters. In this system each allpass filter can be
implemented as in Fig. 9.2-7, where the coefficients ai satisfy 0 < ai < 1.
When these coefficients are quantized, the filters a0(z) and al(z) still remain
stable and satisfy ai(ejw) < 1 (as long as ai < 1 continues to hold). Since

(9.7.2)

we have Hi(ejw) < 1, that is, the implementation is structurally passive.

To demonstrate the low sensitivity property, consider the case where
ai(z) are first order filters so that HO(z) is as in (5.3.18). We now implement
this system (i.e., Fig. 5.2-5), with the allpass filters ai(z) implemented in
cascade form (i.e., as in Fig. 9.2-7). Fig. 9.7-2(a) shows HO(ejw) for
the quantized as well as ideal systems. The quantization level is 6 bits per
multiplier (i.e., b = 6 in Fig. 9.2-1). For comparison, Fig. 9.7-2(b) shows the
response of a direct form structure, with multipliers quantized to the same
level (for convenience all plots are normalized to have a peak value of unity).
It is clear that the passband response of the quantized structurally-passive
implementation is far superior to the direct-form structure. It is also worth
noting that the direct form structure does not preserve the power symmetric
property under quantization, unlike the structure of Fig. 5.2-5.

FIR Perfect-Reconstruction QMF Lattice

Consider now the two channel QMF lattice of Fig. 6.4-1. The analysis
filters are determined by the J + 1 angles 8m. The scale factor a does not
affect the sensitivity of the response and can be assumed to be 1-+/2 for the
purpose of discussion. We know from Sec. 6.4 that the analysis filters are
power complementary and satisfy Hk(ejw)|2 < 1, regardless of the values of
the angles 8m. This structure therefore exhibits low passband sensitivity.

We now demonstrate this, using the more economic structure of Fig.
6.4-3(a), and quantizing the coefficients am. For this we consider a system
designed using the technique described in Sec. 6.3.2, with filter order N =
23. Figure 9.7-3(a) shows HO(ejw) , for the quantized as well as unquantized
lattice structures. For the quantized lattice we use 8 bits per coefficient am.
For comparison, Fig. 9.7-3(b) shows the response when the impulse response
coefficients hO(n) are directly quantized (i.e., direct-form implementation).
From the passband details it is clear that the lattice structure has much
lower passband sensitivity compared to the direct form, demonstrating the
effect of structural passivity. Once again, the direct form structure does not
preserve the power symmetric property, unlike the lattice structure.

Further examples of structurally passive implementations can be found
in Problem 14.29.
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Figure 9.7-2  Magnitude response plots for quantized HR power symmetric
elliptic filters. (a) allpass-based structure (structurally passive) and (b) direct
form structure. Broken lines indicate unquantized responses.
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Figure 9.7-3 Magnitude responses for quantized FIR power symmetric filters.
(a) QMF-lattice structure (structurally passive), and (b) direct form structure.
Broken lines indicate unquantized responses.
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PROBLEMS

Note. Familiarity with the material in Appendix B will be helpful while solving

some of the following problems.

9.1. Consider the following lattice structure, where k is real with k2 < 1, and

9.2.

9.3.

9.4.

k=+v1-k2

Figure P9-1

From Sec. 3.4 we know that the transfer function H(z) is stable allpass. With
a quantizer inserted in the feedback loop as shown, draw the noise model, and
estimate the output noise variance under the usual assumptions.

Consider again the lattice structure in Fig. P9-1. There are four multipliers,
two of which have input u(n), and two of which have input x(n). So in order to
scale the structure, it is sufficient to scale the node x(n). Show that this node
is in fact already scaled in the 2 sense!

Consider Fig. 9.2-3, where a multiplier 1/L is inserted to scale the node which
represents the output of the adder. For sum-scaling, we know we have to choose
L=1-11- a).
a) For 2 scaling, how would you choose L?
b) Now assume that the input u(n) is a zero-mean white WSS random process
with unit variance, and let a = 0.99. Estimate the variance of the output
signal y(n) for the two cases (i) sum-scaling and (ii) 2 scaling.

Let p be a positive integer. The p norm of a transfer function F(z) is defined
as

(P9.4a)

Let y(n) be the output of F(z) in response to an input u(n). Let U(ejw) be the
Fourier Transform of u(n). It can then be shown that

(P9.4b)

for any pair of positive integers p, q such that p-1 + g-1 = 1. Examples are
(p=1g=o0), (q=1p=o),and (p=q=2). If Fp =1 we see that
y(n) < U q for all n. Under this condition we say that the node y(n) is
scaled in the p sense. If U g <1 as well, then y(n) < 1, that is, there is no
overflow at node y(n). (For simplicity, assume that y(n) = %1 is not considered
as overflow). Summarizing, p scaling prevents overflow if the input is such

that Ug<1

Il =

>0
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9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

a) Show that F o is equal to the maximum value of F(ejw) .

b) In each of the following cases, what kind of p scaling will be appropriate
(i.e., what p should be chosen) to avoid overflow? (i) u(n) is a sequence
with energy =n u(n) 2 = 1, (ii) u(n) = ejwin for some real w0, and (iii)
u(n) is such that U(ejw) < 1. (Note. In each of the above cases, sum-
scaling (Sec. 9.2) could also have avoided overflow, but is more stringent
than necessary.)

Let x(n) be WSS with autocorrelation Rxx(k), and let y(n) = x(Mn). Show
that the autocorrelation of y(n) is given by Ryy(k) = Rxx(MK).

Let x(n) be a zero-mean WSS process. Show that it is WUZE(o?2) if and only
if E[x(n)xt(n + i)] = 023(i)l.

Consider the transmultiplexer structure of Fig. 5.9-1. Assume that the filters
Hk(z) and Fk(z) are FIR with length N+1 = MK for some K. Let each analysis
filter Hk(z) have energy 1/M. Let ek(n) denote the roundoff noise component
affecting the node labeled xk(n). Using the usual fixed-point b-bit roundoff
noise model, estimate the variance of ek(n). With no further assumptions, can
you say that ek(n) and e(m) are uncorrelated for k # £?

Consider the two-stage decimation filter of Fig. 4.4-5(b). (This was the topic of
Sec. 4.4.2 which should be reviewed at this time.) Here Ng and Ni are the or-
ders of the FIR filters G(z) and 1(z). Using the usual fixed-point roundoff noise
model of Sec. 9.2, we wish to compute some noise variances, in terms of Ng,
Ni, the quantizer noise variance o2gand the energy of G(ejw). For simplicity,
ignore the noise reduction obtainable by exploiting linear-phase symmetry.

a) Estimate the variance 02l1of the roundoff noise at the final output, that is,
output of M2.

b) Instead of the above system suppose we use a single stage decimation filter
for this problem, that is, Fig. 4.1-7 with M = M1M2. Let N denote the
order of H(z). Estimate the noise variance 02 at the output of M.

c) In Design example 4.4.2, we started with some specifications, and arrived
at specific values for M1, M2, Ng, Ni and N. Using these values, find the
improvement in noise variance due to multistage implementation, i.e., find
0262 You can make the assumption that the energy of G(ejw) is 0.5,
which is consistent with the specifications of this design.

Consider the fractional decimation circuit of Fig. 4.1-10(b). Assume L = 2
and M = 3, and let H(z) be FIR with order N = 59. For this problem, ignore
any simplicity offered by linear-phase symmetry. Assume the usual fixed-point
roundoff noise model of Sec. 9.2.
a) Estimate the roundoff noise variance at the output node [labeled y(n)].
b) Now consider Fig. 4.3-8(d). This represents an efficient polyphase imple-
mentation of the above fractional decimation circuit. Estimate the round-
off noise variance at the output node.

Consider Fig. 8.5-2 which represents the cosine modulated analysis filter bank.
Here each pair Gk(z), GM+k(z) is power complementary, and is implemented
using the lattice Fig. 8.5-1. The cosine modulation matrix T is as in (8.4.9).
(At this time you must review Section 8.4, in particular the meanings of
A0,Al1,C,S, and so on). Assume that (i) each lattice has quantizer inserted
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9.11.

9.12.

similar to Fig. 9.4-1(a), (ii) there are no quantizers inside T, and (iii) there
are M quantizers for the M outputs of T. Let ek(n) denote the total roundoff
noise affecting the M outputs of the decimated analysis bank (i.e., outputs of
T). Using the standard fixed-point roundoff noise model of Sec. 9.2, estimate
the variance of gk(n).

Let x(n) be a vector WSS random process with autocorrelation matrix R(k)
and power spectral density matrix S(ejw). (These were defined in Appendix
B. Note that if x(n) is M x 1 then R(k) and S(ejw) are M x M matrices.)
Show that S(ejw) is a positive semidefinite matrix for all w. (Hint. Somehow
try to relate this to a scalar WSS process t(n), and use the fact that its power
spectrum is nonnegative).

In this problem we consider the joint behavior of two WSS random process
X(n) and y(n). Assume that they have zero mean.

a) Let the power spectra Sxx(ejw) and Syy(ejw) be non overlapping, i.e.,
Syy(ejw)Sxx(ejw) = 0 for all w. Show that this does not in general imply
that the two random processes x(n) and y(n) are uncorrelated.

b) Suppose x(n) and y(n) are jointly WSS. Show then that the condition
Syy(ejw)Sxx(ejw) = 0 does imply that the two processes are uncorrelated.
(Hint. The result of Problem 9.11 might help!)

c) Suppose x(n) and y(n) are generated as follows,

Figure P9-12

where u(n) is a WSS process. Show that x(n) and y(n) are joinlty WSS.
Hence show that if the filters H(ejw) and G(ejw) are nonoverlapping [that
is, H(ejw)G(ejw) = 0 for all ], and u(n) has zero-mean, then x(n) and
y(n) are uncorrelated.

Note. If the zero-mean assumption is not true, the above statements should be
modified by replacing "uncorrelated" with "orthogonal" everywhere.

9.13. Consider an M channel analysis bank Hk(z),0 < k < M - 1. Let the polyphase
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matrix E(z) be lossless with E(z)E(z) = I. In Sec. 6.2.2 we showed that this
implies >n hk(n) 2 = 1 for each k, that is, each analysis filter has unit energy.
Give a second proof of this using Theorem 9.3.1.
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10.0

10.1

NMultirate filter bank thheory

anmnd related topics

INTRODUCTION

In this chapter we study the interrelation between multirate filter bank the-
ory, and several “neighbouring” topics in signal processing. In Sec. 10.1
we consider the connection between alias-free (maximally decimated) filter
banks, block digital filtering, and linear periodically time varying (LPTV)
systems. We will see that the pseudocirculant matrix defined in Sec. 5.7.2
unifies these three topics in a nice way. In Sec. 10.2 we study a number
of unconventional sampling theorems (such as "difference-sampling,” and
nonuniform sampling) using the framework of multirate filter banks. Read-
ers who have looked at Problem 5.13 will recall that Shannon’s well-known
derivative sampling theorem can be derived based on an analog filter bank
[Papoulis, 1977b], and [Brown, 1981]. Such a viewpoint not only simpli-
fies the understanding of these sampling techniques, but also opens up new
digital ways to reconstruct signals from uncoventionally sampled data.

Further applications can be found in Vetterli [1988], where a multirate
filter bank framework is used for the efficient implementation of FIR and
IR filters. Also see Sathe and Vaidyanathan [1993] where the role of pseu-
docirculat matrices in random process theory is discussed.

BLOCK FILTERS, LPTV SYSTEMS, AND MULTIRATE
FILTER BANKS

10.1.1 Block Filtering

The processing of a scalar signal in blocks is a common approach in many
applications. Block processing has been studied by a number of authors [Bur-
rus, 1971], [Mitra and Gnanasekaran, 1978], [Barnes and Shinnaka, 1980],
and [Clark, et al, 1981]. One example of block processing was indicated in
Sec. 6.6 (transform-coding and LOT). Block digital filtering, in particular,
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is a technique to implement a scalar filter H(z) in such a way as to increase
the parallelism in the computations. This finds application in high speed
digital filtering, that is, where the sampling rate is very high.

Definition of Block Digital Filters

Let x(n) and y(n) denote, respectively, the input and output of the
scalar filter H(z). Consider two vector sequences xB(n) and yB(n) defined

by

(10.1.1)

We say that the vector sequences xB(n) and yB(n) are blocked versions of
(or blocked sequences corresponding to) the scalar sequences x(n) and y(n).
The block-length (or size) is M.

Now imagine that we have a system which generates the sequence yB(n)
in response to xB(n). Evidently this is an M-input M-output system. Not
surprisingly this is an LTI system (Problem 13.24), and can be character-
ized by a M x M transfer matrix H(z). In other words we have YB(z) =
H(z)XB(z), where

(10.1.2)

The matrix H(z) is called the blocked version of H(z). From its definition
it is clear that H(z) is completely determined by the scalar system H(z).
Figure 10.1-1 is a summary of the situation. The “blocking mechanism” can
be considered to be a serial to parallel converter of data, and the “unblocking
mechanism” a parallel to serial converter.

Blocked version
of H(2)

Figure 10.1-1 (a) A scalar transfer function, and (b) its blocked implementation.

Multirate Filter-Bank Notation

Figure 10.1-2 shows a schematic diagram of block digital filtering in
terms of multirate notation. Here the signals xk(n) are given by xk(n) =
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xX(NM+Kk). Similarly yk(n) = y(nM+Kk), so that the blocked versions (10.1.1)
can also be represented as

(10.1.3)

The transfer matrix H(z) in this figure produces yB(n) in response to xB(n),
and is therefore the blocked version of H(z).

Let X¢€(z) and Y£(z) denote the z-transforms of x€(n) and y£(n). Then
the z-transforms of x(n) and y(n) can be expressed as

(10.1.4)

In other words, the components of xB(n) and yB(n) are the polyphase com-
ponenents of x(n) and y(n), respectively.

Figure 10.1-2 Representation of block digital filtering in terms of multirate
building blocks.

Increased Parallelism Offered by the Block Filter

The structure of Fig. 10.1-2 also shows the “speed advantage” of block-
ing. The system H(z) is operating at a rate which is M times lower than
the input rate. So the sampling rate of the input signal x(n) can be M times
larger than the speed of the basic computational unit. This advantage, which
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depends on the block size M, can be made arbitrarily large by increasing
M. However, there is a price paid for this: since H(z) is an M x M system,
it requires larger number of computational units (multipliers and adders)
than the original scalar system. Summarizing, we have obtained increased
computational parallelism in the blocked implementation, by increasing the
number of computational units. As a result we are able to process signals
which arrive at M times higher rate (than the rate that can normally be
handled by one computational unit).

Relation to Alias-Free Filter Banks

The decimators and expanders in the representation of Fig. 10.1-2 pro-
duce the alias components X(zWkM), just as in a filter bank. However,
magically, Y(z) is free from these alias-components because, by definition
of H(z), the overall system in Fig. 10.1-2 is still a linear time invariant
system with transfer function H(z). The explanation of this is that, alias
components are somehow canceled.

Returning now to filter banks, we know that any M-channel maximally
decimated filter bank (Fig. 5.4-1) can be redrawn as in Fig. 5.5-3(c), where
P(z) is the product R(z)E(z) of polyphase matrices. The structures of
Figs. 5.5-3(c) and 10.1-2 are identical (except for the advance operator
zM-1, which will not affect any significant conclusions.) Since the structure
of Fig. 10.1-2 is indeed alias-free by definition of H(z), we conclude that
this structure is equivalent to an M-channel alias-free maximally decimated
filter bank.

