


PRENTICE HALL SIGNAL PROCESSING SERIES

Alan V. Oppenheim, Series Editor

ANDREWS AND HUNT Digital Image Restoration
BRIGHAM The Fast Fourier Tranform
BRIGHAM The Fast Fourier Transform and Its Applications
BURDIC Underwater Acoustic System Analysis, 2/E
CASTLEMAN Digital Image Processing
CoWAN AND GRANT Adaptive Filters
CROCHIERE AND RABINER Multirate Digital Signal Processing
DUDGEON AND MeRseREAU Mulidimensional Digital Signal Processing 
HAMMING Digital Filters, 3/E
HAYKIN, ED. Advances in Spectrum Analysis and Array Processing, Vols. I & II 
HAYKIN, ED. Array Signal Processing
JayaNT AND NoLL Digital Coding of Waveforms
JOHNSON AND DUDGEON Array Signal Processing: Concepts and Techniques 
Kay Modem Spectral Estimation
KINO Acoustic Waves: Devices, Imaging, and Analog Signal Processing
Lea, ED. Trends in Speech Recognition
LIM Two-Dimensional Signal and Image Processing
LIM, ED. Speech Enhancement
LIM AND OPPENHEIM, EDS. Advanced Topics in Signal Processing
MaRPLE Digital Spectral Analysis with Applications
MCCLELLAN AND RaDER Number Theory in Digital Signal Processing 
MENDEL Lessons in Digital Estimation Theory
OPPENHEIM, ED. Applictions of Digital Signal Processing
OPPENHEIM AND NAWAB, ED. Symbolic and Knowledge-Based Signal Processing 
OPPENHEIM, WILLSKY, WITH YOUNG Signals and Systems
OPPENHEIM AND SCHAFER Digital Signal Processing
OPPENHEIM AND SCHAFER Discrete-Time Signal Processing
QUACKENBUSH ET AL. Objective Measures of Speech Quality
RabINER AND GOLD Theory and Applications of Digital Signal Processing
RabINER AND SCHAFER Digital Processing of Speech Signals
ROBINSON AND TREITEL Geophysical Signal Analysis
STEARNS AND DavID Signal Processing Algorithms
STEARNS AND DAVID Signal Processing Algorithms in Fortran and C
STEARNS AND HUSH Digital Signal Analysis, 2/E
TRIBOLET Seismic Applications of Homomorphic Signal Processing 
VAIDYANATHAN Multirate Systems and Filter Banks
WIDROW AND STEARNS Adaptive Signal Processing





Multirate Systems 

and Filter Banks

P.P. Vaidyanathan

Department of Electrical Engineering 
California Institute of Technology, Pasadena

PRENTICE HALL P T R, Upper Saddle River, New Jersey 07458



Library of Congress Cataloging-in-Publication Data

Vaidyanathan, P.P.
MuItirate systems and filter banks ∕ P.P. Vaidyanathan.

p. cm.
Includes bibliographical references (p. ) and index.
ISBN 0-13-605718-7
1. Signal processiong—Digital techniques. I. Title.

TK5102.5. V24 1993 92-6547
621.382'2-dc20 CIP

Editorial/production supervision: Brendan Μ. Stewart
Prepress buyer: Mary McCartney
Manufacturing buyer: Susan Brunke
Acquisitions editor: Karen Gettman

© 1993 by Prentice Hall P T R
Prentice-Hall, Inc.
Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities. For more information, write: 
Special Sales/Professional Marketing, Prentice-Hall, Professional & Technical Reference Division, 
Englewood Cliffs, NJ 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means, 
without permission in writing from the publisher.

Printed in the United States of America
10

ISBN 0-13-60S71fi-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



to 
my Parents 

and 
my wife Usha





Contents

Preface xi

PART 1 INTRODUCTORY CHAPTERS

1 Introduction 1
1.1 Major Developments 3
1.2 Scope and Outline 8

2 Review of Discrete-Time Systems 12
2.0 Introduction 12
2.1 Discrete-Time Signals 12
2.2 Multi-Input Multi-Output Systems 24
2.3 Notations 28
2.4 Discrete-Time Filters (Digital Filters) 31

Problems 39

3 Review of Digital Filters 42
3.0 Introduction 42
3.1 Filter Design Specifications 42
3.2 FIR Filter Design 45
3.3 IIR Filter Design 60
3.4 Allpass Filters 71
3.5 Special Types of Filters 83
3.6 IIR Filters Based on Two Allpass Filters 84
3.7 Concluding Remarks 91

Problems 93

4 Fundamentals of Multirate Systems 100
4.0 Introduction 100
4.1 Basic Multirate Operations 100
4.2 Interconnection of Building Blocks 118
4.3 The Polyphase Representation 120
4.4 Multistage Implementations 134
4.5 Some Applications of Multirate Systems 143
4.6 Special Filters and Filter Banks 151
4.7 Multigrid Methods 168

Problems 178

Contents vii



PART 2 MULTIRATE FILTER BANKS

5 Maximally Decimated Filter Banks 188
5.0 Introduction 188
5.1 Errors Created in the QMF Bank 191
5.2 A Simple Alias-Free QMF System 196
5.3 Power Symmetric QMF Banks 204
5.4 M-channel Filter Banks 223
5.5 Polyphase Representation 230
5.6 Perfect Reconstruction (PR) Systems 234
5.7 Alias-Free Filter Banks 245
5.8 Tree Structured Filter Banks 254
5.9 Transmultiplexers 259

5.10 Summary and Tables 266
Problems 272

6 Paraunitary Perfect Reconstruction (PR) Filter Banks 286
6.0 Introduction 286
6.1 Lossless Transfer Matrices 288
6.2 Filter Bank Properties Induced by Paraunitariness 294
6.3 Two Channel FIR Paraunitary QMF Banks 298
6.4 The Two ChanneI Paraunitary QMF Lattice 302
6.5 M-channel FIR Paraunitary Filter Banks 314
6.6 Transform Coding and the “LOT” 322
6.7 Summary, Comparisons, and Tables 326

Problems 333

7 Linear Phase Perfect Reconstruction QMF Banks 337
7.0 Introduction 337
7.1 Some Necessary Conditions 337
7.2 Lattice Structures for Linear Phase FIR PR QMF Banks 339
7.3 Formal Synthesis of Linear Phase FIR PR QMF Lattice 347

Problems 351

8 Cosine Modulated Filter Banks 353
8.0 Introduction 353
8.1 The Pseudo QMF Bank 354
8.2
8.3

Design of the Pseudo QMF Bank 363
Efficient Polyphase Structures 370

8.4 Deeper Properties of Cosine Matrices 373
8.5 Cosine Modulated Perfect Reconstruction Systems 377

Problems 392

PART 3 SPECIAL TOPICS

9 Quantization Effects 394
9.0 Introduction 394
9.1 Types of Quantization Effects 394
9.2 Review of Standard Techniques 397

viii Contents



9.3 Noise Transmission in Multirate Systems 405
9.4 Noise in Filter Banks 408
9.5 Filter Bank Output Noise 412
9.6 Limit Cycles 416
9.7 Coefficient Quantization 418

Problems 424

10 Multirate Filter Bank Theory and Related Topics 427
10.0 Introduction 427
10.1 Block Filters, LPTV Systems and Multirate Filter Banks 427
10.2 Unconventional Sampling Theorems 436

Problems 454

11 The Wavelet Transform and its Relation to Multirate Filter Banks 457
11.0 Introduction 457
11.1 Background and Outline 458
11.2 The Short-Time Fourier Transform 463
11.3 The Wavelet Transform 481
11.4 Discrete-Time Orthonormal Wavelets 500
11.5 Continuous-Time Orthonormal Wavelet Basis 510
11.6 Concluding Remarks 536

Problems 539

12 Multidimensional Multirate Systems 545
12.0 Introduction 545
12.1 Multidimensional Signals 546
12.2 Sampling a MultidimensionaI Signal 555
12.3 Minimum Sampling Density 568
12.4 Multirate Fundamentals 572
12.5 Alias-Free Decimation 597
12.6 Cascade Connections 603
12.7 Multirate Filter Design 608
12.8 Special Filters and Filter Banks 623
12.9 Maximally Decimated Filter Banks 627

12.10 Concluding Remarks 641
Problems 650

PART 4 MULTIVARIABLE AND LOSSLESS SYSTEMS

13 Review of Discrete-Time Multi-Input Multi-Output LTI Systems 660
13.0 Introduction 660
13.1 Multi-Input Multi-Output Systems 661
13.2 Matrix Polynomials 661
13.3 Matrix Fraction Descriptions 665
13.4 State Space Descriptions 669
13.5 The Smith-McMillan Form 687
13.6 Poles of Transfer Matrices 699
13.7 Zeros of Transfer Matrices 703
13.8 Degree of a Transfer Matrix 707

Contents IX



13.9 FIR Transfer Matrices 708
13.10 Causal Inverses of Causal Systems 711

Problems 715

14 Paraunitary and Lossless Systems 722
14.0 Introduction 722
14.1 A Brief History 723
14.2 Fundamentals of Lossless Systems 724
14.3 Lossless Systems with Two Outputs 727
14.4 Structures for M × M and M × 1 FIR Lossless Systems 731
14.5 State Space Manifestation of Lossless Property 740
14.6 Factorization of Unitary Matrices 745
14.7 Smith-McMillan Form and Pole-Zero Pattern 754
14.8 The ModuIus Property 758
14.9 Structures for IIR Lossless Systems 759