We know from Sec. 5.7.2 that the filter bank is alias-free if, and only
if, P(z) is a pseudocirculant. This shows that the blocked version H(z)
of a scalar transfer function H(z) is necessarily a pseudocirculant. The
pseudocirculant property has been observed implicitly in Barnes and Shin-
naka [1980], and also in Marshall [1982]. It has been further studied in
Vaidyanathan and Mitra [1988].

Next, how can we determine the elements of H(z)? The pseudocirculant
property means that all rows are determined by the elements HO,k(z) of the
Oth row. We also know that the transfer function of the alias-free filter bank
is given by (5.7.13) where P£(z) are the elements of the Oth row of P(z).
From this we conclude that the scalar filter H(z) is related to the blocked
version as

(10.1.5)

So the elements of the Oth row of H(z) are the Type 1 polyphase components
(usually denoted E£(z)) of H(z) :

(10.1.6)
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Example 10.1.1

Let H(z) = 1 + 2z-1 + 3z-2 + 4z-3. We can rewrite

(10.1.7)

from which we identify the Type 1 polyphase components (for M =

3)

as EO(z) = 1+ 4z-1, E1(z) = 2, and E2(z) = 3. So the 3 x 3 blocked

version is the pseudocirculant

(10.1.8)

Next consider an IIR example; let H(z) = (—a + z-L{1 — az-1).

This can be written as

(10.1.9)

so that the Type 1 polyphase components (for M = 2) are EO0(z)

-a(1 - z-L) - a2z-1), and E1(z) = (1 - a2r{1 — a2z-1). So the 2 x 2

blocked version is the pseudocirculant

(10.1.10)

For real a, the scalar IIR filter H(z) is allpass, that is, H(z)H(z)
1. How did this allpass property reflect into the blocked version?

In

Problem 10.2 we request the reader to verify the interesting fact that

H(z)H(z) = I. In other words, H(z) is paraunitary!

More generally, we can summarize the above results as follows.

«Theorem 10.1.1. On blocked version of a scalar filter. Let
H(z) represent the M x M blocked version of a scalar transfer function

H(z). Then H(z) is a pseudocirculant, and its Oth row is given by

(10.1.11)

where Eg(z) are the Type 1 polyphase components of H(z) [i.e., H(z)
> z-LEL(zM)]. Moreover H(z) is paraunitary if and only if H(z)
allpass, that is, H(z)H(z) = c if and only if H(z)H(z) = cl.

is
o
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Proof. It only remains to prove the part of the statement involving the
paraunitary property. With the Oth row of pseudocirculant H(z) given by
(10.1.11) the kth row (k > 0) is

(10.1.12)

Since E£(z) are the Type 1 polyphase components of H(z), it is easily verified
(Problem 10.4) that the polyphase components of z-kH(z) are the elements
of the kth row above. So we can express

(10.1.13)

By writing this for all values of k (0 < k < M - 1) we obtain the matrix
equation

(10.1.14)

where e(z) = [1 z-1 ... z-(M-1)]T. Since (10.1.14) holds for all z, it
holds if we replace z with zW-k, where W = e-j2n/M. By doing this for
k=0,...M — 1, we arrive at M equations which can be collected together
as follows:

(10.1.15)

where

(10.1.16)

and W is the M x M DFT matrix. Clearly W and A(z) are paraunitary.
So Q(z) is paraunitary if and only if H(z) is paraunitary. But since Q(z)
is diagonal with elements H(zW-Kk), it is paraunitary if and only if H(z) is
allpass. This completes the proof.

Application to alias-free filter banks. For an alias-free filter bank,
P(z) is pseudocirculant and the distortion function T(z) is given by (5.7.13).

From the above theorem we conclude that T(z) is allpass (i.e., the filter bank
is free from amplitude distortion) if and only if P(z) is paraunitary.

10.1.2 Linear Periodically Time Varying (LPTV) Systems

In this text, we have seen linear time varying (LTV) systems on many oc-
cassions. The decimator and expander, defined in Chap. 4, are examples
of such systems. The fractional sampling rate changer (Fig. 4.1-10(b)) is
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another such example. In these examples the input and output signals have
different rates.

For a more sophisticated example, consider the M-channel maximally
decimated filter bank (Fig. 5.4-1). In Chap. 5 we found that this is an LTV
system, characterized by the input output relation (5.4.5). This relation
reduces to X(z) = T(2)X(2), i.e., the filter bank becomes an LTI system, if
and only if it is alias-free.

Recall that an LTI system is characterized by an impulse response h(n)
such that the output y(n) is computed by convolution:

(10.1.17)

For an LTV system (with input rate = output rate), y(n) is still a linear
combination of the samples x(n — m) as above, but h(m) is not fixed; it
depends on the output time index n. The relation is of the form

(10.1.18)

This idea is best understood by drawing a schematic structure, as shown in
Fig. 10.1-3. Here we have an Nth order FIR filter, whose impulse response
coefficients are not fixed (as for LTI systems) but varies with output time
index n.

An LPTV system (with period M) has the further property that an(m)
is a periodic function (period M) of the output time index n [which is also
the subscript on a(m) in (10.1.18)]. In other words,

(10.1.19)
Figure 10.1-4 demonstrates an LPTV system with period = 2. Whenever n is
even, the output is taken to be that of the filter with impulse response a0(m).
When n is odd, the ouput is taken to be that of al(m). This behavior can be

compactly represented using multirate notation as shown in Fig. 10.1-5(a).
Here the filter An(z) is given by

(10.1.20)

Figure 10.1-3 An LTV FIR filter. Here an(m) is a function of the output time
index n.
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Figure 10.1-5 (a) Representation of an LPTV system in terms of multirate
notations. (b) Explaining the operation.

Relation to Filter Banks

Extending the above discussion, the more general case where the LPTV
system has period M can similarly be represented by the structure of Fig.
10.1-6. (This representation is restricted to systems where the input and
output have equal rates; but the system can be FIR or IIR.) The system
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output y(n) at time n is equal to the output of Ak(z) at time n, where
k = n mod M.

We can think of this system as a M channel filter bank with analysis
and synthesis filters

(10.1.21)

Figure 10.1-6 Representation of an arbitrary (FIR or IIR) LPTV system of
period M, using multirate building blocks. (Input rate = output rate).

By using the polyphase decomposition on the filters An(z), we gain further
insight. Thus, let the filters An(z) be represented as

(10.1.22)

Let E(z) be the Type 1 polyphase component of the analysis bank, and
R(z) the Type 2 polyphase matrix of synthesis bank. Clearly R(z) = 1 in
this case. The quantity E(z), on the other hand depends on Gn,f(z). As a
demonstration, for M = 3 we can verify that

(10.1.23)

For arbitrary M, the form of E(z) can be written in a similar way (Problem
10.5). Thus the LPTV system is equivalent to Fig. 10.1-7 where P(z) =
R(z)E(z).

We know from filter bank theory that this system is alias-free (hence
time invariant) if and only if P(z) is pseudocirculant. Now let us see what
happens to Gn,£(z) when P(z) [i.e., E(z)] is pseudocirculant. By insepection
of (10.1.23) we conclude that under this condition Gn,£(z) is independent of
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n. This means that An(z) is same for all n in Fig. 10.1-6, so that the original
LPTYV system becomes time invariant! This is consistent with the fact that
the maximally decimated filter bank is time invariant if and only if it is aliasfilee.main pc

Figure 10.1-7 Equivalent representation of an arbitrary LPTV system of period
M (input rate = output rate). The matrix P(z) is a pseudocirculant if and only
if the LPTV system degenerates into an LTI system.

10.2 UNCONVENTIONAL SAMPLING THEOREMS

Let xa(t) be a continuous-time signal and define

(10.2.1)

where da(t) is the impulse function defined in Chap. 2. xgt) is the uni-
formly sampled version of xa(t), with sample spacing equal to T (Fig. 10.2-
1). Equivalently, the sampling frequency (or rate) is 2T. The Fourier

transform of xas)(t) is given by the relation

(10.2.2)

provided this summation converges [Oppenheim and Schafer, 1989]. Thus
Xal)(JQ) is obtained by adding to Xa(jQ) an infinite number of shifted
copies (images), the shift being in uniform integer multiples of 2-T.
Figure 10.2-2 is a demonstration of this effect. In this figure we have
assumed that xa(t) is o-BL (defined in Sec. 2.1.4), that is, Xa(jQ2) = 0 for
Q = 0. From Sec. 2.1.4 we know that if the sampling rate 2~T exceeds
the Nyquist rate © = 20, then none of the images has an overlap with the
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TABLE 10.1.1 Block filtering, LPTV systems, and filter banks.

1. Block digital filters. Given a scalar transfer function H(z) with input x(n)
and output y(n), define the vector sequences xB(n) and yB(n) as in (10.1.3).
Then these are related by an M x M transfer function H(z), called the blocked
version of H(z). Fig. 10.1-2 shows this block implementation of H(z).

a) The blocked version H(z) is pseudocirculant. The scalar function H(z)
can be obtained from the Oth row of H(z) as

(T10.1)

b) Conversely, if H(z) is pseudocirculant, the structure of Fig. 10.1-2 is an
LTI system (this being not true for arbitrary H(z)) and H(z) represents
the blocked version of the scalar transfer function given by (T10.1).

2. Linear periodically time varying systems. A linear periodically time
varying (LPTV) system with period M (and same input and output rates)
is characterized by a set of M transfer functions An(z). The system can be
represented by the structure of Fig. 10.1-6.

a) The output at time n is equal to the output of Ak(z) at time n, where
k = n mod M.

b) An LPTV system with period M (with equal input and output rates) can
always be represented by the equivalent structure of Fig. 10.1-7, where
P(z) is an M x M transfer matrix.

c) Conversely, for arbitrary transfer matrix P(z), Fig. 10.1-7 represents an
LPTV system (with equal input and output rates) of period M.

3. Relation to filter banks. An M-channel maximally decimated filter bank
(Fig. 5.4-1) can always be represented by the structure of Fig. 10.1-7 where
P(z) is the product R(z)E(z) of the polyphase matrices of the analysis and
synthesis banks.

a) This representation closely resembles the block implementation of a scalar
transfer function H(z) (Fig. 10.1-2).

b) The representation also resembles the general representation of an LPTV
system (with equal input and output rates).

c) The blocked version H(z) of a scalar H(z) is always pseudocirculant; the
filter bank is alias-free if and only if P(z) in Fig. 10.1-7 is pseudocirculant;
the LPTV system is actually time invariant if and only if P(z) in Fig.
10.1-7 is pseudocirculant.

d) Let H(z) be M x M pseudocirculant. Consider the transfer function H(z)
defined in (T10.1) above. H(z) is allpass if and only if H(z) is paraunitary.
This means two things: (i) the distortion function T(z) of an alias-free filter
bank is allpass if and only if P(z) is paraunitary, and (ii) a scalar transfer
function is allpass if and only if its blocked version is paraunitary.
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Figure 10.2-1 A continuous-time signal xa(t) and the uniformly sampled version
X(s)a(t).

Figure 10.2-2 Fourier transform of the sampled version x(s)a(t) of a bandlimited
signal xa(t). Sampling rate = 2n/T.

Figure 10.2-3 (a) Fourier transform of the sampled version x(s)a(t) of a o-
bandlimited signal xa(t) sampled at Nyquist rate 20 (i.e. 2T = 20). (b) The

ideal lowpass filter which reconstructs xa(t) from x(s)a(t).

original version Xa(jQ). In this case we can reconstruct xa(t) from Xx(s)a(t)
by removing the images with an ideal lowpass filter (Fig. 10.2-3). This filter
has impulse response

(10.2.3)
In the time domain, the recovered signal xa(t) is therefore the convolution of
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X(s)a(t) with h(t). This simplifies to the well-known reconstruction formula,

(10.2.4)

which is also called the “interpolation” formula. The Nyquist frequency
© = 20 is the minimum rate at which xa(t) should be sampled so that it can

be recovered from these samples.t Sampling at the rate © is called Nyquist
sampling.

The above result is the uniform sampling theorem [Nyquist, 1928],
[Whittaker, 1929], and [Shannon, 1949]: if we "uniformly sample" the o-
BL signal xa(t) at the Nyquist rate ©, then we do not lose any information,
and can reconstruct xa(t) from these samples using (10.2.4). It should be

noticed, however, that (10.2.4) is equivalent to passing x(s)a(t) through an
ideal lowpass filter (10.2.3). This filter is noncausal and unstable [since h(t)
is not absolutely integrable]. In practice, we have to live with an approx-
imation of h(t), and the reconstruction is not exact. If the sampling rate
2T exceeds the minimum required rate © by a significant margin, then the
images in Fig. 10.2-3 are more widely separated from the main term. So the
lowpass filter can have a wider transition bandwidth and the reconstruction
can be done more accurately with a practical filter.

Unconventional Sampling

Instead of sampling the o-BL signal xa(t) at the Nyquist rate ©, sup-
pose we sample xa(t) and its derivative xa(t) at half the Nyquist rate. It
is possible to recover xa(t) from these two undersampled signals. This was
actually shown in Problem 5.13, by formulating this as a two-channel ana-
log QMF bank problem. By using an M-channel analog QMF formulation,
it is possible to derive other extensions of the sampling theorem. For ex-
ample, if we sample xa(t) and its M — 1 derivatives at the rate ©/M, we
can recover xa(t) from this information (Problem 10.7). As seen from these
Problems, the reconstruction filters are unrealizable, and should be replaced
with practical approximations. (To be fair, the lowpass reconstruction filter
(10.2.3) used in the case of uniform sampling is also unrealizable.) In the
next subsection, we will obtain the discrete-time analog of this result, called
the difference-sampling theorem. In contrast to the continuous-time case,
this theorem involves practical (in fact FIR) reconstruction filters.

Another generalization of sampling is the so-called nonuniform sam-
pling, demonstrated in Fig. 10.2-4. Here the samples are spaced 'too far

t This assumes, of course, that no further information is available about
xa(t) except that it is o-BL. If this is not true, then the situation is different.
For example, if xa(t) is known to be a sinusoid Asin(wO0t + 3), then it can be
recovered from afinite number of samples since we need to extract only three
pieces of information (A,w0, and B) from the samples! Similar comment
holds if xa(t) is known to be a sum of finite number of sinusoids.
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apart' (compared to Nyquist rate ©) in some regions and 'too close' in some
regions. Yet, theory has it [Jerri, 1977] that we can recover xa(t) from such
samples as long as the ‘average sampling rate' = ©. (A special case is the
situation when only the past values of xa(t) are sampled at the rate 20!) We

will

not prove this general result, as it does not place in evidence practical

reconstruction techniques. In Sec. 10.2.2 we prove more practical special
cases, for which reconstruction techniques can be found based on a FIR
digital filter bank approach.

Figure 10.2-4 Nonuniform sampling of xa(t).

10.2.1 Difference Sampling Theorems for Sequences

We will now discuss difference sampling theorems, which can be considered
as discrete time counterparts of derivative sampling theorems. We begin
with an example.