14.10 Modified Lossless Structures 763
14.11 Preserving Lossless Property Under Quantization 768
14.12 Summary and Tables 771

Problems 775

APPENDICES

A Review of Matrices 782
A.0 Introduction 782
A.1 Definitions and Examples 782
A.2 Basic Operations 783
A.3 Determinants 786
A.4 Linear Independence, Rank, and Related Issues 787
A.5 Eigenvalues and Eigenvectors 790
A.6 Special Types of Matrices 793
A.7 Unitary Triangularization 798
A.8 Maximization and Minimization 798
A.9 Properties Preserved in matrix products 799

Problems 800

B Review of Random Processes 803
B.0 Introduction 803
B.1 Real Random Variables 803
B.2 Real Random Processes 806
B.3 Passage Through LTI Systems 810
B.4 The Complex Case 811
B.5 The Vector Case 812

C Quantization of Subband Signals 816
C.0 Introduction 816
C.1 Quantizer Noise Variance 816
C.2 The Ideal Subband Coder 818
C.3 The Orthogonal Transform Coder 826
C.4 Similarities and Differences 833

X Contente



C.5 Relation to Other Methods 839
Problems 845

D Spectral Factorization Techniques 849
D.0 Introduction 849
D.1 The Complex Cepstrum 849
D.2 A Cepstral Inversion Algorithm 853
D.3 A Spectral Factorization Algorithm 854

Problems 858

E Mason’s Gain Formula 859

Glossary of Symbols 866

List of Important Summaries (Tables) 867

List of Important Summaries (Figures) 868

Bibliography 869
Alphabetical List of References Cited in the Book 869
Some References by Topic 888

Index 891

Contents xi





Preface

Multirate digital signal processing techniques have been practiced by engineers for 
more than a decade and a half. This discipline finds applications in speech and 
image compression, the digital audio industry, statistical and adaptive signal pro­
cessing, numerical solution of differential equations, and in many other fields. It 
also fits naturally with certain special classes of time-frequency representations such 
as the short-time Fourier transform and the wavelet transform, which are useful in 
analyzing the time-varying nature of signal spectra.

Over the last decade, there has been a tremendous growth of activity in the 
area of multirate signal processing, perhaps triggered by the first book in this field 
[Crochiere and Rabiner, 1983]. Particularly impressive is the amount of new litera- 
ture in digital filter banks, multidimensional multirate systems, and wavelet repre- 
sentations. The theoretical work in multirate filter banks appears to have reached a 
level of maturity which justifies a thorough, unified, and in-depth treatment of these 
topics. This book is intended to serve that purpose, and it presents the above men­
tioned topics under one cover. Research in the areas of multidimensional systems 
and wavelet transforms is still proceeding at a rapid rate. We have dedicated one 
chapter to each of these, in order to bring the reader up to a point where research 
can be begun.

I have always believed that it is important to appreciate the generality of 
principles and to obtain a solid theoretical foundation, and my presentation here 
reflects this philosophy. Several applications are discussed throughout the book, 
but the general principles are presented without bias towards specific application- 
oriented detail.

The writing style here is very much in the form of a text. Whenever possible I 
have included examples to demonstrate new principles. Many design examples and 
complete design rules for filter banks have been included. Each chapter includes a 
fairly extensive set of homework problems (totaling over 300). The solutions to these 
are available to instructors, from the publisher. Tables and summaries are inserted 
at many places to enable the reader to locate important results conveniently. I 
have also tried to simplify the reader’s task by assigning separate chapters for more 
advanced material. For example, Chap. 11 is dedicated to wavelet transforms, and 
Chap. 14 contains detailed developments of many results on paraunitary systems. 
Whenever a result from an advanced chapter (for example, Chap. 14) is used in an 
earlier chapter, this result is first stated clearly within the context of use, and the 
reader is referred to the appropriate chapter for proof.

The text is self-contained for readers who have some prior exposure to digi- 
tal signal processing. A one-term course which deals with sampling, discrete-time 
Fourier transforms, z-transforms, and digital filtering, is sufficient. In Chap. 2 and 
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3 a brief review of this material is provided. A thorough exposition can be found 
in a number of references, for example, [Oppenheim and Schafer, 1989]. Chapter 3 
also contains some new material, for example, eigenfilters, and detailed discussions 
on allpass filters, which are very useful in multirate system design.

A detailed description of the text can be found in Chap. 1. Chapters 2 and 
3 provide a brief review of signals, systems, and digital filtering. Chapter 4, which 
is the first one on multirate systems, covers the fundamentals of multirate building 
blocks and filter banks, and describes many applications. Chapter 5 introduces 
multirate filter banks, laying the theoretical foundation for alias cancelation, and 
elimination of other errors. The first two sections in Chap. 4 and 5 contain material 
overlapping with [Crochiere and Rabiner, 1983]. Most of the remaining material in 
these chapters, and in the majority of the chapters that follow, have not appeared 
in this form in text books.

Chapters 6 to 8 provide a deeper study of multirate filter banks, and present 
several design techniques, including those based on the so-called paraunitary matri- 
ces. (These matrices play a role in the design of many multirate systems, and are 
treated in full depth in Chap. 14.) Chapters 9 to 12 cover special topics in multirate 
signal processing. These include roundoff noise effects (Chap. 9), block filtering, 
periodically time varying systems and sampling theorems (Chap. 10), wavelet trans- 
forms (Chap. 11) and multidimensional multirate systems (Chap. 12). Chapters 
13 and 14 give an in-depth coverage of multivariable linear systems and lossless (or 
paraunitary) systems, which are required for a deeper understanding of multirate 
filter banks and wavelet transforms.

There are five appendices which serve as references as well as supplementary 
reading. Three of these are review-material (matrix theory, random processes, and 
Mason’s gain formula). Two of the appendices contain results directly related to 
filter bank systems. One of these is a technique for spectral factorization; the other 
one analyzes the effects of quantization of subband signals.

Many of these chapters have been taught at Caltech over the last three years. 
This text can be used for teaching a one, two, or three term (quarter or semester) 
course on one of many possible topics, for example, multirate fundamentals, mul- 
tirate filter banks, wavelet representation, and so on. There are many homework 
problems. The instructor has a great deal of flexibility in ch∞sing the topics, but 
I prefer not to bias him or her by providing specific course outlines here.

In summary, I have endeavored to produce a text which is useful for the class- 
room, as well as for self-study. It is also hoped that it will bring the reader to a point 
where he/she can start pursuing research in a vast range of multirate areas. Finally, 
I believe that the text can be comfortably used by the practicing engineer because 
of the inclusion of several design procedures, examples, tables, and summaries.
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PART 1 Introductory Chapters

Introduction

A traditional single rate digital signal processing system can be schemat­
ically represented as shown in Fig. 1.1-1, which is an interconnection of 
computational building blocks such as multipliers, adders, and ‘delay ele- 
ments' (which store internal signals). Examples are digital filters, Fourier 
transformers, modulators, and so on. In a multirate signal processing sys- 
tem, there are two new building blocks, called the M-fold decimator and 
the L-fold expander (Fig. 1.1-2). These will be defined and illustrated in 
Chapter 4. For the purpose of the present discussion, the decimator is a 
device that reduces the sampling rate by an integer factor of M, whereas the 
expander is used to increase the rate by L. Such sampling rate alteration 
can be introduced at the input and/or Output of the system or internal to 
the system, depending on the application.

Multiplier

Figure 1.1-1 Schematic of a (single rate) digital signal processor.

1

1



Multirate techniques have been in use for many years. Some of the early 
references are Schafer and Rabiner [1973], Meyer and Burrus [1975], and 
Oetken, et al. [1975]. The use of multiple sampling rates offers many advan- 
tages, such as reduced computational complexity for a given task, reduced 
transmission rate (i.e., bits per second), and∕or reduced storage requirement, 
depending on the application.

Figure 1.1-2 Multirate building blocks.

One of the earliest applications of multirate processing is in professional 
digital music [Digital audio, 1985]. Broadly speaking, the idea is as follows. 
Suppose we Wish to digitize an analog signal xa(t). If the signal has significant 
energy only up to a frequency fM, we can first bandlimit the signal to this 
range using an analog lowpass filter (antialiasing filter), and then sample 
and digitize it. The lowpass filter in this case has a sharp transition from 
passband to stopband.

A second technique proceeds in two stages: (a) First use an antialias­
ing filter with wider transition bandwidth, say by a factor of two Then 
oversample by a factor of two before digitizing, so that aliasing due to the 
poor bandlimiting filter is avoided. (b) Pass the digitized signal through a 
linear phase digital filter and decimate by two, so that the sampling rate is 
reduced to the minimum rate. This tWo-stage process eliminates the need 
for sharp-cutoff antialiasing analog filters, which not only are expensive, but 
also introduce severe phase distortion. Details of this technique will be con­
sidered in Chap. 4.