Example 10.2.1

440

Let x(n) be an arbitrary sequence, and let x1(n) denote its first differ-
ence, i.e.,
(10.2.5)

Consider the two sequences
(10.2.6)

These are the two-fold decimated versions of x(n) and its first-difference.
Can we recover x(n) from these two undersampled sequences? [Evi-
dently, the number of samples per unit time, counting both the signals
y0(n) and y1(n), is the same as that for x(n).] The even numbered sam-
ples of x(n) are already available in yO(n). It only remains to see if
the odd numbered samples can be recovered from y1(n). Now yl(n) has
samples

(10.2.7)

From this it is clear that we can recover all odd-numbered samples of
x(n) by subtracting out the even-numbered samples from these differ-
ences.
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A more systematic approach will help us to extend this idea to the
case of higher order differences. For this we view the problem as a two
channel QMF problem, as shown in Fig. 10.2-5. The analysis filters
are HO(z) = 1, and H1(z) = 1 — z-1 (representing the first-difference
operation). The aim is to find synthesis filters FO(z),F1(z) such that we
have perfect reconstruction. This is an easy problem and is made easier
by use of the polyphase approach. Thus, we can redraw the system as

in Fig. 10.2-6, where
(10.2.8)

It is clear that the choice R = E-1 results in perfect recovery, that is,
x(n) = x(n —1). Itis readily verified that the matrix E is its own inverse,
so we take

(10.2.9)

The synthesis filters are now computed according to

(10.2.10)

This simplifies to FO(z) = 1+z-1 and F1(z) = —1. Ifthese filters are used
in Fig. 10.2-5, we have perfect reconstruction that is, x(n) = x(n — 1).

Figure 10.2-5 The difference sampling and reconstruction, viewed as a QMF
bank problem.

The above example can be considered to be the discrete-time equiva-
lent of the derivative sampling theorem discussed above for continuous-time
signals. (Instead of derivatives, we have differences.) Notice however, that
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the reconstruction scheme is very simple (and realizable), involving only FIR
filters.

One motivation for thinking about such ‘sampling theorems' is demon-
strated in Fig. 10.2-7, where x(n) is a slowly varying sequence, i.e., the
adjacent samples differ by a 'very small' amount. Assume that each sample
x(n) requires 16 bits for its representation. Let us say that the differences
x(n) — x(n - 1), being very small, require only 8 bits for their representa-
tion. Now instead of 'storing' or 'transmitting' all samples of x(n) with 16
bits per sample, we can store (two-fold) decimated versions of x(n) (16 bits
per sample) and the first difference (8 bits per sample). This reduces the
data rate to an average of 12 bits per sample. This is similar in principle to
subband coding (Sec. 4.5.2).

Figure 10.2-7 (a) A slowly varying signal x(n), and (b) binary representations
for x(n) and its first difference.

Extension to Higher Order Differences

Can we extend this idea for higher differences? We can define the second
difference in terms of the first difference x1(n) as x2(n) = x1(n) — x1(n — 1),
and so on. Thus, let xk(n), 1 < k < M —1 denote the first M —1 differences of
the signal x(n). We wish to recover x(n) from the M-fold decimated versions

(10.2.11)
[For k = 0 we define x0(n) = x(n), i.e., the original sequence.] Once again,

this problem can be handled using the filter-bank approach. For this note
that the kth difference xk(n) has the z-transform

(10.2.12)
so that the kth difference operator is the transfer function

(10.2.13)
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Thus the difference sampling scheme can be represented by a maximally
decimated analysis bank (Fig. 10.2-8). If this is redrawn using the polyphase
notation (Sec. 5.5), the E(z) matrix is a constant given by

(10.2.14)

Figure 10.2-8 The difference sampling and reconstruction, posed as a QMF
problem.

The rows of this M x M matrix are coefficients of (1 — z-1)k, which are the
binomial coefficients with alternating sign. It can be shown (see below) that
this matrix is its own inverse so that we can take R(z) = E in Fig. 5.5-3(b),
for perfect reconstruction. In other words, if the synthesis filters are chosen

as
(10.2.15)

the reconstructed signal is given by x(n) = x(h — M + 1).
Proof that E is its own inverse. By definition, E has the following

property:
(10.2.16)

where v(x) [1 x ... XM-I]T. From this we obtain

(10.2.17)
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Since this holds for all x, we conclude, in particular, that

(10.2.18)
The matrix indicated as V is an M x M Vandermonde matrix and is non-
singular if xi are distinct (Appendix A). So it can be canceled in the above
equation, yielding E2 = 1, i.e., E-1 = E.

Example 10.2.2

Consider the case when M = 3. The difference signals are
(10.2.19)

The decimated signals from which we wish to recover x(n) are yO(n) =
x(3n),y1l(n) = x1(3n), y2(n) = x2(3n). The reconstruction is done using
the synthesis bank

(10.2.20)

so that FO(z) = 1 + z-1 + z-2,F1(z) = —2 — z-1, and F2(z) = L

Note that the synthesis filters are FIR, and that the highest required
order is equal to M - 1. Compare this with the case of derivative sampling
[e.g., Problem 5.13(d)] of continuous-time signals, where the synthesis filters
are unrealizable. To be fair, it should be mentioned that (1 - z-1) is only
an approximate equivalent of the derivative operation; in fact if we perform
bilinear transformation of H(s) = s (which is a differentiator), we obtain
(1 — z-Ly11 + z-1), which (is unstable and) represents the exact discrete-
time equivalent of differentiation.

10.2.2 Nonuniform Sampling Theorems for Sequences

We now explain the concept of nonuniform “sampling” of sequences with
an example. Consider a o-BL sequence (i.e., a sequence Xx(n) such that
X(ejw) = 0 for o < w < m with 0 = 2»-3. Fig. 10.2-9(a) shows an
example. In Sec. 4.1.1 we showed how we can decimate such a sequence
by the noninteger quantity 3/2 to obtain the full band signal Y(ejw) (Fig.
4.1-10). Fig. 4.1.-11 also shows the two signals x(n) and y(n) in the time
domain. This can be considered to be uniform decimation by a factor of 3/2,
since the samples y(n) are still uniformly spaced in time.
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Figure 10.2-9 (a) Fourier transform of a bandlimited sequence, (b) the sequence
X(n), and (c) a nonuniformly decimated version.

Figure 10.2-10 The nonuniform decimation and reconstruction, posed as a
QMF problem.

Figure 10.2-11 Demonstration of alias components of X(ejw), which appear in
nonuniform decimation.

But there is another (simpler) way to ‘decimate’ x(n) by a factor 3/2,
which can be described as follows: (i) divide the time axis into intervals of
length three, (ii) retain the first two samples in each interval, and discard
the third. This is demonstrated in Fig. 10.2-9. The resulting sequence is
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a nonuniformly decimated version of x(n). Can we recover x(n) from this
version?

The answer is in the affirmative. We will show that this problem can
be formulated as a multirate digital filter bank problem. The reconstruction
of x(n) from the nonuniformly decimated version is equivalent to finding a
set of synthesis filters for perfect reconstruction. (The analysis filters are
predetermined and are not under our control; see below). These synthesis
filters are ideal (unrealizable) filters, but can actually be approximated using
linear phase FIR filters, as we will demonstrate with practical designs.

Filter Bank Model for Nonuniform Sampling

Consider Fig. 10.2-10 which is a 3-channel maximally decimated filter
bank, in which only two of the analysis filters are nonzero. More precisely
we have HO(z) = 1,H1(z) = z-1, and H2(z) = 0. The analysis bank can
be considered to be a nonuniform decimator, retaining only the samples
indicated in Fig. 10-2-9(c). Our aim is to find synthesis filters such that
x(n) = x(n), under the assumption that x(n) is bandlimited to w < 23.
(Without the bandlimited constraint we cannot do this because we have only
two-thirds of the original number of samples per unit time.)

Solving for Synthesis Filters

First recall that the most general equations for perfect reconstruction
are given by the AC matrix formulation (Sec. 5.4.3). From this we obtain

(10.2.21)

(10.2.22)

In general we cannot solve for the two filters FO(z),F1(z) to satisfy the
three conditions (10.2.22). We can, however, make further progress by using
the bandlimited property of x(n). First, we constrain FO(z) and F1(z) such
that

(10.2.23)

(We are discussing only ideal filters for the moment). This eliminates any
alias components which occupy the region outside the band of X(ejw). It
only remains to cancel aliasing in the region w < 23.

Figure 10.2-11 demonstrates typical plots of X(ejwWk), for k = 0,1 and
2. In the frequency region 0 < w < 4w~3, the quantity X(ejwW?2) is zero,
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so that the third equation in (10.2.21) need not be satisfied. So we have to
choose FO(z) and F1(z) such that

(10.2.24)

for 0 < w < 2w 3. Similarly the alias component X(ejwW) is zero in the
region —4w3 < w < 0 so that the middle equation in (10.2.21) need not be
considered in this region. So FO(z) and F1(z) have to satisfy

(10.2.25)

for -2-3 < w < 0. Summarizing, we choose F0(z) and F1(z) to satisfy the
two equations (10.2.24) if 0 < w < 23, and the two equations (10.2.25) if
—2m3 < w < 0. For w outside either of these regions, we set FO(ejw) = O,
and Fl(ejw) = 0 as stated earlier.

After solving the above two sets of equations we arrive at the following
results:

(10.2.26)
and

(10.2.27)
Here ¢ and s are defined as ¢ = cos(2m®3), = -sin(2m~3). Notice that

the responses FO(ejw) and Fl(ejw) are piecewise constants. Essentially, the
frequency axis has been divided into three regions of equal widths (Fig. 10.2-
12), and Fk(ejw) takes on a fixed (complex) value in each of these regions.
We say that Fk(z) is a multilevel filter (Sec. 4.6.5.)

Implementing the Multilevel Synthesis Filters

The above solutions can be expressed neatly in terms of an ideal lowpass
filter GL(ejw) and an ideal Hilbert transformer GH(ejw) (defined below).
The ideal lowpass filter is

(10.2.28)
and the ideal Hilbert transformer [Rabiner and Gold, 1975] is

(10.2.29)
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(see Fig. 10.2-13). It is then clear that the above synthesis filters can be
expressed as

(10.2.30)

Figure 10.2-12 The interval —t < w < 1 is divided into three equal regions.
Fk(ejw) is constant in each region. Also it has conjugate symmetry with respect
to zero-frequency.

Figure 10.2-13 Definition of the ideal filters GL(ejw) and GH(ejw).

In practice, we can approximate the zero-phase filters GL(z) and GH(z)

with real coefficient linear phase FIR filters GL(z) and GH(z) by using the
McClellan-Parks algorithm as elaborated in Rabiner and Gold [1975]. As-
suming that GH(z) has order 2K, we have GH(ejw) = e-jwk x GH(ejw). So
we can implement the synthesis bank as in Fig. 10.2-14. The extra delay

z-K in the top branch compensates for the group delay due to GH(z). The
synthesis filters in this practical structure are

(10.2.31)
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Reconstruction Error Created by Filter Approximation

The practical approximations (10.2.31) to the ideal solution evidently
result in reconstruction error, so that the filter bank in Fig. 10.2-14 is not
a perfect reconstruction system. For any maximally decimated filter bank,

we know that
(10.2.32)

If aliasing terms have been sufficiently attenuated we have X(z) = T(z)X(2),
and the distortion function T(z) reduces to

(10.2.33)

This distortion is free from GH(z)! This shows that the approximation error
involved in the design of the Hilbert transformer does not affect T(z); it
affects only the extent to which alias-terms have been canceled. The lowpass

filter GL(z) completely determines the amplitude and phase distortions in
the reconstructed signal x(n).

Summarizing, the Hilbert transformer GH(z) controls the extent to
which aliasing has been canceled in the range ® < 2m~3, whereas the low-

pass filter GL(z) suppresses aliasing components in the range o > 2n-3.
The passband ripple of GL(z) completely determines the amplitude distor-
tion in x(n). There is no phase distortion if GL(z) (hence T(z)) has linear
phase.

Figure 10.2-14 The complete analysis/synthesis system representing nonuni-
form decimation and reconstruction.

Figure 10.2-15 Defining bandedges for the real coefficient linear phase filters
GL(z) and GH(2).
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Design Example 10.2.1

We now demonstrate these ideas with an example. Figure 10.2-15 shows
the definitions of the bandedges for GL(z) and GH(z), both of which are
real coefficient linear phase filters. In Fig. 10.2-16(a) we show the mag-
nitude X(ejw) for our test sequence x(n), which is a real finite length
sequence of length 71. The plot shows that x(n) is (approximately) ban-
dlimited to w < 2@w~3. We will reconstruct x(n) from the nonuniform sub-
set of samples indicated in Fig. 10.2-9(c), by using the synthesis bank in
Fig. 10.2-14. GL(z) is taken to be of order 72, and has following features:
wp = 0.58m,ws = 0.70m, and stopband attenuation > 55dB. The Hilbert

transformer GH(z) has order 50, with 8p = 0.041t and 8s = 0.961. The mag-
nitude responses of GL(z) and GH(z) are shown in the figure. With these

filters used in the structure of Fig. 10.2-14, the quantity X(ejw) for the
reconstructed signal is shown in Fig. 10.2-16(c), which is in good agreement
with X(ejw) . Since T(z) has linear phase, there is no phase distortion, so
we conclude that x(n) is indeed a good approximation of x(n).

As explained above, the Hilbert transformer serves to eliminate aliasing
in the signal band. But a practical Hilbert transformer has to have a transi-
tion bandwidth around zero-frequency (because GH(1) = 0; see Rabiner and
Gold [1975]). If this bandwidth around zero-frequency is large, it results in
poor reconstruction.

Efficieny of Reconstruction

The above reconstruction scheme is not the most efficient technique for
the purpose, and is meant only to demonstrate the fundamental principles
underlying the recovery of a signal from nonuniform samples. For more
efficient (polyphase) techniques, and for further detailed comparison between
various techniques, the reader is referred to Vaidyanathan and Liu [1990].

Generalizations

Several generalizations of the above approach are available. Thus con-
sider the system of Fig. 10.2-17. Here we have an M-channel filter bank in
which only the first L analysis filters are nonzero. And these nonzero filters
are delay elements of the form z-nk,0 < k < L — 1, with

(10.2.34)

The effect of the analysis bank is merely to retain the subset of samples

(10.2.35)
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Figure 10.2-16 Design example 10.2.1. (a) X(ejw), (b) filter responses, and
(€) X(ejw) .
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Figure 10.2-17 Generalization of nonuniform decimation and reconstruction.

This means that the time-index is divided into intervals of length M, and
L samples are retained in each interval. (The time indices for these L samples
are equal to —nk modulo M.) The analysis bank, therefore, is a nonuniform
decimator. If the signal x(n) is bandlimited to the region ® < LM, we
can find the L synthesis filters Fk(z) such that there is perfect recovery of
X(n) from the nonuniformly decimated version! These synthesis filters, once
again, turn out to be multilevel filters. (More precisely, if we imagine the
frequency region 0 < w < 2m to be divided into M contiguous intervals, then
Fk(ejw) is a (complex) constant in each interval.) So these are ideal filters
and must be approximated by practical designs.

A further generalization arises when we consider multiband signals, that
is, signals that are not bandlimited, but limited to a union of bands in
the frequency domain. (For example, X(ejw) could be zero everywhere
except in 0 < w < 0.1m and 04m < w < 1.3m.) The nonuniform decima-
tion/reconstruction process works in this case as well. Many of these ideas
also generalize to the case of two dimensional signals [Vaidyanathan and Liu,
1990].

Relation to Sampling of a Continuous-Time Signal

The signal x(n), which is bandlimited to Lm~M, can be considered to
be the oversampled version of a continuous-time signal xa(t). Here xa(t) is
sampled at the rate 2~T, which is M~L times the Nyquist rate ©. The set
of nonuniformly decimated samples (10.2.35) can be considered to be a set
of nonuniformly sampled values of xa(t), (which is a subset of the original
oversampled values). The nonuniformity is such that the average number
of samples per unit time is reduced by the factor MA-L, so that it becomes
equal to the Nyquist rate O.