A second application is in fractional sampling rate alteration, for ex- 
ample, converting a 48 kHz discrete-time signal to a 44.1 kHz discrete-time 
signal. Such requirements are common in the digital audio industry, where a 
number of sampling rates coexist [Bloom, 1985]. For example, the sampling 
rate for studio work is 48 kHz, whereas that for CD production is 44.1 kHz. 
These, in turn, are different from the broadcast rate (32 kHz). The obvious 
Way to perform the rate conversion would be to first convert the discrete-time 
signal into a continuous-time signal and then resample it at the lower rate. 
This method is expensive and involves analog components, along with the 
associated inaccuracies. A direct digital (multirate) method is to perform the 
conversion directly in the discrete-time domain. Such fractional decimation 
(or interpolation) is done by combining integer decimators, expanders and 
filters appropriately. This is more accurate as Well as convenient. Details of 
this technique will be described in Chap. 4.

There are many more applications of multirate processing, and several 
of them are based on the so-called subband decomposition, to be described 
next.

2 Chap. 1. Introduction



1.1 MAJOR DEVELOPMENTS
If a sequence x(n) is bandlimited, then it is possible to decimate it either 
by an integer or by a fraction, by use of appropriate multirate techniques. 
The desire to reduce the sampling rate whenever possible is of course under- 
standable, because it usually reduces the storage as Well as the processing 
requirements.

Figure 1.1-3 Example of Fourier transform of a sequence x(n) which has most 
of the energy in the low frequency region.

Now suppose x(n) is not bandlimited, but nevertheless has most of the 
energy in the low frequency region. Figure 1.1-3 demonstrates the Fourier 
transform of such a signal. Even though this cannot be decimated Without 
aliasing, it seems only reasonable to expect that some kind of data rate re­
duction is still feasible. This is indeed made possible by a technique called 
subband decomposition, implemented with the so-called quadrature mirror 
filter bank. In this technique, the average number of bits per sample is 
reduced, even though the average number of samples per unit time is un­
changed.

1.1.1 The Quadrature Mirror Filter (QMF) Bank
The quadrature mirror filter bank is shown in Fig. 1.1-4. Here a discrete- 
time signal x(n) is passed through a pair of digital filters Hk(z) called αnαl- 
ysis filters, with frequency responses as demonstrated in the figure. The 
filtered signals xk(n) (subband signals) are thus approximately bandlimited 
(lowpass and highpass, respectively). They are then decimated by two, so 
that the number of samples per unit time [counting v0(n) as Well as v1(n)] is 
the same as that for x(n). The decimated subband signals, vk(n), are then 
quantized and transmitted. At the receiver end, these are recombined by us­
ing expanders and synthesis filters Fk(z). In this manner, an approximation 
x(n) of the signal x(n) is generated. This system will be studied in Chap. 
5.

The above system can be regarded as a sophisticated quantizer. Thus, 
assume that we are allowed to transmit b bits per sample. In a direct method, 
we would quantize each sample of x(n) independently to b bits. In the above 
filter-bank approach, we quantize the lower rate signals v0(n) and v1(n) to

Sec. 1.1 Major developments 3



b0 bits and b1 bits per sample, so that the average bit rate is b = 0.5(b0 +b1). 
If the signal is dominantly lowpass, then we can make b0 > b and b1 < b. An 
extreme case is to assign b0 = 2b and b1 = 0. Thus, depending on the energy 
distribution in the frequency domain, we can allocate bits to the subbands 
appropriately, thereby increasing the accuracy of representation of x(n), for 
a fixed bit rate b.

Figure 1.1-4 (a) The quadrature mirror filter (QMF) bank, and (b) typical
frequency responses ∣Hk(ejω)∣.

This scheme is called subband coding [Croisier, et al., 1976], [Crochiere, 
1977], [Esteban and Galand, 1977], [Barnwell, 1982], [Galand and Nuss- 
baumer, 1984]. This has been found to be very useful in speech coding 
[Crochiere, et al., 1976], where the perceptual properties of the human ear 
play a major role while assigning bits to vk(n).

More recently, the effectiveness of subband coding has been demon­
strated for music signals. Digitized music normally uses 16 bits per sample 
(at a sampling rate of about 44 kHz). Using subband coding, it has been 
demonstrated that a major bit rate reduction can be obtained (compared to 
the traditional 16 bit repesentation), with little compromise of quality [Veld- 
huis, et al., 1989]. This has been used in the digital compact cassete (DCC). 
See also the papers in ICASSP, 1991, pp. 3597-3620, and [Fettweis, et al., 
1990]. At the end of this section, more applications of subband splitting will 
be mentioned.

Reconstruction from subband signals. In many applications, the 
signals vk(n) (or, more properly, the quantized versions) are recombined to 
obtain an approximation x(n) of the original signal x(n). This recombina­
tion is done by use of expanders (which restore the sampling rate) followed 
by digital filters Fk(z) (whose purpose Will be explained in Sec. 5.1). Such
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recombination is subject to several errors (apart from the error due to quan- 
tization). One of these is aliasing, created due to decimation of xk(n). Other 
distortions will be discussed in due course. One of the major developments 
in multirate signal processing is the recognition of the fact that all of these 
errors (except quantization error) can be eliminated completely at finite cost, 
by proper design of filters.

The QMF bank, introduced in the mid seventies, has since been ex- 
tended to the case of more than two subbands. Thus, a system with M 
subbands Would have M filters followed by M-fold decimators. The deci- 
mated (and quantized) signals Would then be recombined using a synthesis 
bank (expanders and digital filters), to obtain an approximation x(n) of the 
signal x(n). Such a system is called an M-channel maximally decimated filter 
bank or simply an M-channel QMF bank (even though QMF is a misnomer 
unless M = 2, as explained in Chap. 5).

Figure 1.1-5 (a) An M-channel analysis bank, and typical frequency responses.
(b) An M-point Fourier transformer, viewed as a filter bank.

Figure 1.1-5(a) shows the analysis filters of an M-channel system. Two 
sets of typical frequency responses are also sketched in the figure. One 
of these has uniform filter bandwidths and spacing, while the other has 
nonuniform (octave) spacing. The latter is particularly useful in the analysis 
and coding of speech and music.

A filter bank can be viewed as a sophisticated spectrum analyzer as elab-
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orated in Chap. 4 and 11. For the moment, we note that a spectrum analyzer 
takes a signal x(n) and computes the Fourier transform of short blocks, af- 
ter some preliminary processing (such as windowing). Such a system can 
be interpreted as a filter bank [Fig. 1.1-5(b)]. The outputs of the 'filters' 
represent the discrete-time Fourier transform coefficients of the blocks of in- 
put data. While the details Will be presented only in Chap. 4 and 11, the 
main point here is that the filter bank of Fig. 1.1-5(a) is a generalization of 
the Fourier transformer, with greater flexibility on the choice of frequency 
responses. While the Fourier transformer provides filters with overlapping 
responses, the generalized system can provide filters with arbitrarily sharp 
cutoff, better interband isolation and unequal bandwidths.

1.1.2 Polyphase Decomposition
One of the reasons why multirate processing became practically attractive 
is the invention of the polyphase decomposition [Bellanger, et al., 1976], 
[Vary, 1979]. This enables the designer to perform all computations at the 
“lowest rate permissible within the given context,” and reduces the speed 
requirements on the processors. Polyphase decomposition is useful in vir- 
tually every application of multirate signal processing, and often results in 
dramatic computational efficiency. It is valuable in theoretical study, practi­
cal design and actual implementation of filter banks. This will be introduced 
in Chap. 4, and subsequently used throughout the text.

1.1.3 Perfect Reconstruction Systems
In a practical filter bank system, the filters Hk(z) are not ideal, and decima- 
tion of the filter outputs results in aliasing errors. As will be seen in Chap. 
5, the z-transform of the output signal x(n) can be expressed as

X(z) = T(z)X(z) + terms due to aliasing.
It was shown in Croisier, et al. [1976] that aliasing can be completely elimi- 
nated in the two channel QMF bank, by proper choice of the synthesis filters 
F0(z) and F1(z).

If T(z) can be forced to be a delay, that is, T(z) = cz-K, then the 
alias-free system is said to have the perfect reconstruction (PR) property. 
If this is not the case, then the alias-free system still suffers from residual 
distortion. If the designer does not impose any specifications on the analysis 
filters such as large stopband attenuation, sharp cutoff rate, and so on, it 
is an easy matter to choose the filters Hk(z) and Fk(z) so as to satisfy the 
perfect reconstruction property. However, this is not very practical because, 
in order to utilize the benefits of subband coding, it is necessary to impose 
fairly stringent specifications on the attenuation characteristics of the filters.

For the two channel QMF bank a fundamental result was proved in­
dependently by Smith and Barnwell [1984 and 1986], and Mintzer [1985]. 
These papers showed that perfect reconstruction can be achieved even af- 
ter imposing such practical attenuation requirements. This involves careful 
design of the four filters, as will be seen in Chap. 5.
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1.1.4 Extension to M Channels

The above results from many authors stimulated further research, result­
ing in techniques to generalize the subband splitting ideas for the case of 
M-channel QMF banks [Nussbaumer, 1981], [Rothweiler, 1983], [Ramstad, 
1984b], [Smith and Barnwell, 1985, 1987], [Masson and Picel, 1985], [Chu, 
1985], [Cox, 1986], [Princen and Bradley, 1986], [Wackersreuther, 1986b] 
[Vetterli, 1986a], [Vaidyanathan, 1987a], [Malvar, 1990b], and [Akansu and 
Liu, 1991]. Nussbaumer's pioneering Work on pseudo QMF banks provides 
approximate alias cancelation, which is sufficient in some applications. Smith 
and Barnwell as Well as Ramstad independently showed how to formulate 
the perfect reconstruction conditions in matrix form. It was first recognized 
by Vetterli, and then independently by Vaidyanathan (in the two references 
mentioned above) that a polyphase component approach results in consid- 
erable simplification of the theory.

It has since been shown that, by using a class of filter banks called 
paraunitary filter banks, perfect reconstruction can be achieved quite eas- 
ily. In these systems, the filter bank is constrained to have a paraunitary 
polyphase matrix (to be explained in Chap. 6). The designer can specify 
arbitrary filter attenuation, and at the same time obtain perfect reconstruc­
tion [Vaidyanathan, 1987a], [Nguyen and Vaidyanathan, 1988], [Vetterli and 
Le Gall, 1989].

Subsequent to this, a class of systems called the cosine modulated filter 
banks has been developed by some authors [Malvar, 1990b], [Ramstad, 1991], 
[Koilpillai and Vaidyanathan, 1991a, 1992]. These have the advantage that 
the cost of design as well as implementation is largely determined by the 
cost of one prototype filter, since all the other filters are derived from it.

The paraunitary property of filter banks offers many advantages, as 
elaborated in Chap. 6. Interestingly enough, paraunitary matrices have 
their origin in classical electrical network theory (see Sec. 14.1 and references 
therein). In the past, applications of these matrices have been confined 
mostly within the network theory and control theory communities. The use 
of paraunitary matrices in digital signal processing, especially filter bank 
theory, is relatively recent.

Filter bank theory has been extended to the case of nonuniform band- 
widths and decimation ratios [Hoang and Vaidyanathan, 1989], [Kovačević 
and Vetterli, 1991a], and [Nayebi, Barnwell, and Smith, 1991a].

1.1.5 Other Applications and Interrelations

The success of subband coding encouraged researchers to extend the ideas 
to multidimensional signals. The extensions to two dimensional signals has 
application in image compression and coding. A systematic study of multi- 
dimensional filter banks was first undertaken by Vetterli [1984]. This idea 
has since been applied for image coding by Woods and O’Neil [1986]. Since 
then there has been major progress in multidimensional multirate systems 
[Ansari and Lau, 1987], [Viscito and Allebach, 1988b, 1991], [Smith and Ed-
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dins, 1990], [Chen and Vaidyanathan, 1991,1992], [Bamberger and Smith, 
1992], and [Kovačević and Vetterli, 1992]. Further references will be cited 
in Chap. 12. Research results in multidimensional multirate systems are 
emerging at a rapid rate now.

Recently it has been observed that multirate/subband techniques are 
attractive in adaptive and statistical signal processing [Gilloire, 1987], [Sathe 
and Vaidyanathan, 1990,1991], and [Gilloire and Vetterli, 1992]. Research on 
these topics is still evolving; an excellent reference on the subject is provided 
by Shynk [1992]. Further applications in communications have been reported 
by some authors, for example, transmultiplexing [Vetterli, 1986b], high speed 
analog to digital conversion [Pertraglia and Mitra, 1990], and equalization 
[Ramesh, 1990].

In recent years, it has been recognized that there is a close connection 
between multirate filter banks and the so-called “wavelet transforms”. This 
relation was revealed by the fundamental contributions by Daubechies [1988] 
and Mallat [1989a,b]. (See Sec. 11.0 for further references.) This Work 
has opened up considerable amount of research activity in both the signal 
processing and mathematics communities. In Chap. 11 we will present this 
in considerable depth. It will be seen that Wavelet analysis is closely related 
to the so called octave-band filter banks, introduced in the early seventies 
for analysis of sound signals. Research in wavelet transforms has grown very 
rapidly after the mid 1980s (and is still growing).

1.2 SCOPE AND OUTLINE

Contributions by many researchers, as outlined above, have resulted in a 
mature theory of multirate systems. In particular, the detailed aspects of 
filter bank theory Were developed largely during the last decade, subsequent 
to (and in many cases triggered by) the publication of Crochiere and Rabiner 
[1983]. The theory of perfect reconstruction filter banks has now reached a 
state where such systems can be designed as Well as implemented with ease. 
The underlying theory is somewhat complicated, but as a reward it has 
immense potential for further research and applications. For example, the 
theory can be applied directly to areas such as subband coding, voice privacy, 
image processing, multiresolution, and Wavelet analysis.

The purpose of this text is to present an in-depth study of multirate sys- 
tems and filter banks. We have assumed that the reader has some exposure 
to signal processing (e.g., a one-term course from Oppenheim and Schafer 
[1989], covering sampling, z-transforms, and digital filtering). Except for this 
requirement, the book is self-contained. However, this background material 
is reviewed in Chap. 2 and 3.

Each chapter is supplemented with several homework problems, making 
it suitable for classroom use. At the same time, our aim has also been to 
provide a useful reference for researchers. This is evidenced by the inclusion 
of several advanced topics. There are many examples, design methods, and 
tables which will aid the practicing professional as well. The chapters can
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be grouped naturally into the following four parts as elaborated.

Chapters 2 to 4: Introductory Material
A brief review of linear system fundamentals and digital filtering is 

provided in Chap. 2 and 3. More detailed presentation can be found in a 
number of references indicated in these chapters. In Chap. 3, IIR elliptic 
filters, FIR eigenfilters, and allpass filters have been treated in greater detail 
because of their special role in multirate systems.

Chapter 4 is a detailed study of multirate building blocks, and their 
interconnections with other systems (such as digital filters). This can be 
considered to be the 'foundation chapter' for this text. Some of the early 
sections Overlap with the material covered in Crochiere and Rabiner [1983]. 
At the expense of this overlap, we have ensured that the chapter is self- 
contained.

A number of special types of digital filters, for example, Nyquist filters, 
power complementary filters and so on, which are frequently encountered in 
multirate systems, are also studied in Chap. 4. The polyphase decomposi­
tion is introduced, along with special types of filter banks, for example, the 
uniform-DFT bank.

Many applications of multirate processing are also described in Chap. 
4. This includes subband coding, digital audio, and transmultiplexers, to 
name a few. A complete section of this chapter is devoted to “multigrid” 
techniques, which find application in the numerical solution of differential 
equations.
Chapters 5 to 8: Maximally Decimated Filter Banks

Chapter 5 is a study of the M-channel maximally decimated filter bank 
system (shown in Fig. 1.1-4(a) for the M = 2 case). Various distortions Will 
be analyzed, foremost being aliasing caused by decimation. Conditions for 
alias cancelation and perfect reconstruction will be established. Transmulti­
plexers will also be studied.

Chapter 6 is dedicated to the design of M-channel QMF banks with the 
perfect reconstruction property. The method presented is based on a class 
of matrices called paraunitary or lossless transfer matrices. The presentation 
Will use some of the results on paraunitary matrices, which will be proved 
only in Chap. 14. We have chosen to defer the proofs to Chapter 14 (which 
is devoted to paraunitary systems) in order to ensure an easy and smooth 
flow. (The results of Chap. 14 will also be stated and used in some other 
chapters, e.g., Chap. 8 and 11.)

Chapter 7 deals With linear-phase perfect reconstruction QMF banks. 
In these systems the analysis filters have linear phase, which is a requirement 
in some applications.

Chapter 8 describes a particular class of M-channel filter banks, in 
which all the analysis filters are derived from a single filter by use of co­
sine modulation. As a result, this system is very efficient both from the 
design and implementation points of view. It turns out that one can eas-
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ily achieve perfect reconstruction in these systems, by further imposing the 
paraunitary property. We first describe cosine modulated systems with ap- 
proximate reconstruction properties (pseudo QMF banks, Sec. 8.1-8.3), and 
then show how these can be modified to obtain perfect reconstruction (Sec. 
8.4, 8.5). The cosine modulated perfect reconstruction system (Sec. 8.4, 
8.5) can, however, be studied independently, with Sec. 8.1-8.3 used only as 
a reference.

Chapters 9 to 12: Special Topics on Multirate Systems
Chapter 9 studies the effects of finite precision in the implementations of 

multirate filter banks. This includes roundoff noise analysis and coefficient 
quantization analysis. The effect of quantization of subband signals is dealt 
with in Appendix C.

In Chap. 10 we study the connection between filter banks and a num- 
ber of “peripheral” topics such as periodically time varying systems, block 
filtering, and unconventional sampling theorems.

Chapter 11 deals with a special type of time-frequency representation 
called the short-time Fourier transformation, and extends this to develop 
wavelet transforms. Wavelet transforms, in particular, have drawn consid- 
erable attention in recent years from a wide scientific community, including 
physicists, mathematicians, and signal processors. Many researchers in the 
signal processing community have taken the view that wavelet transforms 
are closely related to filter banks (see Chap. 11 for references). In Chap. 
11, we will take this viewpoint; this makes it easier to understand, design, 
and implement wavelet transforms.