Evidently the nonuniform pattern repeats periodically after every L
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samples (see Fig. 10.2-9(c)). In this sense, the above results address only a
special case of nonuniform sampling, namely the case of recurring or periodic
nonuniformity. It should also be noted that, in our special case, the locations
of the nonuniformly spaced samples are not permitted to be arbitrary; if
xa(tl) and xa(t2) are two samples in the nonuniformly spaced system, then
t2-12 is required to be rational.
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PROBLEMS

10.1. Consider the scalar system H(z) = {1 —az-1). Write down the general form
of the blocked version for arbitrary block size M.

10.2. Verify that the 2 x 2 matrix in (10.1.10) is paraunitary.

10.3. Let PO(z) and P1(z) be M x M pseudocirculants. Prove that the product
P0(z)P1(z) is pseudaocirculant, and that P0(z)P1(z) = P1(z)P0(z). (Hint. A
pseudocirculant is related to the blocked version of an LTI system.)

10.4. Let E£(z), O=¢£¢< M — 1be the Type 1 polyphase components of H(z). Derive
an expression for the polyphase components of z-kH(z). Assume 0 < k < M—!
for simplicity.

10.5. Show that the polyphase matrix E(z) for the analysis bank of Fig. 10.1-6 has
the form (10.1.23) for M = 3, where Gn,(z) are the polyphase components
defined in (10.1.22). Also, obtain the form of E(z) for arbitrary M.

10.6. A sequence x(n) is said to be bandlimited if X(ejw) = 0for c < 0w < ™
for some o < m. Show that x(n) cannot be bandlimited if it is causal (unless
x(n) = 0 for all n). Hint. Assume x(n) is causal and bandlimited. Construct
a sequence y(n) from x(n) such that it is also causal, but bandlimited to a
narrower band. Keep repeating till ...

Another hint. First try with the assumption o < w2 if you wish!

10.7. Consider the following system which is the continuous-time analog of the M-
channel filter bank.

Figure P10-7
The continuous-time signal xa(t), which we assume to be o-BL, is passed
through M analog filters HaKk(s), and then sampled at the rate 2Tl (The
sampler is defined precisely as in Problem 5.13.) The rate 2m-T! is equal to
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©/M, where © 20 is the Nyquist rate. Each of the sampled signals is in
general subject to aliasing since it is not necessarily bandlimited. We assume
Fa,k(jQ) = 0 for Q = o so that aliasing terms which fall outside the band of
xa(t) are automatically eliminated.

a) Express Xa(jQ) in terms of Xa(jQ) and the filters in the structure.

b) Suppose we are given the set of M analysis filters Hak(jQ), and wish
to find the M synthesis filters for perfect reconstruction. Show that the
frequency region —o < Q < ¢ can be divided into M intervals such that in
each interval we have to solve M equations for the M unknowns Fa,k(jQ).

c) Consider the special case where Hak(s) = sk. This means that the output
of Ha,k(s) is the kth derivative of xa(t). Show that the M x M matrix
which should (in principle) be inverted to obtain the M synthesis filters
for perfect reconstruction is nonsingular. This proves the existence (but
does not assert realizability!) of these synthesis filters, and gives a proof of
the generalized derivative sampling theorem. (Hint. Review Vandermonde
matrices from Appendix A).

10.8. Consider a sequence x(n) with X(ejw) = 0 for 34 < w < T It is clear
that we can decimate it by 4/3 without losing information. Suppose we wish
to perform nonuniform decimation as in Sec. 10.2.2. We can do so by using
the analysis bank shown in Fig. P10-8(a).

Figure P10-8 (a), (b)
We wish to reconstruct x(n) by using the synthesis bank system shown. Assume
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Fk(ejw) = 0 for 3m4 < w < m so that alias components outside the signal
band are automatically removed.

a)

Show how FO(z), F1(z) and F2(z) can be found, in order to provide perfect
reconstruction. (Divide the frequency region into appropriate humber of
intervals, and solve 3 x 3 equations in each interval. Hint. even though
there are several sets of 3x 3 equations, you need to invert only one constant
matrix, if you do things right). Show that Fk(ejw) can be expressed as

(P10.8a)

where ak,bk,ck are (possibly complex) constants. Identify the constants
ak, bk,ck for k = 0,1,2.

Show that the filters Fk(z) have real-valued impulse response.

Show that these filters can be expressed as

(P108b)

where GL1(z),GL2(z) are ideal lowpass filters with response shown in Fig.
P10-8(b), and GH(z) is an ideal Hilbert transformer. Draw a structure for
the synthesis bank using the filters GL1(z),GL2(z) and GH(z) as building
blocks. In practice we would like to replace GL1(z), GL2(z) and GH(z)
with causal FIR linear phase approximations GL1(z),GL2(z) and GH(z)
of orders NL1,NL2 and NH. Show how the expressions given in (P10.8b)
should be modified to incorporate the group delays of these filters. (As-
sume filter orders are even where necessary.)
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INTRODUCTION

In this chapter we study the wavelet transform, which has received a great
deal of attention since the middle eighties. The mathematical aspects of
wavelet transforms were introduced in Grossmann and Morlet [1984]. The
topic has since been treated in considerable detail by several authors in the
mathematics literature [Meyer, 1986], [Daubechies, 1988], [Mallat, 1989a,b],
and [Strang, 1989], and a number of books have appeared [Coifman, et
al., 1990], [Chui, 1991], [Daubechies, 1992]. The fundamental papers by
Daubechies and by Mallat were influential in generating an unprecedented
amount of activity in this area. Daubechies developed a systematic technique
for generating finite-duration orthonormal wavelets, and also established the
connection between continuous-time ‘orthonormal wavelets’' and the digital
filter bank studied in Sec. 5.3.6 (FIR power symmetric filter bank). This
result on finite-duration orthonormal wavelets triggered considerable interest
in the mathematics as well as the signal processing communities.

Wavelet transforms are closely related to tree structured digital filter
banks, and hence to multiresolution analysis described in Sec. 5.8. We know
that tree structured filter banks give rise to nonuniform filter bandwidths
(Fig. 5.8-4) and nonuniform decimation ratios in the subbands. These two
nonuniformities can be considered to be the fundamental ingredients of the
wavelet transform.

Even before the wavelet transform was formally introduced, such non
uniform filter banks were already employed in the speech processing litera-
ture. See Nelson, et al. [1972], Schafer, et al. [1975], and pp. 301-303 of
the text by Rabiner and Schafer [1978]. Also see McGee and Zhang [1990]
for the design and use of such filter banks in music. Using nonuniform filter
banks, one can exploit the decreasing resolution of the human ear at higher
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frequencies [Flanagan, 1972]. This nonuniform nature of the ear also ex-
plains the evolution of the musical scale. Figure 11.1-1 demonstrates this,
by showing the locations of the notes ¢ and g in the major diatonic scale,
for several octaves. On a logarithmic scale, these would appear to be nearly
equispaced. The notes in between ¢ and g are not shown, but it is clear that
they become sparser and sparser as the frequency increases.

Figure 11.1-1 Pitch-frequencies corresponding to the keys 'c' and 'g' in a piano.
These correspond to the major diatonic scale of western music. The spacing is
very nonuniform, and will appear to be almost uniform on a logarithmic scale.

The literature on wavelet transforms is extensive, but most of it re-
quires a level of mathematical preparation which is perhaps unsuitable for
many signal-processing experts. In the signal processing literature, a num-
ber of authors have explored the relation between wavelets and multirate
filter banks. Tutorial treatments can be found in the magazine articles by
Rioul and Vetterli [1991], and by Hlawatsch and Boudreaux-Bartels [1992].
Further references in the signal processing literature are Evangelista [1989],
Wornell [1990], Gopinath and Burrus [1991], Vaidyanathan [1991c], Soman
and Vaidyanathan [1991 and 1992a,b], Tewfik and Kim [1992], Akansu and
Liu [1991], Akansu, et al. [1992], Wornell and Oppenheim [1992], and Vet-
terli and Herley [1992]. In this chapter we will develop the basic ideas of
wavelet transforms in a manner suitable for the signal processing person who
understands the traditional Fourier transform, and has some familiarity with
filter banks.

BACKGROUND AND OUTLINE

The conventional discrete-time Fourier transform pair is given by

(11.1.1)

(11.1.2)

If xX(n) is a single frequency signal,t that is, x(n) = ejw0n then
(11.1.3)

t A signal of the form cos(wOn + B) is sometimes referred to as a signal

458 Chap. 11. Wavelet transforms and filter banks



We say that the transform is completely localized at w0. In contrast, the time
domain plot of ejw0n is infinite in extent (in fact its magnitude is unity for
all n). This is consistent with the uncertainty principle which says (heuris-
tically) that if x(n) has a ‘wide' support, then X(ejw) has 'narrow' support
in - =w < T.

In Sec. 11.2.4 a more quantitative statement of the uncertainty principle
will be presented. The principle is most easily demonstrated for the Fourier
transform pair in Fig. 11.1-2. As N increases, the signal x(n) becomes
less localized, but the main lobe of the Fourier transform gets narrower. As
N approaches infinity, the transform looks more and more like the impulse
(Dirac delta) function.

Figure 11.1-2 A Fourier transform pair, demonstrating the uncertainty princi-
ple.

The above localization property of the Fourier transform rejects the
notion of "frequency that varies with time." But such a notion is often useful.
For example, as the musician passes from a low to a high note, the ‘frequency'
(more accurately the 'pitch’) is said to change in real time. According to
Fourier transform theory this is meaningless because a single frequency is
always associated with infinite time duration. If we apply Fourier analysis
to the signal shown in Fig. 11.1-3(a) (where “frequency” makes an abrupt
transition), we find that it is composed of an infinite humber of frequencies.
Another example is shown in Fig. 11.1-3(b) (a rising signal). In the regions
t < 0andt > 1 we naturally wish to think of this as a 'zero frequency signal’,
whereasin 0 < t < 1 the signal has high frequency components. For signals of
the above kind, it is desirable to find a time-frequency representation where
the notion of ‘frequency changing with time’ can be formally accomodated.

The short-time Fourier transform (or time dependent Fourier trans
form), abbreviated as STFT, is a tool that fills this need [Gabor, 1946], [Ra-
biner and Schafer, 1978], [Portnoff, 1980], [Oppenheim and Schafer, 1989].
Here the signal x(n) is multiplied with a window (typically of finite dura-
tion), and then the Fourier transform computed. The window is then shifted
in uniform amounts, and the above computation repeated. We will see that

with frequency w0. However, this is a superposition of two single-frequency
signals, viz., ejwOn and e-jwOn.
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the computation of the STFT is equivalent to the implementation of a filter
bank where all the filters have the same bandwidth, and each filter is followed
by a decimator. The duration of the window governs the time localization of
the analysis, the bandwidths of the filters govern the frequency resolution,
and the decimator governs the stepsize for window movement.

Figure 11.1-3 (a) A signal whose ‘frequency' changes abruptly, and (b) a rising
signal.

The wavelet transform, which is a more recent advance, generalizes
the STFT by incorporating two novel features into its definition. First it
permits nonuniform bandwidths (as in a tree structured filter bank system;
see Fig. 5.8-4), so that the resolution is higher (i.e., bandwidth smaller) at
lower frequencies. This makes the "fractional resolution" identical for all
center-frequencies. Second, the nonuniform bandwidths automatically lead
us to use different decimators for the different filter outputs. Such nonuni-
form systems are well-suited for the processing of sound signals, because of
the decreasing resolution of the human ear at higher frequencies.

The traditional Fourier transform representation (2.1.21) can be re-
garded as an expansion of xa(t) in terms of the basis functions ejQt. (It
will be easier to switch our discussion to continuous-time for a while.) The
basis functions (which are functions of time) are parameterized by the fre-
quency variable Q. We will see that the short-time Fourier transform is a
representation of a signal in terms of a different class of basis functions,
indexed by two variables, namely time as well as frequency.

The wavelet transform is a further modification of this, which allows
nonuniform frequency resolution. We will see that, in the wavelet trans-
formation, the basis functions have a very unusual property, namely, all
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the basis functions are generated by dilation and shift of a single function
@(t) (called a mother wavelet). Thus, instead of representing xa(t) as a
linear combination of the functions ejQt (as does the Fourier transform rep-
resentation), the wavelet transform attempts to represent xa(t) as a linear
combination of

where k and € are integers. (This is only an example.) That is,

This double summation should be compared with the traditional Fourier
transform representation

which is a single integral, in the frequency variabe Q. In the wavelet expan-
sion, k plays the role of 'frequency' and € plays the role of 'time'. The index
variables (k,l) are integers, unlike 'Q" which is a continuous variable in the
Fourier expansion.

In a manner analogous to the orthonormality of the basis functions
{ejQt} in the Fourier representation, we will later discuss orthonormality of
the basis functions {@k€(t)}. As a preview example, the functions in Fig.
11.5-7 represent an orthonormal basis (the Haar basis) for the set of finite
energy functions.

Time-frequency representations. The tools we develop in this chap-
ter come under the general class of "time-frequency representations.” In
these representations, the signal is represented in a domain which is a hybrid
between time and frequency, for example, a time-localized Fourier transform
with the center of localization shifted uniformly. We will see later that the
double index "k€" in @ke(t) above represents time-frequency.

The use of time-frequency representations reflects the philosophy that
some aspects of a signal are most conveniently represented in the time do-
main, whereas there are certain other aspects which are best represented in
terms of frequency. Consider, for example, the two signals shown in Fig.
11.1-4. Both of these have an underlying periodic waveform p(t), for exam-
ple a musical note of fixed pitch. The envelopes of the signals [el(t) and
e2(t)] are, however, different. The first signal has a rapid rise followed by
a steady state, and then a slow decay. The second envelope has a totally
different behavior. (The envelope for a given note is typically determined by
the source, for example, the musical instrument chosen). While it is useful
to regard the pitch of the note in terms of impulses in the Fourier transform
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domain, it is more convenient to describe the envelope in the time domain,
as directly preceived by the ear.

Figure 11.1-4 Two signal pulses, with nearly the same pitch, but different
envelopes.

Chapter Outline

In view of the philosophy outlined above, we will first develop the short-time
Fourier transform (STFT) and then the wavelet transform. In Sec. 11.2 we
introduce the discrete time STFT and inverse STFT, and then develop the
filter bank interpretation. In Sec. 11.2.4 we will briefly summarize the
main features of the continuous-time STFT. We will show in Sec. 11.3.1
that (continuous-time) wavelet transforms can be obtained by performing
two simple modifications to the STFT. This will also place in evidence the
relation to filter banks.

We then introduce, in Sec. 11.3.3, the discrete-time wavelet transform
(which cannot be obtained merely by sampling the continuous time version)
and establish the connection to tree-structured, maximally decimated filter
banks. The fundamental relation between paraunitary filter banks (Chap.
6) and the so-called “orthonormal wavelet decomposition” will be developed
in Sec. 11.4.

In Sec. 11.5 we return to continuous time wavelets, and establish the
relation between continuous time orthonormal wavelets and discrete time pa-
raunitary filter banks. This section will show how to systematically generate
finite duration orthonormal basis functions @k&(t) for the representation of fi-
nite energy functions. Finally, in Sec. 11.5.4 we will describe a technique for
generating orthonormal wavelets with deeper properties, such as regularity.

We will see that the continuous time wavelet functions satisfy some
very interesting mathematical properties (e.g., self-similarity) which are not
relevant in the discrete time case. For such reasons, the discrete time coun-
terpart is sometimes not regarded as “wavelets” but merely as “filter banks.”
In any case, both the continuous- and discrete-time versions share several
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11.2

common properties (sufficient for many applications), when viewed in terms
of the frequency domain quantities and subsampling operations.

Notice that our presentation in this chapter has the following order:
(a) discrete-time STFT, (b) continuous-time STFT, (c) continuous-time
wavelets, (d) discrete-time wavelets, and (e) connection between continuous
time wavelets and discrete-time filter banks. We have opted for this order-
ing because there appears to be a natural "flow" between two successive
items on this list. Historically, however, items (b) and (a) should have been
switched, as the continuous-time STFT has been known since the middle
forties [Gabor, 1946].

THE SHORT-TIME FOURIER TRANSFORM

In Sec. 4.1.2 we introduced the DFT filter bank (Fig. 4.1-16). This system
merely computes the DFT of M successive samples of the input, and then
repeats the operation for the next set of M samples. We saw that this
could be interpreted in terms of a window that slides past the data. This
could also be interpreted in terms of a bank of bandpass filters with 13 dB
stopband attenuation. We also generalized this to the case of a uniform
DFT filter bank (Fig. 4.3-5), with the advantage that the filters could now
offer sharper cutoff and higher attenuation. These systems are essentially
implementations of the so called short-time Fourier transform (STFT) to be
described now.

In short-time Fourier transformation, a signal x(n) is multiplied with
a window v(n) (typically finite in duration). See Fig. 11.2-1. The Fourier
transform of the product x(n)v(n) is computed, and then the window v(n)
is shifted in time, and the Fourier transform of the product computed again.
This operation results in a separate Fourier transformation for each loca-
tion m of the center of the window. In other words, we obtain a function
XSTFT(ejw,m) of two variables w and m. The frequency variable w is con-
tinuous, and takes the usual range —Tt=co<11. The shift-variable m is
typically an integer multiple of some fixed integer K. Figure 11.2-2 shows
a two dimensional plot which represents the idea. These are often called
spectrograms. See Oppenheim and Schafer [1989] for real-time examples of
spectrograms. (Also notice the cover picture in that reference!)

Figure 11.2-1 Pertaining to the short-time Fourier transform.

Essentially, for any fixed m, the window captures the features of the sig-
nal x(n) in the local region around m. The window therefore helps to localize
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the time domain data, before obtaining the frequency domain information.
From the above discussions it is clear that the short time Fourier transform
can be written mathematically as

(11.2.1)

If we set v(n) = 1 for all n, this reduces to the traditional Fourier transform
for any choice of m.

Figure 11.2-2 Demonstrating XSTFT(ejw,m) for m = 0, K, 2K...

Existence of the STFT. The traditional Fourier transform (11.1.1)
exists only if the signal x(n) satisfies some subtle mathematical conditions
[Oppenheim, Willsky and Young, 1983]. In a practical STFT system, how-
ever, v(n) has finite duration, so that the above summation always converges
(i.e., the STFT exists). Thus many of the subtle mathematical questions
which are raised in connection with the Fourier transform do not arise in the
STFT regime.

11.2.1 Interpretation Using Bandpass Filters

For a variety of reasons, it is convenient to interpret the STFT using the
notion of filter banks. In addition to enhancing insight, this also gives a prac-
tical scheme for implementation. Furthermore this interpretation helps us
to generalize the STFT to obtain more flexibility (Sec. 11.2.3). Finally, the
theory of perfect reconstruction filter banks can be used to obtain practical
“inversion” formulas for STFT.

Traditional Fourier Transform as a Bank of Filters

We will begin by presenting a filter bank interpretation for the tra-
ditional Fourier transform (11.1.1). The evaluation of X(ejw) at a fixed
frequency w0 can be pictorially represented as in Fig. 11.2-3(a). This is a
cascade of two systems.
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1. The modulator e-jw0On. This performs a frequency-shift. More specif-
ically, it shifts the Fourier transform towards the left by the amount
w0, so that the zero-frequency value of S(ejw) is equal to X(ejw0) (Fig.
11.2-3(b)).

2. The LTI system H(ejw). This has impulse response h(n) = 1 for all n.
This system is evidently unstable (Sec. 2.1.2), but let us ignore these
fine details for the moment. Its “frequency response” is

where da(.) is the Dirac delta function which was defined at the begin-
ning of Sec. 2.1. t Thus, H(ejw) is an ideal "lowpass" filter, which
"passes” only the zero-frequency signal. Every other frequency is com-

pletely suppressed. This filter can be regarded as the limit, as Aw - 0,
of an ideal filter with response 2 2Aw for ®w < Aw?2 and zero else-

where.

The output y(n) of the system is therefore a zero-frequency signal with
Y(ejw) = 21tX(ejw0)da(w) for -1t < w < T, that is,

Figure 11.2-3 (a) Representation of Fourier transformation in terms of linear
systems. (b) Frequency domain quantitites, sketched for an arbitrary example.

Summarizing, the process of evaluating X(ejw0) can be looked upon as
a linear system, which takes the input x(n) and produces a constant output

t Ofcourse, the Fourier transform H(ejw) repeats periodically with period
21, but we will not explicity show it in the formulas.
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y(n) whose value is equal to X(ejw0) for all time n. Thus, any sample of y(n)
can be taken to be the value of X(ejw0). The Fourier transform operator
which evaluates X(ejw) for all w is, therefore, a bank of modulators followed
by filters. This system has an uncountably infinite number of channels.

The STFT as a Bank of Filters

From its definition it is clear that the STFT can be represented as in
Fig. 11.2-4(a). In this figure, w0 and m are constants. So y(n) is constant for
all n, with y(n) = XSTFT(ejw0,m). To gain further insight, let us rearrange
the definition to obtain

(11.2.2)

Figure 11.2-4(b) shows this interpretation, where the indices k and m
have been replaced with n, to be consistent with standard notations (Sec.
2.1.2). This is a linear system with two parts. The first is an LTI filter
with impulse response v(-n)ejw0n. This is followed by the modulator e-jw0n
(linear time varying device). The output yO(n) of this system is now a
function of n [unlike in Fig. 11.2-4(a)]. For any specific value of n, say n = m,
this output represents the Fourier transform of x(.) "in the neighbourhood
of m," because m represents the location of the window v(k) in the time
domain. For the special case where v(k) = 1 for all k, this output becomes
a constant [equal to the traditional Fourier transform X(ejw0)] for all n.

Figure 11.2-4 (a) The STFT represented in terms of a linear system and (b) a
rearrangement.

In most applications, v(n) has a lowpass transform V(ejw). So v(—n)
has the lowpass transform V(e-jw). The modulated version v(-n)ejw0n rep-

resents a bandpass filter V(e-j(w-w0)). See Fig. 11.2-5. The output sequence
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t0(n) in Fig. 11.2-4(b) is, therefore, the output of a bandpass filter, whose
passband is centered around w0. The effect of the modulator e-jw0n is merely
to re-center this around zero frequency.

Figure 11.2-5 Demonstration of how the STFT works. (a) X(ejw), (b) the
window-transform and its shifted version, (c) output of LTI filter and (d) tradi-
tional Fourier transform of XSTFT(ejwO, n).

For every frequency w0 the STFT performs the filtering operation of
Fig. 11.2-4(b) to produce an output sequence XSTFT(ejw0,n). So the STFT
can be looked upon as a filter bank, with infinite number of filters (one
'‘per frequency'). In practice, we are interested in computing the Fourier
transform at a discrete set of frequencies

(11.2.3)
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In this case the STFT reduces to a filter bank with M bandpass filters Hk(z)

with responses Hk(ejw) = V(e-j(w-wk)) (and followed by modulators). This
is shown in Fig. 11.2-6. The passband of Hk(ejw) is centered around wk.
The output signals yk(n) represent the STFT coefficients.

Figure 11.2-6 The STFT operation viewed as a filter bank (a) V(e-jw) and
shifted versions, and (b) the filter bank.

The uniform DFT bank. If the frequencies wk are uniformly spaced,
then the above system becomes the uniform DFT bank (Sec. 4.1.2). In this
system the M filters are related as

(11.2.4)

where W = e-j21t/M. This means that the frequency responses are uniformly
shifted versions of HO(ejw), i.e.,

(11.2.5)

The unshifted filter is HO(ejw) = V(e—jw). In Fig. 4.3-5 we saw an im-
plementation of this set of filters, in terms of the polyphase components
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(11.2.6)
It is now clear that the uniform DFT bank is a device to compute the short-
time Fourier transform at uniformly spaced frequencies. In particular if the
polyphase components are replaced with unity [i.e., Ek(z) = 1 for all K],
then the system merely computes the DFT of a block of M samples (Fig.
4.1-16). In this case v(n) is a rectangular window of length M.

Choice of v(n), and Time-Frequency Tradeoff

Unlike the Fourier transform, the STFT is not uniquely defined unless
we specify the window v(n). The fact that v(n) can be chosen by the user
offers a great deal of flexibility. The choice of v(n) essentially governs the
tradeoff between ‘time localization' and ‘frequency resolution' as explained
next.

The signal yO(m) can be considered to represent the change or ‘evolu-
tion' of the Fourier transform of x(n), evaluated around frequency w0. Thus
yo(m) represents the local information, around time m (since m represents
the location of the window v(Kk) in the time domain) around frequency w0. It
is clear that as V(ejw) becomes narrower, the bandpass filters in Fig. 11.2-
6(b) get narrower, and yk(n) gets closer to X(ejwk). This means that the
information in the frequency domain is becoming more and more localized.
However, as V(ejw) gets narrower, the window v(n) gets wider (uncertainity
principle) so that the localization of information in the time domain is com-
promised. Fig. 11.2-7 demonstrates the tradeoff between time localization
and frequency resolution.

The fact that time localization and frequency resolution are conflicting
requirements has given rise to interesting theoretical questions. For example,
what is the choice of window that will give the best frequency resolution
for a given time localization? To answer this question, one has to define
the term “best” using a mathematical measure. To take a specific case,
suppose we constrain v(n) to be a symmetric window of finite length N + 1.
What is the best choice of the coefficients v(n) so that the energy of V(ejw)
is most concentrated in a specified region w < a? This problem was in
fact addressed in Sec. 3.2.2, where we found the solution to be the prolate
spheroidal sequence, obtainable from an eigenvector of a positive definite
matrix. See Sec. 11.2.4 for another measure of “best localization.”

Time-Frequency Representation, and Decimation

It is often stated that XSTFT(ejw, m) is a time-frequency representation,
because it is a function of time m as well as frequency w. If the passband
width of V(ejw) [hence that of V(e-jw)] is narrow, then the signal yo(n) in
Fig. 11.2-4(b) is a narrowband lowpass signal. This means that yO(n) varies
slowly with the time index n. An extreme case is when V(ejw) is an impulse
(traditional Fourier transform) so that yo(n) = X(ejw0) for all n.
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Figure 11.2-7 Demonstrating the tradeoff between time localization and fre-
guency resolution. (a) Wide window v(n); poor time localization and good fre-
guency resolution. (b) Narrow window v(n); good time localization and poor
frequency resolution.

The slowly-varying nature of XSTFT(ejw, n), [i.e., yO(n) in Fig. 11.2-
4(b)] can be exploited to decimate it, thereby resulting in a more economical
time-frequency representation. If the decimation ratio is M, then this is
equivalent to moving the window v(k) by M samples at a time. (That is, M
is the 'step size' for window movement). If yO(n) were not varying at all (as
with traditional Fourier transform), then we would have to retain only one
sample, and its value is X(ejw0).

Figure 11.2-8 shows a decimated STFT system, where the modulators
have been moved past the decimators. Since the filters have equal band-
width, the decimation ratios nk can be taken to be equal. With nk = M
this represents a maximally decimated analysis bank. In a more general sys-
tem nk could be different for different k, and moreover Hk(z) may not be
derived from one prototype by modulation. Such a system, however, does
not represent the STFT obtainable by moving a single window v(k) across
the data x(n). When we introduce the wavelet transforms in Sec. 11.3, we
will admit such generalized systems.

The time-frequency representation offers a whole family of tradeoffs
(‘time localization' versus ‘frequency resolution' tradeoff) between the two
extremes, viz., X(n) (time domain representation), and X(ejw) (frequency
domain representation). The flter bank system performs an operation anal-
ogous to Fourier transformation, yet the outputs of the transform are time
varying. After performing the maximal decimation, the time-frequency rep-
resentation has the same number of samples per unit time as does x(n).
There is no redundancy in the representation.
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The time-frequency grid. Figure 11.2-9 demonstrates a grid in the
two-dimensional time-frequency plane. The vertical lines represent the ‘fre-
quencies' where the STFT is computed (i.e., center frequencies of the filters).
The horizontal lines represent the sample locations in the time domain, for
the decimated filter outputs. The intersections of the lines represent the
location of a sample of XSTFT(ejwk, m). This grid represents uniform sam-
pling of both 'frequency' w and 'time' n. The fact that the time spacing is
M corresponds to the fact that the window is moved in steps of M units at a
time. The frequency spacing (spacing between center frequencies of adjacent
filters) is 2t/M because there are M filters of identical bandwidths.

Figure 11.2-8 An analysis bank with decimators and modulators. The signal
yk(nkn) represents the decimated version of XSTFT(ejwk, n) where wk is the center
frequency of Hk(ejw). Usually nk = M for all k.

Figure 11.2-9 The two-dimensional time-frequency grid for evaluating the short-
time Fourier transform.
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11.2.2 Inversion of the STFT

Starting from the definition (11.2.1) it is easy to derive a number of inversion
formulas that recover x(n) from XSTFT(ejw, m). As XSTFT(ejw, m) is the
traditional Fourier transform of x(n)v(n — m), it is clear that

(11.2.7)

For example if we set n = m we obtain the STFT inversion formula

(11.2.8)

so that we can recover x(m) for all m as long as v(0) # 0. [If v(0) = 0, pick
some other value of m in (11.2.7)]. Notice that it is not necessary to know
v(n) for all n, in order to recover x(n) from its STFT.

A second inversion formula is given by

(11.2.9)

provided >m v(m) 2 = 1. To prove this we mererly substitute (11.2.1) into
the RHS of (11.2.9), which then reduces to x(n) =m (v(m) 2. There are some
subtleties about the formula, which we mention here. Problem 11.3 covers
details.

1 If =m|v(m) 2 # 1 but finite, we can divide the right side of (11.2.9)
by >=m v(m) 2 and obtain the inversion. However, if the window v(n)
has infinite energy (as in the important special case of v(m) = 1), this
inversion formula cannot be applied.

2. Suppose we replace v*(n — m) in (11.2.9) with w*(n — m) where w(n)
is an arbitrary sequence with the restriction that >n v(n)w*(n) = 1
Then the inversion formula still works!

3. The function G(ejw,m) satisfying

(11.2.10)

is not unique. For example, suppose z0 is a zero of the z-transform

> kv*(k)z-k. Then G(ejw, m) XSTFT(ejw, m) + zm) satisfies (11.2.10)
for the same sequence x(n). This is unlike the case of traditional Fourier
transform, where (11.1.2) is not satisfied if we replace X(ejw) with some-
thing else.

472 Chap. 11. Wavelet transforms and filter banks



Filter Bank Interpretation of the Inverse Transform

It is valuable to express the inverse transform using filter bank notation.
Recall that Fig. 11.2-6(b) offers a practical means of implementing the
STFT. Viewed like this, the STFT is a transformation of a one dimensional
sequence X(n) into a two dimensional sequence yk(m) (i.e., function of two
integer variables k and m). The number and locations of the frequencies
wk might appear to be arbitrary, and so might the shapes of the filters. In
fact they are somewhat arbitrary, subject primarily to the requirement that
the signal x(n) be reconstructible from the STFT coefficients yk(n) with
reasonable accuracy in reasonable amount of time. It turns out that, as
long as the filters Hk(z) are chosen properly, we can find stable synthesis
filters Fk(z) to recover x(n) perfectly. On the other hand, inversion of the
traditional Fourier transformation (11.1.1) requires the computation of an
integral.