In Chap. 12 we study the multidimensional versions of many of the 
fundamental multirate concepts introduced in earlier chapters. These find 
applications in image and video signal processing.

Chapters 13 and 14: Multivariable and Paraunitary Systems

Many of the multirate (time-varying) systems discussed in the text can 
be represented in terms of multi-input multi-output (ΜΙΜΟ) linear time in- 
variant (LTI) systems. This will be evident when we analyze filter banks 
using the polyphase approach. It turns out, therefore, that a deeper under- 
standing of ΜIΜO LTI systems is very useful in the study of filter banks. 
Chapter 13 is meant to serve this purpose. Even though the results of this 
chapter are not explicitly used in earlier ones, they are required to establish 
some of the deeper properties of paraunitary systems discussed in Chap. 14.

Chapter 14 is a complete treatment of paraunitary and lossless trans- 
fer matrices. These systems find application in perfect reconstruction filter 
banks (Chap. 6 and 8) as well as in wavelet transform theory (Chap. 11). 
As mentioned previously, some of the results in Chap. 14 are in turn stated 
and used in some of the earlier chapters. The detailed discussions in Chap. 
13 and 14 ensure completeness of presentation, and also serve as research 
aids.
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Appendices
There are five appendices. Appendix A provides a brief review of matri­

ces, where we have summarized matrix concepts used throughout the text. 
Appendix B is on random processes, and its primary use is in the analysis of 
roundoff noise effects in filter banks (Chap. 9), and in the study of subband 
quantization (Appendic C). Appendix C deals with the effects of quantiza­
tion in subbands, and summarizes theoretical results on bit-allocation strate- 
gies in subband and transform coding schemes. Appendix D is on 'spectral 
factorization' which is a frequently used tool in filter bank design. Appendix 
E is on Mason’s gain formula, which is useful for the analytical evaluation 
of transfer functions.

Most of these appendices include several examples and homework prob- 
lems. While the appendices are not substitutes for a good book or chapter 
on these topics, they serve to make the text self contained and complete.
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2

Review of

Discrete-Time Systems

2.0 INTRODUCTION
This chapter provides a brief revieW of the fundamentals of discrete-time 
systems. This serves as quick reference material throughout the text, and 
also familiarizes the reader With the notations we Will use. In this chapter, 
we will present basic facts and results without detailed justification. Detailed 
treatements can be found in Oppenheim and Schafer [1989]. Other related 
references are Rabiner and Gold [1975], and Jackson [1991].

2.1 DISCRETE-TIME SIGNALS
Discrete-time signals are typically denoted as u(n), x(n), and so on, where 
n is an integer called the time index. We will use notations such as x(n) to 
indicate the entire sequence (i.e., with —∞ ≤ n ≤ ∞) or, on occasions, just 
to denote the nth sample x(n). The context Will clarify the exact meaning. 
All sequences are taken to be complex valued unless mentioned otherwise. 
Figure 2.1-1 shows some typical sequences.

1. The unit-pulse, denoted δ(n), is defined according to

This is sometimes called the impulse function, and should not be con- 
fused with the impulse function δa(α) of the real continuous variable a. 
The function δa(α) is usually called the Dirac delta function, and is de­
fined to be zero everywhere except α = 0, and such that ∫pq δα(α)dα = 1 
if, and only if, p < 0 < q.

2. The unit-step sequence is defined as

12
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3. Exponentials. A sequence of the form can is said to be an exponential. 
Here c and a are arbitrary (possibly complex) constants. Sequences such 
as canU(n) and cbnU(-n) are called one-sided exponentials (or trun­
cated exponentials). Thus, canU(n) is right-sided, whereas cbnU(-n) is 
left-sided.

4. Single-frequency sequence. The sequence cejω0n is said to be a single- 
frequency sequence. This is an exponential sequence with a = ejω0. 
Here, ω0 is real, but can have either sign. In less formal terms this is 
sometimes called a sinusoid with frequency ω0. This is periodic if, and 
only if, the frequency ω0 is a rational multiple of 2π, that is, ω0 = 2πk∕L 
for integer k and L.

5. A sequence of the form A cos(ω0n + θ) is a true sinusoid. Since we
can Write cos(ω0n + θ) = 0.5(ej(ω0n+θ) + e-j(ω0n+θ)), contains two 
frequencies, that is, ω0 and -ω0. So it is not a single-frequency signal.

6. Bounded sequence. A sequence u(n) is said to be bounded if there exists 
a finite B such that ∣u(n)∣ ≤ B for all n. Examples: (a) anU(n), ∣α∣ < 1, 
(b) cos ω0n (real ω0). Note that an exponential an is not bounded unless 
a = 0 or ∣a∣ = 1.

2.1.1 Transform Domain Analysis
It is often convenient to work with transformed versions of signals such as 
the z-transform and Fourier transform. These are defined next.
The z-Transform

The z-transform of a sequence x(n) is defined as
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If this summation does not converge for any z, the z-transform does not 
exist; an example is the exponential sequence an, a ≠ 0.

In general, the summation converges in an annulus defined as R1 < 
∣z| < R2 in the z-plane. This is called the region of convergence (ROC). For 
example if x(n) = anU(n), then X(z) = 1∕(1 - az-1) with ROC given by 
∣z∣ > (a∣. This same X(z) With ROC specified as ∣z∣ < ∣a∣ Would result in 
the inverse transform x(n) = -anU(-n - 1). Given X(z) and its associated 
ROC, x(n) can be uniquely recovered from X(z).

For a finite length sequence (with finite sample values) the z-transform 
converges everywhere except possibly at z = 0 and/or z = ∞.
The Fourier Transform (FT)

If the ROC of X(z) includes the unit circle (i.e., points of the form 
z = ejω where ω is real), we say that X(ejω) is the Fourier transform (FT) 
of x(n). Thus,
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The inverse transform relation is given by

(2.1.4b)

Note that the frequency variable ω is in radians. The FT X(ejω) is periodic 
in ω With period 2π, so that the region π < ω < 2π is considered to be the 
negative frequency region (equivalent to — π < ω < 0).

Fourier transform of a single-frequency signal. Since the z- 
transform of an does not converge anywhere (unless a = 0), the Fourier 
transform of ejω0n, in particular, does not exist in the usual sense. However, 
by using a Dirac delta function δa(ω), one can write the FT of this sequence 
as 2πδa(ω — ω0) in the range 0 ≤ ω < 2π (and periodically repeating with 
period 2π).
Parseval's Relation

Let U(ejω) and V(ejω) be the Fourier transforms of u(n) and v(n). 
Parseval's relation says

(2.1.5a)

In particular, if we set u(n) = v(n), then

(2.1.5b)



Energy of a sequence. The energy of a sequence u(n) is defined as 
Eu = ∑∞n=-∞ |u(n)∣2. If this summation does not converge, the energy is 
taken to be infinite. Eq. (2.1.5b) gives us two ways to express the energy.

Tables of z-transform and Fourier transform pairs, and Tables of their 
properties can be found in Chap. 2 and 4 of Oppenheim and Schafer [1989]. 
We will make use of these throughout the text.

2.1.2 Discrete-Time Systems
A discrete-time system operates on an input sequence u(n) to produce an 
output sequence y(n). It is assumed that the value of u(n) in the range 
—∞ ≤ n ≤ ∞ uniquely determines the output y(n) in the range —∞ ≤ n ≤ 
∞. Of great interest to us in this text are linear systems and shift invariant 
(or time invariant) systems. The properties of linearity and shift invariance 
enable us to characterize the system using the notion of transfer functions.

Linearity. Suppose the input sequences u0(n) and u1(n) produce the 
output sequences y0(n) and y1(n) respectively. If the system output in re­
sponse to the input a0u0(n) + a1u1(n) is equal to a0y0(n) + a1y1(n), and if 
this is true for every pair of constants a0,a1 and every possible u0(n) and 
u1(n), then we say that the system is linear.

Shift-invariance. Let y(n) denote the output of a system in response 
to the input u(n). If the output in response to the shifted version u(n - N) is 
equal to y(n — N), and if this holds for all integers N and all input sequences 
u(n), we say that the system is shift-invariant or time-invariant.
LTI Systems

A system is said to be linear and shift-invariant (abbreviated LSI or 
LTI) if it is both linear and shift-invariant. Such a system can be completely 
characterized by the impulse response sequence h(n) (also called the unit- 
pulse response) which is the output y(n) in response to an unit-pulse input 
δ(n). For LTI systems, the input-output relation is given by
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which is called the convolution summation. This can be expressed in the 
transform domain as

(2.1.7)
where H(z) is the z-transform of h(n), that is,

(2.1.8)

H(z) is called the transfer function of the LTI system. To physically visualize 
the meaning of H(z), note that if we apply an exponential input an, the



output is also an exponential, given by y(n) = H(a)an [provided "a" belongs 
to the region of convergence of H(z)].