With the STFT implemented as in Fig. 11.2-8, the reconstruction is
done by using a synthesis bank as shown in Fig. 11.2-10. Typically nk = M
for all k, but we will use nk for generality. The z-transform of x(n) is given

by
(11.2.11)

In the time domain this is equivalent to

(11.2.12)

If the synthesis filters Fk(z) are such that x(n) = x(n), we can say that
(11.2.12) is the representation of x(n) in terms of the decimated STFT co-
efficients yk(nkm) just as (11.1.2) is the representation of x(n) in terms of
the traditional Fourier transform ‘coefficients’ X(ejw). While (11.1.2) is an
integral in terms of the single variable w, the new representation is a double
summation (in the integer variables k and m.) The reconstruction is stable
if the filters Fk(z) are stable.

Example 11.2.1: Reconstructing x(n) from STFT Coefficients

Assume that there are no decimators, that is, the STFT is as in Fig.
11.2-6. Let the window v(n) satisfy the Nyquist property, viz., v(Mn) =
0 for n # 0. Then, the M filters Hk(z) defined in (11.2.4) satisfy the

property =k=0M-1 Hk(z) = c0 for constant c0 # 0 (Sec. 4.6.1). This means
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that we can reconstruct x(n) from the STFT coefficients yk(n) simply
by adding them after demodulation, that is,

(11.2.13)

for some constant cl.

Figure 11.2-10 The synthesis bank used to reconstruct x(n) from its STFT
coefficients. Usually nk = M for all k.

11.2.3 Generalizations of the STFT

We know that we can recover an arbitrary signal x(n) from its (decimated)
STFT coefficients, provided we can design a synthesis bank with perfect
reconstruction (PR) property. However, since the analysis filters are derived
from a single prototype by modulation, the PR requirement will in turn
restrict the coefficients of v(n) severely (Example 5.7.2).

If we relax the requirement that all analysis filters be derived from
one prototype v(n), we can obtain more flexibility. For this we generalize
the STFT idea by viewing any analysis filter bank as a generalized Fourier
transformer. The outputs of the filters are narrowband signals, and represent
the localized Fourier transform as described above. This generalized system,
however, is not derivable from a traditional single sliding window system
as in Fig. 11.2-1, i.e., the simple description (11.2.1) does not hold. These
are more appropriately called “spectrum analyzers” rather than short time
Fourier transformers. From Chap. 5-8 we know that there exist many
techniques to perfectly reconstruct x(n) from the (possibly decimated) filter
outputs.

We will say that the quantities

(11.2.14)
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in Fig. 11.2-8 are the generalized STFT coefficients of the signal x(n). The
transform domain is characterized by two integer variables k and n. The
STFT pair can be written as

(11.2.15)

and

(11.2.16)

The decimators nk should be chosen to be inversely proportional to the
passband widths of the filters Hk(z). If these bandwidths are equal, then
nk = M for all k. Notice that the modulators and demodulators have not
been included in the definition for simplicity; they cancel each other anyway,
and do not provide further insights. We can regard (11.2.15) and (11.2.16)
as the generalized STFT pair or the "spectrum analyzer/synthesizer pair™.
It is also called the "filter-bank transform pair." For the special case where
the analysis filters are as in (11.2.5) with HO(z) = V(z-1), this reduces to
the traditional STFT which is computed from a single window v(n).

Comments.

1. The above STFT/inverse STFT definition assumes that the filters Hk(z)
and Fk(z) are such that the filter bank system (Fig. 11.2-8 followed by
Fig. 11.2-10) has perfect reconstruction property. It is easy to ensure
that Hk(z) are stable. If Fk(z) are also stable, we have a stable recon-
struction scheme for performing the inverse transform.

2. Nonuniqueness. In Fig. 11.2-6(b), suppose a is a zero of all the analysis
filters, that is, Hk(a) = 0 for all k. This means that if we replace x(n)
with x(n) + an, the STFT coefficients do not change. In other words,
the sequence x(n) producing the transform domain coefficients is not
unique. Such a situation is easily avoided in practice. For example, in
a perfect reconstruction system this situation will not arise. (Because,
it would imply that the input x(n) = an produces zero output).

Basis Functions and Orthonormality

Consider the conventional Fourier transform representation (11.1.2).
Here x(n) is a linear combination of the sequences ejwn, and the set {ejwn}
is said to be a basis for the space of sequences representable as in (11.1.2).
The basis functions ejwn, are orthonormal in following sense:

(11.2.17)
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that is, the "inner-product” of ejwln and ejw2n is equal to zero unless w! =
w2.
By the above analogy we see that the quantities

(11.2.18)

play the role of “basis functions” in (11.2.16). Notice that this is a doubly
indexed family of functions. The first index is the filter number k, and the
second index determines the time shift. Such basis functions will be called
the "filter-bank like basis".

It is of interest to impose the orthonormality property on the basis
functions {nkm(n)}. This property means that

In other words, the above summation should be zero except for the case
where kI = k2 and m! = m2 (and reduces to unity in that case). How
should we design the filters Fk(z) in order to ensure this? We will return
to this very interesting issue in Sec. 11.4, and show that the paraunitary
property of the polyphase matrix (Chap. 6) is sufficient!

Relation between hk(n) and fk(n). In the traditional Fourier trans-
form pair, the basis function ejwn appears in (11.1.2) whereas its conjugate
appears in (11.1.1). Inspection of the STFT pair reveals no obvious analogy
of this relation. The only requirement is that the functions hk(nkn - m) and
fk(n — nkm) be related in such a way as to ensure perfect reconstruction.
We will return to this later, and show that if the basis functions are or-
thonormal then fk(n) = hk(-n). This is very similar to the relation between
analysis and synthesis filters in a paraunitary perfect reconstruction system
(Sec. 6.2.1).

Table 11.2.1 provides a summary of the discrete-time STFT.

11.2.4 The Continuous-Time Case

Historically, the STFT idea was first developed for the continuous-time case
even though our presentation here started with the discrete case. In 1946
Dennis Gabor t considered windowed versions of the continuous-time Fourier
transform. Gabor used a Gaussian window, that is, a function of the form
v(t) = v(0)e-bt2,b > 0. The corresponding continuous-time STFT is called
the Gabor transform [Gabor, 1946]. Notice that this window does not have
finite duration.

t He received the Nobel Prize in 1971 for contributions to the principles
of holography.
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TABLE 11.2.1 Short-Time Fourier Transform (STFT), discrete-time.

Here are the key equations governing the discrete-time traditional and
short-time Fourier transforms. Note that the subscript on nw(n) is the real-
valued continuous variable w. For the STFT, there are two subscripts, as
in nw,m(n) and nkm(n). In the former, w is a real (continuous) variable. In
the latter, k is integer-valued (center-frequency number or filter number).
The double subscripts arise because the transform domain is time-frequency
rather than frequency, as would be the case for the traditional Fourier trans-
form. Read the text, particularly in the neighbourhood of the following
equations, to fully appreciate assumptions and conditions.

Traditional Discrete-time Fourier Transform

(transform) (11.1.1)

(inverse transform) (11.1.2)

Discrete-Time STFT

(STFT) (11.2.1)

(inverse STFT) (11.2.8)
(inverse STFT)

(11.2.9)
Generalized Discrete-Time STFT (Filter-Bank Transformer)

(STFT), (11.2.15)

(inverse STFT). (11.2.16)

It is assumed that the filter bank with analysis filters hk(n), synthesis filters
Tk(n) and decimation ratios nk (Fig. 11.2-8, 11.2-10) has perfect reconstruc-
tion (x(n) = x(n)). For orthonormal basis, fk(n) = hk(-n).
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Because of the close resemblance to the discrete-time case, we only
summarize the main points. Given a signal x(t) we define the STFT as

(11.2.20)

where v(t) is an appropriate window function, typically with lowpass Fourier
transform V(jQ). (Proper choice of v(t) ensures existence of the integral).
Once again we can find an inversion formula similar to (11.2.8), and obtain

(11.2.21)

which works as long as v(0) # 0. The inverse transform analogous to (11.2.9)
is given by the double integral

(inv. STFT),

(11.2.22)
and this is associated with similar subtleties as itemized after (11.2.9).

Choice of “Best Window” to Optimize Localization

We know that if the window v(t) is 'narrow' in the time domain, its
Fourier transform is ‘broad' and vice versa. This means that there is a
tradeoff between time localization and frequency resolution. To make this
idea more precise, the rms (root-mean squared) duration of a signal is intro-
duced in the literature ([Gabor, 1946], [Papoulis, 1977a]. Thus consider the
two nonnegative quantities Dt and Df defined by

(11.2.23)

where E is the window energy, that is, E = [ v2(t)dt. (For this discussion
v(t) is real.) We say that Dt is the rms time domain duration and Df
the rms frequency domain duration of v(t). Figure 11.2-11 shows the rms
duration Dt for a number of signals (the reader is requested to verify these
in Problem 11.5). It is interesting that a triangular waveform has a smaller
rms duration than a rectangular waveform, even though they have identical
‘traditional duration®! This is because the factor t2 in the definition of D2t
increases the penalty on nonzero values of v(t), as t increases.

Uncertainty principle. It turns out that the product DtDf cannot be
arbitrarily small. Here is a quantitative statement of uncertainty principle:
DtDf = 0.5, with equality if and only if v(t) = Ae-at2,a > 0 (Problem
11.6). Thus the optimal window is a Gaussian waveform, and its 'traditional’
duration is infinite.
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Figure 11.2-11 RMS duration of some typical signals. (a) Rectangular win-
dow, (b) one-sided rectangular window, (c) triangular window, and (d) Gaussian

window.

Filter Bank Interpretation
To obtain further insight we rewrite the STFT for fixed frequency Qk
as

(11.2.24)

Defining h(t) = v(-t), we see that the integral above is a convolution of x(t)
with the filter having impulse response

(11.2.25)

Thus
(11.2.26)
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Figure 11.2-12 shows this “filtering” interpretation. We have replaced T
with t everywhere to conform with traditional notations. The output yk(t)
represents the STFT of x(t), evaluated with window v(t), at the frequency
Qk. Assuming v(—t) is narrowband lowpass, the output of the filter in the
figure is narrowband bandpass, centered at Qk. So the signal yk(T) is nar-
rowband lowpass, that is, it is "slowly varing in r." It represents an estimate
of the Fourier transform of x(t) ‘'localized around time r' and around the
frequency Qk. With the system of Fig. 11.2-12 repeated for several values
of Qk, the complete system is equivalent to a bank of bandpass filters (Fig.
13)2- All filter responses are shifted versions of the prototype response
H(Q). Finally, if v(t) = 1 for all t, then yk(t) is constant for all t, that is,
yk(t) = X(jQk) (traditional Fourier transform).

Figure 11.2-12 The continuous-time STFT as an LTI filter followed by mod-
ulator. For each frequency of interest Qk, we have one such filter, resulting in a
filter bank.

Figure 11.2-13 Performing the STFT at a discrete set of frequencies is equiv-
alent to the use of a bank of bandpass filters.

Uniformly Sampled Version of the STFT

Since yk(t) is narrowband lowpass, we can sample it with appropriate
sampling period, say T, to obtain XSTFT(Qk, nT). See Fig. 11.2-14. (With
nonideal filters, aliasing due to sampling is unavoidable, and must somehow
be canceled later). One special choice of Qk is particularly illuminating, viz.,
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11.3

Qk = kQO, for integer k and fixed QO. In this case we have

(11.2.27)
Essentially, X(k,n) is a uniformly sampled version of the two-dimensional
function XSTFT(j<Q,r). The set of sample points described by (kQO0O,nT) is
called the Gabor lattice (or Von Neumann lattice in quantum mechanics
literature; [Von Neumann, 1955]). The question now is, can we reconstruct
X(t) from this sampled transform? If the product QOT is sufficiently small,
the answer is in the affirmative. It is shown in the literature (also see Problem
11.4) that if Q0T = 2m, the function x(t) can indeed be written explicitly in
terms of the samples X(k,n). However, the reconstruction procedure itselfis
unstable; one requires the condition Q0T < 2m for stability. See Daubechies
[1990] for elaboration on this point.

Figure 11.2-14 Sampled version of the continuous-time STFT.

The fact that we can reconstruct x(t) from the two dimensional sampled
version might occassion an initial surprise, since we have not assumed any
bandlimited property of x(t). Consider, however, the situation where we
increase Q0 for a fixed value of the product Q0T < 2m. In the extreme
case where Q0 - oo, we have T - 0. This is equivalent to having a single
filter with infinite bandwidth, whose output is x(t) itself; this output is
sampled with samples spaced infinitesimally close together. In other words,
the transformed version is essentially x(t) itself!

THE WAVELET TRANSFORM

While the short-time Fourier transform is a convenient generalization of
the Fourier transform, it still has some disadvantages. To appreciate this,
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consider Fig. 11.3-1 which shows two cases. For the first case X(t) is a
high-frequency signal, and many cycles are captured by the window. For
the second, x(t) is of low frequency, so that very few cycles are within the
window. Thus the accuracy of the estimate of the Fourier transform is poor
at low frequencies, and improves as the frequency increases. This can also
be seen from the fact that the bandpass filters in Fig. 11.2-13 have equal
bandwidths, rather than bandwidth increasing with center-frequency.

Figure 11.3-1 The windowed function x(t)v(t) for (a) high-frequency signal
X(t), and (b) low-frequency signal x(t).

Another issue is revealed by considering the rising signal of Fig. 11.1-
3(b). We see that if the window is narrow, it helps to localize the rising
portion very well, as compared to a wide window. With a narrow window,
however, the information in the steady part of the signal changes very slowly.
It will be appropriate here to have a window whose width adjusts itself
with ‘frequency’. This can be accomplished by using a filter bank where
the lowpass filter has a narrower bandwidth (wider time-width) than the
bandpass and highpass filters.

One (conceptual) way to do this is to replace the window v(t) with a
function of both frequency and time, so that the time domain plot of the
window gets wider (i.e., bandwidth gets narrower) as frequency decreases. In
this way, the window captures nearly the same number of zero-crossings for
any sinusoidal input with arbitrary frequency. Furthermore, as the window
gets wider, it is also desirable to have wider step sizes for moving the window
(equivalently larger decimation ratio nk in Fig. 11.2-8).

These goals are nicely accomplished by the wavelet transform. We begin
by developing the continuous-time wavelet transform which is conceptually
easier.

11.3.1 Passing from STFT to Wavelets

Step 1. Nonuniform filter banks
The bandpass filters in Fig. 11.2-6 have equal bandwidth because they
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are obtained by modulation of a single filter. As a first step, we give up this
modulation scheme, and obtain the filters hk(t) as

(11.3.2)
Equivalently, in the frequency domain,
(11.3.2)

Thus all the responses are obtained by frequency-scaling of a prototype re-
sponse H(jQ). This is unlike the case of STFT, where all filters were obtained
by frequency-shift of a prototype.

The scale factor a-k/2 in (11.3.1) is meant to ensure that the energy
Jo-o hk(t) 2dt is independent of k. This can be regarded as a normalizing
convention or height convention.