Eigenfunctions of LTI systems. If a nonzero input f (n) to an LTI 
system H(z) produces an output of the form cf(n), where c is a constant, 
we say that f(n) is an eigenfunction (and c an eigenvalue) of H(z). Thus, 
exponentials are eigenfunctions of LTI systems.
Causality

A discrete-time system is said to be causal if the output y(n) at time n 
does not depend on the future values of the input sequence, that is, does not 
depend on u(m), m > n. An LTI system is causal if and only if the impulse 
response satisfies the condition

Here an and bn are (possibly complex) finite numbers. If there are no com­
mon factors of the form (β — αz-1), α ≠ 0 between A(z) and B(z) (i.e., if 
A(z) and B(z) are relatively prime), we say that (2.1.10) is an irreducible 
rational form. Under this condition, N is called the order of the system 
(assuming that at least one of aN or bN is nonzero).

Zeros and poles. If A(z)∕B(z) is irreducible, the zeros of A(z) and 
B(z) are said to be the zeros and poles, respectively, of H(z). The time- 
domain significance of poles and zeros is Well known, and is discussed in 
Problems 2.4 to 2.6.

Realness. A system is said to be 'real' if the output y(n) is real for real 
inputs u(n). For LTI systems this is equivalent to the condition that h(n) be
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This has given rise to the term 'causal sequence’ for any sequence x(n) which 
is zero for n < 0. We say that a sequence x(n) is anticausal if x(n) = 0 for 
n ≥ 0. An example is U(-n — 1).

From (2.1.8), we see that a causal LTI system has H(∞) = h(0), and 
that an LTI system is causal if and only if H(∞) is finite. For convenience 
of language, we often use phrases such as 'H(z) is causal’. This means that 
the associated ROC has been so chosen that the inverse transform h(n) is 
zero for n < 0.
Rational Transfer Functions

All transfer functions in this text are rational, that is, of the form

(2.1.10)

With

(2.1.11)



real for all n. For rational LTI system in the irreducible form (2.1.10), this 
in turn is equivalent to the condition that an and bn be real for all n. Real 
systems are also referred to as real coefficient systems.
FIR and IIR Systems

A finite impulse response (FIR) system is one for which bn in (2.1.11) 
is nonzero for only one value of n. As an example, let N = 3, and let b2 = 1. 
Then, H(z) = a0z2 + a1z + a2 + a3z-1, and is FIR.

A causal Nth order FIR filter can be represented as
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[This corresponds to B(z) = 1 and A(z) = H(z).] The quantity N + 1, which 
is the number of impulse response coefficients, is said to be the length of the 
filter (i.e., H(z) is an (N + 1)-point filter). In Sec. 2.4.2 we will see that 
FIR systems can be designed to have exactly linear phase response, which 
is required in some applications.

An LTI system which is not FIR is said to be an IIR (Infinite impulse 
response) system. An example is the system with impulse response anU(n), 
which has transfer function H(z) = 1∕(1 — az-1).

All-zero and all-pole systems. An FIR system is also said to be an 
all-zero system (because poles are located only at z = 0 and/or ∞). An IIR 
system of the form H(z) = cz-K∕B(z) is said to be an all-pole system. The 
zeros for such a system are at z = 0 and/or ∞.

FIR sequences. A finite-duration (or finite-length) sequence u(n) is 
often referred to as an FIR sequence. We often use the terms “FIR input”, 
“FIR output” and so on, where the term FIR actually stands for "finite- 
length".
Stability

If a discrete-time system is such that every bounded input produces a 
bounded output, we say that the system is stable (more precisely bounded 
input bounded output stable or BIBO stable). For the case of LTI systems, 
it can be shown that BIBO stability is equivalent to the condition

(2.1.13)

In other Words, the impulse response must be absolutely summable.
Stability condition in terms of poles. If H(z) is rational and h(n) 

causal, then (2.1.13) is equivalent to the condition that all poles pk of H(z) 
be inside the unit circle, that is, ∣pk∣ < 1. Unless mentioned otherwise, 
the statement “stable” in this text Will imply this condition (i.e., ∣pk∣ < 1).



Causality of h(n) and rationality of H(z) will be implicit. The only exception 
to this convention will be non causal filters of the form zK H(z), where K > 0 
and H(z) is causal and stable. This system has K poles at z = ∞, yet it is 
stable.

2.1.3 Implementations of Rational Transfer Functions
It is Well known that the system with transfer function (2.1.10) can be de­
scribed in the time domain by a difference equation of the form

so that

(2.1.15)
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Since the output y(n) depends in general on past outputs y(n — m), this 
is called a recursive difference equation. Without loss of generality, we can 
assume that at least one of a0, b0 in (2.1.11) is nonzero. If b0 = 0 and a0 ≠ 0 
this implies a noncausal system [since H(∞) is then not finite]. For causal 
systems b0 ≠ 0, and we can assume b0 = 1 Without loss of generality.

Direct form structure. With b0 = 1 we obtain the structure of 
Fig. 2.1-2(a) (demonstrated for N = 2) for the implementation of this 
difference equation. This is called the direct form structure, and requires 
2N + 1 multiplications and 2N additions for the computation of each output 
sample y(n). The number of delays is N, which is the filter order.

Figure 2.1-2(b) shows the common notations and building blocks (mul- 
tipliers, adders and delays) used to draW digital filter structures. Multipliers 
with values ±2±K are often not counted as multipliers, as these can be 
implemented with binary shifts on a digital machine.

FIR direct form. For the special case of FIR filters the structure 
reduces to the form shown in Fig. 2.1-3(a) (assuming causality), requiring 
N + 1 multipliers, N adders, and N delays. An equivalent structure called 
the transposed direct form is shown in Fig. 2.1-3(b). FIR structures do not 
have any feedback paths (unlike Fig. 2.1-2(a)). Equivalently, the difference 
equation (2.1.14) has only the input terms u(n — m) and no y(n — m) terms 
on the right hand side, that is, the difference equation is nonrecursive.

Cascade form structures. Another popular structure used in digital 
filtering is the cascade form. This is obtained by expressing A(z) and B(z) 
in factored form as

(2.1.16)



Figure 2.1-2 (a) The direct form structure for N = 2. (b) Meanings of signal
flow graph notations used.

Figure 2.1-3 Direct form structures for FIR filters. (a) Standard form, and (b) 
transposed form.
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Figure 2.1-4(a) shows the cascade form structure, where the building blocks 
are as in Fig. 2.1-4(b). Notice that pn and zn are, respectively, the poles 
and zeros of H(z).

There exist more complicated structures for filters. A useful tool to 
compute the transfer functions of arbitrary structures is provided by Mason’s 
formula, reviewed in Appendix E.

u(n)

Figure 2.1-4 (a) The cascade form structure, and (b) the first order building
blocks. Here zn and pn can be complex.

Real Coefficient Case
In the above cascade form structure, the multipliers can in general be 

complex even if an and bn are real. For the special case where bn are real, 
the poles are either real or occur in complex conjugate pairs. (The same is 
true of zeros if an are real.)

If pk is complex, we can combine the factors 1 — pkz-1 and 1 — p*kz-1 
to produce the real factor 1 - ckz-1 — dkz-2. In this way, we can obtain a 
real coefficient cascade form. The transfer function can now be expressed as

(2.1.17)

where i and ℓ can take the values 0 or 1. All coefficients in (2.1.17) are real. 
The second order sections can be implemented as in Fig. 2.1-5, using the 
direct form structure.

A complex conjugate pair of poles can also be represented as Rke±jφk, 
as demonstrated in Fig. 2.1-6(a), where Rk is the pole radius and φk the 
pole angle. This gives rise to a factor in the denominator of H(z), of the 
form
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(2.1.18)
The same is true of zeros. In particular, a complex conjugate pair of zeros 
on the unit circle [Fig. 2.1-6(b)] can be represented by the factor

(2.1.19)



Figure 2.1-5 Implementa­
tion of a second order section 
in (2.1.17), using the direct 
form structure.

Figure 2.1-6 (a) A complex conjugate pair of poles inside the unit circle, and
(b) a complex conjugate pair of zeros on the unit circle.

Figure 2.1-7 Example of 
a delay-free loop.

The number of delays in all the above structures is equal to N, which 
is the smallest possible. So these structures are minimal. †

Delay-free loops. A loop in which there is no delay is said to be a 
delay-free loop. Fig. 2.1-7 demonstrates the idea. Discrete-time structures 
With delay free loops cannot be implemented in practice. Such structures 
are, therefore, of no practical interest.
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† Digital filter structures which use the smallest possible number of delays 
are said to be minimal in delays, or just minimal or canonical.



2.1.4 Continuous-Time Systems
Continuous-time functions are denoted as xa(t), ya(t) and so on. The sub- 
script a , which stands for “analog”, is deleted if the context makes it clear. 
The Fourier transform of xa(t), if it exists, is defined as

One has to specify a region of convergence for this integral in the s-plane 
[Oppenheim, Willsky, and Young, 1983]. If the region of convergence in­
cludes the imaginary axis, then Ha(jΩ) [the Fourier transform of ha(t)] is 
defined, and is called the frequency response of the system. The system is 
causal if, and only if, ha(t) = 0 for t < 0. A causal system is (BIBO) stable 
if, and only if, all the poles of Ha(s) are in the open left half plane (abbre- 
viated LHP) which is the region characterized by Re[s] < 0. In this case the 
region of convergence includes the closed right half plane, that is, the region 
Re[s] ≥ 0.
Sampling

We say that x(n) is the sampled version of xa(t) if x(n) = xa(nT) for 
some T > 0. The quantity T is the sampling period (or sample spacing), 
and 2π∕T the sampling frequency or sampling rate. Denote the Fourier 
transforms of x(n) and xa(t) as X(ejω) and Xa(jΩ). It can be shown that
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(2.1.20)

and the inverse transform relation is

(2.1.21)

Here, the frequency variable Ω has the dimension of radians per second.
Many of the concepts described earlier carry over to continuous-time 

systems in an obvious manner. A continuous-time LTI system is character­
ized by an impulse response ha(t) and transfer function Ha(s). The transfer 
function is the Laplace’s transform of ha(t), that is,

(2.1.22)

Thus, X(ejω) is obtained as follows: (a) duplicate Xa(jΩ) at uniform in­
tervals separated by 2π∕T, (b) add these copies and divide by T, and (c) 
replace Ω with ω∕T. Figure 2.1-8(a) demonstrates this idea. In part (b) we 
demonstrate the physical dimensions of the frequency axis, by assuming that



the sampling period T is one millisecond [i.e., 2π∕T is 2π Kilo radians per 
second (Kr∕s)]. Figure 2.1-8(c) shows the correspondence with the frequency 
variable ω associate with the sequence x(n).

Figure 2.1-8 (a) Fourier transform of a sampled version of xa(t). (b) Example
of frequency dimensions in kiloradians/second, assuming 1 kHz sampling rate, and 
(c) correspondence with discrete-time frequency variable ω (radians).

Aliasing. If there is no overlap between Xa(jΩ) and the shifted ver- 
sions, we can recover xa(t) from the sampled version x(n) by retaining only 
one copy. This is accomplished by filtering. If we have the apriori knowledge 
that the signal is lowpass, then an ideal lowpass filter is used. Otherwise a 
bandpass filter with appropriate center frequency is required.

The overlap-free condition can be ensured by requiring that Xa(jΩ) be 
zero for ∣Ω∣ ≥ π/T. (This is the lowpass case; see Problem 2.15 for other 
possibilities.) If there is overlap between Xa(jΩ) and any of its shifted 
versions, we say that there is aliasing.

Bandlimited signals and Nyquist rate. If Xa(jΩ) is zero for ∣Ω∣ ≥ 
σ, we say that xa(t) is σ-bandlimited or σ-BL. We see that if xa(t) is σ- 
BL, then we can avoid aliasing by sampling at the rate Θ=2σ (Shannon or 
Nyquist sampling theorem). This is called the Nyquist rate for xa(t).

Samplers and A/D Converters
We often refer to a continuous-time signal as an “analog” signal, even 

though there is a fine distinction between these two [Oppenheim and Schafer, 
1989]. The amplitude of an analog signal can take continuous values (pos­
sibly complex). A digital signal can take values only from a preassigned 
discrete set (e.g., the values represented by the binary number system). Ei- 
ther of these signals could be continuous-time or discrete-time. In this text, 
we often use the term “analog signal” to imply both analog and continuous-
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time signals. Similarly, terms such as “digital signals” and “digital filters” 
are used to imply “digital” as well as "discrete-time" versions. Whenever a 
finer distinction is appropriate, it is either mentioned or will be clear from 
the context.

We often refer to black boxes in figures, with the labels "A/D convert­
ers" and "D/A converters" (or just A∕D and D/A). These stand for "analog- 
to-digital" and "digital-to-analog," respectively. In most cases, these black 
boxes really imply conversion between continuous-time and discrete time, 
and a notation such as C/D and D/C (as in Oppenheim and Schafer, [1989]) 
would have been appropriate. We will, however, use A/D and D/A every- 
where, and the precise meaning will be clear from the context.

2.2 MULTI-INPUT MULTI-OUTPUT SYSTEMS

Consider a system with r inputs and p outputs, with a transfer function 
connected from every input to every output. Thus, let Hkm(z) denote the 
transfer function from the mth input to the kth output. This is demonstrated 
in Fig. 2.2-1 for p = r = 2. The kth output in response to all the inputs is 
given by

Figure 2.2-1 A two-input two-output system.

The entire system is said to be a multi-input multi-output (ΜΙΜΟ) LTI 
sytstem, and can be characterized by the set of pr transfer functions Hkm(z). 
In order to compactly represent the system, we define the input and output 
vectors

(2.2.2)
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and their z-transforms

(2.2.3)

Then the system can be described as

(2.2.4)

where
(2.2.5)

Note the use of bold letters to indicate matrices and vectors. The p × r 
matrix H(z) is called the transfer matrix of the system. We will use the 
terms "r-input p-output system" and "p × r system" interchangeably. A 
system with p = r = 1 is said to be a single-input single-output (SISO) 
system, or a scalar system.

Fig. 2.2-2 indicates two ways of representing the system. The input and 
output lines are indicated either by heavy arrows, or by double-line arrows 
according to convenience. The double lines do not imply that there are only 
two inputs or two outputs.

Figure 2.2-2 Two ways to represent a multi-input multi-output LTI system.

The impulse Response Matrix
Let hkm(n) denote the impulse response of the transfer function Hkm(z). 

Define the p × r matrix of impulse response sequences as

(2.2.6)
Then, the relation (2.2.4) can be expressed in the time-domain as

(2.2.7)

which is the matrix version of the familiar convolution summation (2.1.6). 
From the definitions of H(z) and h(n) it is evident that they are related as

(2.2.8)
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In general, the above infinite summation converges only in certain regions of 
the z-plane.

The matrix sequence h(n) is said to be the "impulse response" or "unit- 
pulse response" of the system H(z). For example, let

This can be rewritten as

(2.2.10)

and the sequence h(n) can be readily identified, as indicated.
Transfer matrices which are row or column vectors. A system 

with one input and p outputs has a p × 1 transfer matrix, that is, a column 
vector. A system with r inputs and one output has a 1 × r transfer matrix, 
that is, a row vector. Figure 2.2-3 shows both types of examples, where

Figure 2.2-3 Examples of transfer matrices (a) a column vector, and (b) a row 
vector.

Such vector-transfer functions arise in the study of digital filter banks (e.g., 
Chap. 5).

The frequency response matrix. The discrete-time Fourier trans- 
form of a sequence is obtainable from the z-transform by setting z = ejω. 
This is given by
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(2.2.9)

(2.2.11)

and is the frequency response matrix of the system.
Stability and causality. The system H(z) is said to be 'causal' if 

h(n) is causal [that is, h(n) = 0 for n < 0]. This is equivalent to saying that



each hkm(n) is causal. We say that α is a pole of H(z) if it is a pole of some 
element Hkm(z). The system H(z) is stable (in the BIBO sense) if each of 
the functions Hkm(z) is stable. So, H(z) is causal and stable if, and only if, 
each of the systems Hkm(z) is causal with all poles strictly inside the unit 
circle. This is equivalent to the condition that the region of convergence of 
the summation (2.2.8) includes all points on and outside the unit circle of the 
z-plane. In particular, this means that the summation in (2.2.11) converges.

No poles at infinity. For a causal rational system H(z), the region 
of convergence is everywhere outside a certain circle in the z-plane. In par­
ticular, therefore, there are no poles at z = ∞, whether the system is stable 
or not. Since the ROC of H(z) includes z = ∞, the value H(∞) can be 
obtained from the infinite power series Σ∞n=0 h(n)z-n. Thus H(∞) = h(0). 
In contrast, the value of H(0) cannot be found by using the infinite power 
series, since the ROC of the causal power series does not include the origin.

Parseval's relation for vector signals. Let x(n) and y(n) be vec- 
tor sequences with Fourier transforms X(ejω) and Y(ejω). We then have 
(Problem 13.1)
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(2.2.12)

Degree of a system. The degree or “McMillan degree” of an LTI 
system H(z) is defined to be the smallest number of delay elements (z-1 
elements) required to implement the system. Unlike in the scalar case, the 
degree of an ΜΙΜΟ system cannot be determined just by inspection of H(z). 
In Chap. 13 we will study this topic carefully.
Exponential Inputs Produce Exponential Outputs

For a scalar LTI system H(z), we know that an exponential input an 
produces the output H(a)an. Now consider a p × r system H(z), and apply 
the input van where a is an arbitrary scalar and v an arbitrary vector. Using 
(2.2.7) we find

(2.2.13)

In other words, an exponential input van aligned in the direction of the 
vector v produces the exponential output H(a)van, which is aligned in the 
direction of the vector H(a)v. This gives us a beautiful 'physical' significance 
for the transfer matrix H(z).

Chapter 13 is dedicated to a thorough review of ΜΙΜΟ LTI systems, 
and is a preparation for some of the deeper results shown in the later sections 
of Chap. 14 on paraunitary system.



2.3 NOTATIONS
In what follows we summarize the notations used in the text. The reader 
may wish to glance through this section during first reading (a section on 
notations can hardly be entertaining!), and then use this primarily as a 
reference.

2.3.1 Preliminaries
1. The variables Ω and ω are the frequency variables for the continuous 

and discrete-time cases respectively.
2. U(n) denotes the unit step sequence and should not be confused with 

u(n) which sometimes represents the input signal.
3. δ(n) is the unit-pulse (n is discrete) and δa(t) is the Dirac delta function 

(t is continuous). Both δ(n) and δa(t) are often termed as the “impulse 
functions,” and the distinction is usually clear from the context.