Example 11.3.1

Assuming that H(JQ) is bandpass with cutoff frequencies a and (3, we
obtain the responses shown in Fig. 11.3-2(a). Note that HO(Q) =
H(j<Q). We have assumed a = 2, and 3 = 2a. The bandedges of adjacent
filters overlap, as indicated. The passband gets narrower as the center
frequency decreases. Quantitatively, we define the center frequency to
be the geometric mean of the two cutoff edges, that is,

(11.3.3)

These are nonuniformly located, and appear to be uniform if the fre-
quency axis is represented on a logarithmic scale. Notice that H(JQ) is
bandpass rather than highpass. One often restricts k to be nonnegative,
so that there are no filters to the right of the bandpass filter HO(jQ).
This is acceptable if the input signal has no information beyond this
filter, that is, if it is bandlimited. From Fig. 11.3-2(a) we see that the
ratio

(11.3.4)

is independent of the filter number k.t Notice a slight change in conven-
tion here: as k increases, the center frequency decreases. This happens
to be more convenient.

t In the language of electrical filter theory [Sedra and Brackett, 1978],
such a system is often said to be a ‘constant Q' system. The quantity Q'
(Quality factor) is usually defined as (center-frequency/bandwidth), i.e., the
reciprocal of (11.3.4).
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Nonuniform bandwidths as in the above example are very useful for
the analysis of sound signals. See, for example, [Nelson, et al., 1972],
and pp. 301-303 of Rabiner and Schafer [1978]. This is because of
the decreasing frequency-resolution of the human ear with increasing
frequency [Flanagan, 1972].

Figure 11.3-2 (a) Frequency responses obtained by the scaling process (11.3.2)
with a = 2. (b) Analysis bank representation of discrete wavelet transform. (c)
Synthesis bank which would reconstruct x(t) from the set of wavelet coefficients
XDWT(k, n). In this figure, the signal XDWT(k,n) indicates a continuous-time
impulse train >con=-c0 XDWT(k, n)o(t — 2knT).
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With the filters redefined as in (11.3.1), the filter outputs can be ob-
tained by modifying the right hand side of (11.2.26) with

(11.3.5)

This is the first of the two modifications of the STFT, which will lead to
wavelet transforms.

Step 2. Nonuniform decimation

Since the bandwidth of Hk(jQ) is smaller for large k, we can sample
its output at a correspondingly lower rate. Equivalently, viewed in the time
domain, the width of hk(t) is larger so that we can afford to move the window
by a larger step size. We will do this by replacing the continuous variable r
with nakT in (11.3.5), where n is an integer. This means that the step size
for window movement is akT and it increases with k, that is, increases as
the center-frequency Qk (hence bandwidth) of the filter decreases. Thus the

quantity hla-k(r - t)] in (11.3.5) is now replaced with

(11.3.6)
Summarizing, we are computing
(11.3.73)
ie.,
(11.3.7b)

We have omitted the inconsequential factor e—jQkt which appeared earlier
in (11.3.5). The above integral represents the convolution between x(t) and
hk(t), evaluated at a discrete set of points nakT. In other words, the output
of the convolution (a continuous-time function) is sampled with spacing akT.
Fig. 11.3-2(b) is a schematic of this for a = 2. The kth sampler merely retains
the samples at the locations (2kT)n, where n =integer.

The subscript DWT above stands for discrete wavelet transform. Also,
the dependence on a and h(t) is not explicitly indicated in the notation
XDWT(k,n).

Time-frequency grid. Figure 11.3-3 shows the time-frequency dia-
grams for the STFT and the wavelet transform, and this summarizes the
fundamental difference between these two. In the former, the frequency
spacing and time spacing are uniform. In the latter, the frequency spacing
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Figure 11.3-3 Fundamental differences between the STFT and the wavelet
transform. (a) In the STFT, time and frequency axes are typically uniformly
divided. (b) In the wavelet transform, the frequency samples are spaced closer
together at lower frequencies, and the corresponding time samples are spaced

wider apart.
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is smaller at lower frequencies, and the corresponding time-spacing is larger.
Notice that 'frequency' spacing refers to the spacing between adjacent filters,
and time-spacing refers to the sampling period used for the filtered outputs.
The wavelet transform is not explicitly implemented by a moving window
because there is in reality no unique window here. The system is in essence
a filter bank, and is somewhat analogous to a family of windows (wider for
low frequencies, etc.) as explained above.

General Definition of the Wavelet Transform

Equation (11.3.7a) is a special case of the more general definition of the
continuous wavelet transformation (CWT) given in the literature, viz.,

(11.3.8)

where p and q are real-valued continuous variables. This reduces to (11.3.7a)
if we identify

(11.3.9)

This choice is equivalent to evaluating (11.3.8) at a discrete set of points in
the (p,q) plane, hence the name DWT for (11.3.7). DWT is different from
discrete-time wavelet transforms (DTWT) to be discussed in Sec. 11.3.3.
Quantities such as XCWT(p, q) and XDWT(k,n) are also called wavelet co-
efficients.

The CWT is a mapping of the function x(t) into a two dimensional
function XCWT(p,q) of the continuous variables p,q. The DWT is a map-
ping of x(t) (t being still continuous-time) into a two dimensional sequence
XDWT(k, n). The computation of XDWT(k, n) is equivalent to the implemen-
tation of the bank of filters Hk(jQ), followed by sampling of their outputs
at rates proportional to the filter bandwidths.

11.3.2 Inversion of the Wavelet Transform

The “inverse wavelet transform”, if it exists, reconstructs the signal Xx(t)
from the wavelet coefficients. A direct inversion formula for (11.3.8) can be
found in Daubechies [1990].

We will consider only the discretized case. Whether we can reconstruct
X(t) from the discretized version XDWT(k,n) depends on the prototype filter
h(t), and the discretizing parameters a and T which completely characterize
the transformation. If the inverse transform exists, it has the appearance

(11.3.10)

where Qkn(t) are the basis functions.
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Filter Bank Interpretation of Inversion

Suppose the wavelet coefficients XDWT(k, n) are generated using the
analysis bank in Fig. 11.3-2(b). The reconstruction of x(t) from these co-
efficients can be visualized as a problem of designing the synthesis filters
Fk(Q) shown in Fig. 11.3-2(c). If the analysis/synthesis system has the
perfect reconstruction property, then the recovery is perfect.

We have to be careful with the interpretation of Fig. 11.3-2(c). Since
XDWT(k,n) is a sequence, the signal which is input to the continuous-time
filter Fk(jQ) is actually an impulse train of the form

(11.3.11)

The output of the synthesis filter bank is therefore

(11.3.12a)

Since the synthesis filters Fk(jQQ) have to retain only the frequency region
passed by the analysis filters, it is reasonable that they be all generated from
a fixed prototype synthesis filter f(t), similar to (11.3.1). That is

(11.3.12b)

Substituting this into the preceding equation, and assuming perfect recon-
struction, we get

(11.3.12¢)
Thus

(11.3.12d)
where we have defined

(11.3.12¢)

Thus, Egn. (11.3.12c) expresses X(t) as a linear combination of a set of basis
functions Ykn(t) which are obtained by dilations (i.e., t - a-kt) and shifts

(i.e., t - t—nakT) of a single wavelet function Y (t) or mother wavelet. The
DWT coefficients XDWT(k,n) are the weights of these basis functions.

Using the relations Y(t) = f(t) and fk(t) = a-k/2f(a-kt), we can ex-
press each basis function ykn(t) in terms of the filter fk(t). Thus,

(11.3.12f)
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which is a shifted version of the synthesis filter fk(t).

Orthonormal Basis

Of particular interest is the case where {{kn(t)} is a set of orthonormal
functions. Such functions satisfy

(11.3.13a)
Using Parseval's theorem, this becomes

(11.3.13b)
By using the orthonormality property in (11.3.10) we obtain

(11.3.13¢)
Comparing with (11.3.7a) we conclude

(11.3.14a)

In particular, Y00(t) = Y(t) = h*(-t). But we have Y(t) = f(t) so that, in
the orthonormal case, f(t) = h*(-t). Thus,

(11.3.14b)

This is very similar to the relation (6.2.6) for the perfect reconstruction
paraunitary QMF banks! (We could let c =1 and L = 0 in (6.2.6) without
affecting any significant conclusions of Sec. 6.2).

Table 11.3.1 summarizes the definition and the main features of the
wavelet transform.

Completeness, uniqueness, and so forth

Given an arbitrary function x(t), suppose we compute XDWT(k,n) us-
ing (11.3.7a). Can we then express x(t) as in (11.3.10)? That is, can we
invert the transformation? The answer depends on y(t), and the discretiza-
tion parameters T and a. If this is possible for a specified class of functions
{X(t)}, then the wavelet basis {{pkn(t)} is said to be complete over this class.
In Sec. 11.5 we will see how to generate a complete orthonormal basis for
the class of finite energy functions.

Another practical requirement in addition to completeness is that, the
transformation and reconstruction formulas (11.3.7a) and (11.3.10) should be
'stable’ so that the computations do not "blow up.” In the next section where
we study discrete time wavelets, we will see that the issues of completeness
and stability are much easier to address.
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TABLE 11.3.1 The continuous-time wavelet transform
Traditional Continuous-Time Fourier Transform

(2.1.20)

(2.1.21)

Wavelet transform, general

(11.3.8)

Discrete Wavelet Transform, DWT (stiff continuous-time)
Obtained by setting p = ak, q = akTn, f(t) = h(-t) in (11.3.8), for
integer k, n. (We can take T = 1 for simplicity.)

(11.3.7a)

(inverse DWT).

(11.3.12¢)
The inversion formula assumes that the filter bank of Fig. 11.3-2 has the
perfect reconstruction property, with the filters chosen as

Thus, the functions h(t) and f(t) in (11.3.7a) and (11.3.12c) play the role of
prototype filters in a filter bank where all the filters are derived by dilation
of a single filter. The basis functions in (11.3.12c) are dilated (t - a-kt)
and shifted (t -~ t — nakT) versions of f(t), that is,

(11.3.12d)

where (t) = f(t) = wavelet function or mother wavelet.

Continued -
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Table 11.3.1 continued

Special case of orthonormal basis functions

(11.3.13a)

Under this condition,

(11.3.13¢)

(11.3.12¢)

Again, p00(t) = f(t) = Y(t) = wavelet function.

Filter Bank Properties in the Orthonormal Case
1. Synthesis filters for perfect reconstruction: fk(t) = hk(-1).
2. Relation between prototype filters: f(t) = h*(-t).

11.3.3 Discrete-Time Wavelet Transforms

We now extend the wavelet transformation to the case of discrete-time sig-
nals. The starting point again is a set of filters with frequency responses
having an appearance similar to Fig. 11.3-2(a). In the continuous-time case
these filters were related as in (11.3.1). If we attempt to mimic this by
replacing t with the discrete-time index n, the quantity a—-kn does not in
general remain an integer. Let us, therefore, try to imitate the frequency
domain relation (11.3.2) rather than the time domain relation.

Consider the example a = 2. The equivalent of (11.3.2) for digital filters
would be

(11.3.15)

that is, Hk(z) = H(z2k) where k is a nonnegative integer. For highpass
H(ejw), the responses of Hk(ejw) for k = 1 and k = 2 are shown in Fig. 11.3-
4. This shows that in general Hk(z) is a multiband (rather than bandpass)
filter, and further modification is required to obtain bandpass responses. For
this we cascade Hk(z) with appropriate filters. Thus, let G(z) be a lowpass
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filter with response as in Fig. 11.3-5(a). Then the responses of

(11.3.16)

Figure 11.3-4 Magnitude response plots of (a) H(z), (b) H(z2), and (c) H(z4).

Figure 11.3-5 Magnitude responses of (a) lowpass G(z), and (b) combinations
of H(z) and G(z).
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are as shown in Fig. 11.3-5(b). These resemble Fig. 11.3-2(a) (except for
the heights, which can be adjusted to make all the filter energies equal; see
Fig. 11.3-8 later). The plots are shown only for 0 < w < m as we assume, for
simplicity, magnitude symmetry with respect to n. The filters are bandpass,
with center frequencies

(11.3.17)

Figure 11.3-6 (a) A 3-level binary tree-structured QMF bank and (b) the
equivalent four-channel system.

for appropriate c, and passband widths BWk = 2-kn2 (measured only in
the range [O,1t]). Thus, the ratio BWk wk is independent of k.

From our experience with QMF banks (Sec. 5.8) we already know that
filters of the form (11.3.16) can be generated with the help of a binary tree
structure. Fig. 11.3-6 shows a three-level tree structure along with the
equivalent nontree form, which has four filters. More generally if the tree
has L levels, the number of channels is M = L + 1. The signals xk(n) can be
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decimated by the amounts shown, in order to obtain a maximally decimated
system precisely as in a QMF bank. The decimation ratios are also consistent
with the bandwidths of the signals xk(n). As in any multirate system with
nonideal filters, decimation introduces aliasing. By using the techniques of
Chap. 5 this can be canceled with an appropriate synthesis bank.

Figure 1.1.3-7 (a) The synthesis bank corresponding to Fig. 11.3-6 and (b)
equivalent four-channel system.

Defining the Discrete-Time Wavelet Transform

In the z-domain we have Xk(z) = Hk(z)X(z) so that

(11.3.18)

The decimated signals yk(n) are the wavelet coefficients, and the wavelet
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transform is given by

(11.3.19)

This is analogous to the situation in Fig. 11.2-8 where we obtained the
STFT coefficients using a multirate filter bank. Equation (11.3.19) is the
discrete-time wavelet transform (DTWT).

The inverse transform. The inversion of the above transform can
be performed by designing an appropriate synthesis bank. Consider the
synthesis filter bank of Fig. 11.3-7(a). This is equivalent to Fig. 11.3-7(b)
with filters expressible entirely in terms of Gs(z) and Hs(z). For example,

(11.3.20)

and so on. We know from Sec. 5.8 that if the filters G(z), H(z),Gs(z)
and Hs(z) are appropriately designed, the tree structured system produces
perfect reconstruction, that is, x(n) = x(n). Under this condition we can
express

(11.3.21)

In Egn. (4.1.22) we showed how to express the output of an interpolation
filter in the time domain. Using similar principles, the above expression for
inverse DTWT can be written in the time domain as

(11.3.22a)

that is,

(11.3.22Db)
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Here nkm(n) are the wavelet basis functions, and the weights yk(m) are the
wavelet coefficients of x(n) with respect to the above basis. Notice that
nko(n) = fk(n) = synthesis filters. The basis function nkm(n) is the impulse
response fk(n) shifted by an appropriate amount.

Relation to Multiresolution Components

Refer to the analysis/synthesis system in Figs. 11.3-6 and 11.3-7. As-
suming that H3(z) and F3(z) are good lowpass filters, the signal v3(n) is
a lowpass filtered version of x(n). (This is only approximately so, because
of aliasing and imaging caused by the decimation and interpolation opera-
tions). The signal v2(n), on the other hand is a bandpass filtered version,
and adds finer high frequency details. Thus, we can regard v3(n) to be a low-
pass (i.e., smoothed) approximation of x(n), whereas the sum v3(n) + v2(n)
is a 'higher resolution' approximation. By adding the component v1(n) we
get a further refined approximation. Finally when vO(n) (the finest 'detail
signal’) is added, we obtain perfect recovery of x(n). The tree structure (or
wavelet decomposition) can therefore be used to transmit information (e.g.,
a picture in video conferencing) in various installments, with successively
improved fine details.

Some Practical Requirements

1. Stability. In practice we require the filters Hk(z) and Fk(z) to be stable
(equivalently H(z),G(z), Hs(z) and Gs(z) stable). This ensures that
the procedure (11.3.19) to construct the wavelet coefficients, as well as
the inversion procedure (11.3.22b) are stable.

2. Orthonormality. It is also desirable to have an orthonormal set of basis
functions nkm(n). This means

(11.3.23)

By using this in (11.3.22) we verify that orthonormality implies

(11.3.24)
By comparing (11.3.19), (11.3.22a), and (11.3.24) we can eliminate
nkm(n) and obtain the relation

(11.3.25)

Thus, the analysis and synthesis filters are related as above when the
basis is orthonormal. This is similar to the relation between filters in
a paraunitary PR QMF bank! (Sec. 6.2). In the next section, we
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will present the precise relation between paraunitary QMF banks and
orthonormal wavelets.

3. Height conventions. The increasing heights in Fig. 11.3-8 are chosen
such that the energies of the filters are equal. This, however, is only
a convention. It should be realized that the output yk(n) of the filter
Hk(z) is an estimate of X(ejwk) (with no scale-factor discrepancies) only
if the heights of Hk(ejw) in their passbands are inversely proportional
to the bandwidths (i.e., heights are c,2c,4c,...). See Problem 11.1. This
requirement is not consistent with Fig. 11.3-8 (where the heights are
c,vV2c,2c...). In this chapter, conventions for heights will be flexible,
depending on the particular context.

Figure 11.3-8 Typical appearances of magnitude responses of filters in the
3-level tree.

11.3.4 Summary

The STFT

The short time Fourier transform system is reproduced in Fig. 11.3-
9. This is an M channel filter bank with equal-bandwidth filters having
equispaced center frequencies. All the filters are generated from a prototype
HO(z) as in (11.2.5). Ek(z) are the polyphase components of this prototype
as shown by (11.2.6). The system can be viewed as the sliding window
system (Fig. 11.2-1) with HO(ejw) = V(e-jw).

The quantity xk(n) represents the estimate of the magnitude of the
transform of x(i), around the center-frequency of Hk(ejw), with the data
(i) 'localized' around time n (which is the window position). As shown in
earlier figures, each of the outputs xk(n) can be decimated by a factor < M.
For any fixed n, the set of values

(11.3.26)

€., thevector [xO(n) ... xXM-1(n)]T, provides a 'snapshot' of the magni-
tude of the Fourier transform of x(i), localized around time n. The snapshot
is delivered as a uniformly sampled version (in the frequency domain). The
figure demonstrates this sampling for n = —1,3, and 7. In this demonstra-
tion, we see that the signal changes slowly from lowpass to highpass. Thus,
the STFT keeps track of the evolution of the Fourier transform. As shown in
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the figure the set of filters can be either sharp-cutoff, or highly overlapping.
The latter happens, for example, when Ek(z) = 1 for all k; this corresponds
to the computation of DFT of blocks of the input.

Figure 11.3-9 Uniform DFT filter banks as short-time Fourier transformers.
For each window position n, we obtain a ‘snapshot' of localized Fourier transform.

The Discrete-Time Wavelet Transform

The wavelet system (nonuniform filter bank) is reproduced in Fig. 11.3-
10. This is an M-channel filter bank with nonuniform bandwidths for the
filters. All the filters are generated from a tree structure as in Fig. 11.3-6.
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The system cannot be viewed as the sliding window system, but one can
imagine that there is an underlying window whose width is adjusted accord-
ing to frequency. The outputs of the filters (bandpass signals) are modulated
to obtain xk(n) which are lowpass signals, with increasing bandwidths as k

decreases.

Figure 11.3-10 Summarizing the operation of a wavelet filter bank.

Figure 11.3-10 also shows the responses of the nonuniformly spaced
filters. The quantity xk(n) represents the estimate of the transform of
(i), around the center-frequency of Hk(ejw), with the data x(i) “localized”
around time n. Even though all the signals xk(n) are lowpass, their band-
widths are different. Thus x1(n) varies "more slowly" than x0(n), and so
forth. So the signals are decimated by unequal amounts (in fact by a factor
inversely proportional to the filter bandwidth).

For any fixed n, the set of values

(11.3.27)

provides a ‘snapshot' of the nonuniformly sampled version of the Fourier
transform of x(i), localized around n. (This assumes that the heights of the
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11.4

filters are inversely proportional to the bandwidths, see Problem 11.1). The
figure demonstrates this for n = -1,3, and 7.

General Comments

1.

3.

If the analysis/synthesis system (i.e., Fig. 11.3-6 followed by Fig. 11.3-
7) has the perfect reconstruction property x(n) = x(n), then (11.3.22b)
represents the expansion of x(n) in terms of the wavelet basis functions
nkm(n). If (11.3.23) holds, then the basis is orthonormal.

FIR wavelet basis. If the filters Hs(z) and Gs(z) are FIR, then the basis
functions nkm(n) are finite-length sequences.

When the QMF system satisfies the perfect reconstruction property,
the basis is complete in the sense that any x(n) can be expressed in
this manner. Since we know that there exist FIR perfect reconstruction
systems, this shows how to obtain a complete FIR wavelet basis (though
x(n) may not be FIR).

The disk-partition diagram. Figure 11.3-11(a) explains how the fre-
quency domain is partitioned when performing the wavelet analysis.
For simplicity we have shown only the upper half of the unit circle in
the z-plane. (If the filters have real coefficients, the lower half need not
be shown). The first level of the tree partitions the half-circle into two
quarter circles. The second level splits the low-frequency quarter circle
into two equal halfs. This process is repeated L times in an L-level tree.
For comparison, Fig. 11.3-11(b) shows the frequency partition for the
case of uniform bandwidth filter banks, (e.g., STFT). Here the circle
is divided into wedges of equal size. In both methods, the output of
each filter is decimated in inverse proportion to the angular width of
the wedge.

Figure 11.3-11 The disk partitioning diagram. (a) Wavelet transform, and (b)
short-time Fourier transform.

DISCRETE-TIME ORTHONORMAL WAVELETS

From the previous sections we know that we can obtain a wavelet decompo-
sition of a sequence x(n) by using a tree structured perfect reconstruction

500

Chap. 11. Wavelet transforms and filter banks



QMF bank of Figs. 11.3-6, 11.3-7. The coefficients fk(n) of the synthesis
filters Fk(z) govern the basis functions (see eqn. (11.3.22a)) whereas the
decimated outputs yk(n) are the wavelet coefficients. Since the perfect re-
construction property holds for any x(n), the expansion (11.3.22a) holds for
any x(n).

& Main points of this section. We will show that if the filters Gs(z)
and Hs(z) in the synthesis bank have the paraunitary property, then the
basis functions {nkm(n)} are orthonormal. Our development is in two steps.
In Sec. 11.4.1 we will prove this result for a one-level tree (i.e., just a two
channel QMF bank). in Sec. 11.4.2 this will be extended to an arbitrary
number of levels. Finally in Sec. 11.4.3 a similar result will be proved for an
M channel system with identical decimation ratio in all channels.

11.4.1 Two Channel Paraunitary QMF Banks

The fundamental building block in Figs. 11.3-6, 11.3-7 is the two-channel
QMF bank reproduced in Fig. 11.4-1. Here HO(z) and H1(z) are typically
lowpass and highpass, respectively, like G(z) and H(z) in Fig. 11.3-5. [In
Fig. 11.3-6(a) we used the notations G(z) and H(z) instead of HO(z) and
H1(z) in order to avoid confusion with Fig. 11.3-6(b)]. Here the two filters
have equal bandwidth. We can think of this system as a simple special case
of wavelet decomposition. Thus the wavelet coefficients are

(11.4.1)

Assuming that the synthesis bank gives perfect reconstruction, we can ex-
press x(n) as

(11.4.2)

The wavelet bases nkm(m) are indicated. These are stable if Fk(z) are stable,
and FIR if Fk(z) are FIR.

Figure 11.4-1 The two-channel QMF bank.
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Orthonormality of Wavelet Basis

The wavelet basis is said to be orthonormal if (11.3.23) holds. Substi-
tuting for nkm(n) from (11.4.2), this can be rewritten as

(11.4.3)

that is, after a change of variables as

(11.4.4)

This means that fk(n) is orthogonal to the even-shifted versions of f€(n).
Now the left side of this equation is the cross-correlation between fk(n) and
Te(n) evaluated for even-lag 2m (Problem 2.14). Since the z-transform of

the cross-correlation function is Fk(z)F€(z), we can rewrite (11.4.4) in the
z-domain as follows:

(11.4.5)
As explained in Sec. 4.1, the notation A(z2) is an abbreviation which
indicates decimation by M, for example,

(11.4.6)
We can rewrite (11.4.5) as

(11.4.7)
that is,

(11.4.8)
where

(11.4.9)

Thus orthonormality of the wavelet basis is equivalent to the paraunitary
condition (11.4.8). Notice, in particular, that this implies the power com-
plementary property FO(ejw) 2 + Fl(ejw) 2 = 2.
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Paraunitariness of R(z) and Wavelet Orthonormality

Recall (Sec. 5.5) that the two synthesis filters FO(z) and F1(z) can be
expressed in terms of their 2 x 2 polyphase matrix R(z) in the form

(11.4.10a)
Using this relation, we can express the matrix F(z) as

(11.4.10b)
The above equation implies

(11.4.11)

Thus, the discrete-time wavelet orthonormality condition holds if and only
if

(11.4.12)
which of course is the well-known (normalized-) paraunitary condition (Sec.
6.1.1)!

Designs Which Satisfy Orthonormality

In Sec. 5.3.6 we introduced an FIR perfect reconstruction QMF bank
(invented independently in Smith and Barnwell [1984] and Mintzer [1985]).
In this system, the FIR filter HO(z) is power symmetric, that is, satisfies

Under this condition we showed that if the remaining filters are chosen ac-
cording to

1. H1(z) = —z-NHO(-2z), where N = order of H0(z), and
2. FO(z) = HO(z) and F1(z) = H1(z),

then we have perfect reconstruction, with x(n) = x(n). In Sec. 6.3.2 we saw
that the above choice of filters ensures that the polyphase matrices E(z)
and R(z) are paraunitary. This, therefore, ensures that the wavelet basis is
orthonormal! Summarizing, the procedure to obtain a finite duration (FIR)
orthonormal wavelet basis is as follows.

1. Design the Nth order FIR power symmetric filter HO(z). This is done
either by starting from a zero-phase half band filter and computing a
spectral factor HO(z) (Sec. 5.3.6), or equivalently by optimizing the
lattice structure of Fig. 6.4-1. (Sec. 6.4.3).

2. Define the second analysis filter H1(z) and the synthesis filters FO(z)
and F1(z) as above. Then the polyphase matrix R(z) satisfies the pa-
raunitary condition R(z)R(z) = I. Notice that the synthesis filters are
noncausal, but this is consistent with the delay-free reconstruction.
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3. Define the wavelet basis as indicated in (11.4.2). Then the wavelet
orthonormality condition is satisfied.

4. The analysis/synthesis system has the perfect reconstruction property,
that is, x(n) = x(n). So, (11.4.2) holds, and represents the expansion of
the arbitrary input sequence x(n) in terms of the orthonormal wavelet
basis functions nkm(n).

Completeness. Since any FIR power symmetric filter can be generated
using the lattice mentioned in Step 1, any two-channel FIR orthonormal
basis can be generated using this lattice.

11.4.2 Orthonormal Wavelets from

Tree-Structured Paraunitary QMF Banks

Now consider an L-level tree-structured QMF bank (as demonstrated in
Figs. 11.3-6, 11.3-7 for L = 3). The wavelet basis functions nkm(n) are

indicated in (11.3.22a) in terms of the filter coefficients Tk(i). We now show
that these basis functions are orthonormal if each of the two channel systems

[Gs(z), Hs(z)] has polyphase matrix R(z) satisfying R(z)R(z) = I.

Figure 11.4-2 (a) Two of the L + 1 branches in the synthesis bank of an L-level
tree; (b) adding the (L + 1)th level; and (c) redrawing the three branches.
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From the previous section we know this to be true for L = 1. For
arbitrary L we use an inductive reasoning. The tree structure with L levels
has L+1 branches. Fig. 11.4-2(a) shows two of these branches, with nk = n&.
Suppose we add another level to the tree. This adds a new branch, and
modifies the existing branches as shown in Fig. 11.4-2(b). Assuming that

1. the wavelet bases are orthonormal for the L-level tree, and that
2. the new set of filters [Gs(z), Hs(z)] has polyphase matrix R(z) satisfying

R(z)R(z) =1,
we prove that the wavelet bases for the (L + 1)-level tree are orthonormal.
From Sec. 6.3.1 recall that the paraunitary relation R(z)R(z) = 1 is

equivalent to the conditions

(11.4.13)

Instead of saying that R(z) is paraunitary, we will often say that the filter
pair [Gs(z),Hs(z)] is paraunitary (i.e., (11.4.13) holds).

Expressing Wavelet Orthonormality in z-Domain
Orthonormality of wavelets for the L-level tree implies

(11.4.14)

After a change of variables this can be rearranged as

(11.4.15)

using 2nk = 2nt (see Problem 11.13).
The summation on the left hand side of (11.4.15) is the cross-correlation
between fk(n) and fe(n), evaluated at lags 2nfm. Since the z-transform of

the cross-correlation sequence is Fk(z)F€(z), we can rephrase the above as

(11.4.16)

This is therefore another way of saying that the wavelet basis obtained from
the L-level tree is orthonormal.

The inductive reasoning. The three branches of the (L + 1)-level
tree, shown in Fig. 11.4-2(b), can be redrawn as in Fig. 11.4-2(c) where
(11.4.17)
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By using the identity
(11.4.18)

(Problem 11.9), we can prove that (11.4.13) and (11.4.16) imply

(11.4.19)
which is sufficient to prove that the wavelet basis generated at the (L+ 1)th
level remains orthonormal! The above reasoning does not assume that the
pair [Gs(z), Hs(z)] has to be the same for all levels of the tree. Notice finally
that the FIR nature of the filters Gs(z), Hs(z) ensures that the wavelet basis
functions are FIR as well. The FIR nature also means, in particular, that
the wavelet transformation as well as the inverse transformation are stable.
Summarizing, we have proved:

« Theorem 11.4.1. Wavelet orthonormality. Consider the L-level
tree structure demonstrated in Figs. 11.3-6 and 11.3-7 for L = 3. Let the
filters G(z), H(z), Gs(z), and Hs(z) be such that this is a perfect reconstruc-
tion system, that is, x(n) = %x(n) so that x(n) has the wavelet expansion
(11.3.22a), where M = L + 1. Let R(z) be the 2 x 2 polyphase matrix of
[Gs(z),Hs(z)]. Then the discrete-time wavelet basis {nkm(n)} is orthonor-
mal if and only if R(z) is paraunitary, that is, if and only if [Gs(z), Hs(2)]
forms a paraunitary pair. <o

Unit energy property. Equation (11.4.15) implies, in particular, that
>n [fk(n) 2 = 1, that is, all the filters have unit energy. This is consistent
with the increasing heights shown in Fig. 11.3-8. Note that the unit energy
property holds regardless of the quality of the frequency responses (e.g.,
stopband attenuation, sharpness of cutoff, etc.), and is a direct consequence
of the paraunitary property of the pair [Gs(z),Hs(z)].

Use of lattice structure. As a converse, it can be shown that essentially

all orthonormal wavelet bases can be generated using the lattice. See [Soman
and Vaidyanathan, 1993] for precise statements.

Design example 11.4.1: STFT and Wavelet Filter Banks

A. Generalized STFT with orthonormal basis. Consider a four-channel
maximally decimated filter bank system, de