4. The terms "inside the unit circle" and "outside the unit circle" are often 
abbreviated as "the region ∣z∣ < 1" and "region ∣z∣ > 1" respectively.

5. Superscript asterik, as in H*(z), denotes complex conjugation of H(z), 
whereas subscript asterik, as in H*(z), means that only the coefficients 
are conjugated. For example, if H(z) = a + bz-1 then, H*(z) = a* + 
b*z-1.

2.3.2 Polynomials

A polynomial in x has the form ΣNn=0anxn, that is, has only nonnegative 
powers of x. Here N is a finite integer. If aN ≠ 0, N is said to be its order. 
Usually we do not use the word “degree,” which is reserved for the number 
of delays required to implement a causal LTI system.

Let H(z) = ΣNn=0 h(n)z-n. This is a polynomial in z-1, and repre- 
sents a causal FIR filter. It is common to attach various adjectives to H(z) 
depending upon its zero locations. Here are some commonly used ones.

1. H(z) is strictly minimum-phase (or strictly Hurwitz, abbreviated SH) 
if all zeros are inside the unit circle.

2. H(z) is strictly maximum-phase if all zeros are outside the unit circle.
3. H(z) is minimum-phase if all the zeros satisfy ∣zk∣ ≤ 1 (i.e., are inside 

or on the unit circle) .
4. H(z) is maximum-phase if all the zeros satisfy ∣zk∣ ≥ 1.
5. H(z) is a mixed phase polynomial if none of the above holds.

2.3.3 The “Tilde” Notation (Paraconjugation)

The notation H(z) plays a crucial role in our discussion. This is defined 
such that, on the unit circle, H(z) = [H(z)]* (that is, complex conjugation). 
Examples: 
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Let H(z) = 1 + 2z-1, then H(z) = 1 + 2z.
Let H(z) = (a + bz-1)∕(c + dz-1), then H(z) = (a* + b*z)∣(c* + d*z). 

More generally, we define H(z) for a rational function H(z) as follows: first 
conjugate the coefficients, and then replace z with z-1. Using the subscript 
asterik notation defined earlier, we see that
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As an application, if H(z) = ΣNn=0 h(n)z-n, then

that is, the coefficients are time-reversed and conjugated. A number of points 
about the "tilde notation" are worth noting.

1. The function H*(z*) also reduces to H*(z) on the unit circle (in fact for 
any z), but it is not a rational function of z [unlike H(z)]. The function 
H(z), on the other hand, continues to be rational in z (hence analytic), 
and it is mathematically more convenient to use. H(z) is also called the 
paraconjugate of H(z) and can be regarded as an analytic extension of 
unit-circle conjugation.

2. Given a function H(z), the quantity H(z)H(z), evaluated on the unit 
circle, is the magnitude squared response ∣H(ejω)∣2.

3. We can write H(z) = H*(1/z*) for any z. This has been used, for 
example, in Oppenheim and Schafer [1989] when discussing magnitude 
squared responses of digital filters.

4. If H(z) = 0 for z = α, then H(z) = 0 for z = 1∕α* (the reciprocal 
conjugate point).

5. If H(z) has (strictly) minimum phase, then H(z) has (strictly) maxi- 
mum phase, and conversely.

6. If H(z) = H1(z)H2(z), then H(z) = H1(z)H2(z). If H(z) = H1(z) + 
H2(z), then H(z) = H1(z) + H2(z).

2.3.4 Matrices and Matrix Functions
Bold faced letters such as A,v denote matrices and vectors. See Appendix 
A for a brief review of matrices, and matrix operations such as transpose, 
transpose conjugate, and so on. We often encounter matrix functions H(z). 
These are matrices in which each element is a rational function (e.g., polyno- 
mial) in z or z-1. Once again the "tilde" notation plays a major role. Here 
is a summary of key matrix notations.

1. AT denotes the transpose of A, and HT(z) stands for [H(z)]T.
2. A† denotes transpose-conjugate of A, and H†(ejω) denotes [H(ejω)]†.



3. H*(z) denotes conjugation of coefficients without changing z (see ex- 
ample below).

4. H(z) denotes HT*(z-1).
As an example, let H(z) = h(0) + h(1)z-1. Then
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(2.3.1)

The matrix H(z) is said to be the paraconjugate of H(z). For rational H(z) 
it continues to be rational. Notice that H(z) = H†(z) for z = ejω, that is, 
paraconjugation and transpose conjugation are identical on the unit circle. 
In general, one can write H(z) = H†(1∕z*) for any z.

The word 'scalar' corresponds to a matrix with p = r = 1. Thus a 'scalar 
system' is a single-input single-output (SISO) system. All the notations 
introduced above apply to the scalar case; just remember that transposition 
leaves the scalar quantity unchanged.

2.3.5 Notations for FIR Functions
An FIR function is any function of the form

(2.3.2)

where —∞ < n1 ≤ n2 < ∞.A causal FIR function (or a polynomial in z-1) 
is of the form H(z) = ΣNn=0 h(n)z-n. Several types of causal FIR filters can 
be distinguished:

1. Hermitian and skew-Hermitian polynomials. We say that H(z) is Her- 
mitian [or h(n) is Hermitian] if h(n) = h*(N — n) for all n, and skew- 
Hermitian if h(n) = -h*(N — n). In terms of H(z) this means H(z) = 
z-N H(z) (Hermitian) and H(z) = -z-N H(z) (skew-Hermitian). For 
example, 1 + 2j + (1 — 2j)z-1 is Hermitian whereas 2 + j — (2 — j)z-1 
is skew-Hermitian.

2. Generalized-Hermitian polynomial. We say that H(z) is generalized 
Hermitian if h(n) = ch*(N — n), [i.e., H(z) = cz-N H(z)] for some c 
with ∣c∣ = 1. Examples: (a) a + 2z-1 + a*z-2, (b) a + jz-1 + z-2 + ja*z-3. 
Evidently, Hermitian and skew-Hermitian polynomials are special cases 
of this.



3. Symmetric and antisymmetric polynomials. H(z) [or h(n)] is said to be 
symmetric if h(n) = h(N - n) and antisymmetric if h(n) = -h(N — n); 
[this definition is particularly useful if h(n) is real]. These are equiv- 
alent, respectively, to H(z) = z-N H(z-1) and H(z) = -z-N H(z-1). 
Examples: 1 + 2z-1 + z-2 is symmetric; 1 + 2z-1 — 2z-2 — z-3 is anti- 
symmetric.

4. Hermitain image and mirror image. Let A(z) and B(z) be two polyno­
mials in z-1 with order N. We say that B(z) is the generalized Hermitian 
image of A(z) if B(z) = cz-N A(z) for some c with ∣c∣ = 1 (Hermitian 
image if c = 1, skew-Hermitian image if c = —1). Also B(z) is the 
mirror image of A(z) if B(z) = z-N A(z-1). Here are some examples, 
with N = 1.

a) 1 + jz-1 and j + z-1 (mirror images)
b) 1 + jz-1 and -j + z-1 (Hermitian images)
c) 1 + jz-1 and 1 + jz-1 (Hermitian images; why?)
d) 1 + jz-1 and j — z-1 (Hermitian images)
e) 1 + 2z-1 and 2 + z-1 (mirror and Hermitian images)

The above terminology can also be used for the more general form (2.3.2). 
For example, we say G(z) is symmetric if H(z) defined as z-n1G(z) = 
ΣNn=0 h(n)z-n is symmetric. Thus, z + 2 + z-1 is symmetric, and so is 
the transfer function z-1 + 5z-2 + z-3.

2.3.6 Miscellaneous Mathematical Symbols

The following symbols are sometimes employed for economy: ∃ (there exists); 
⇔ (if and only if); ∀ (for all); ≈ (approximately equal to); ⇒ (implies);
∈ (belongs to); = (defined as).

2.4 DISCRETE-TIME FILTERS (DIGITAL FILTERS)

We use the term 'digital filter' for discrete-time filters even though digiti- 
zation (quantization) effects will be considered only in Chap. 9. A digital 
filter, then, is an LTI system with rational transfer function as in (2.1.10). 
The quantity H(ejω) is called the frequency response. Its meaning is clear 
from (2.1.7) which yields

(2.4.1)

From the time domain viewpoint, if we apply an input with frequency ω0, 
that is, u(n) = ejω0n, then the output is y(n) = H(ejω0)ejω0n. This follows 
because ejω0n is an eigenfunction of the system. H(ejω0) is the weighting 
function (or eigenvalue) or simply “the gain of the system” at frequency ω0.
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Transmission Zeros
If H(ejω0) = 0 then the frequency ω0 is rejected by the filter. So 

the filter offers infinite attenuation at this frequency. We say that ω0 is a 
transmission zero of H(z).

Transmission zeros come from zeros of H(z) on the unit circle. Let 
H(z) = A(z)∕B(z), with A(z) and B(z) as in (2.1.11). It is clear that ω0 is 
a transmission zero if, and only if, (1 — ejω0z-1) is a factor of A(z). If all 
zeros of H(z) are on the unit circle, then all the factors of the numerator 
A(z) have the form (1 — ejωkz-1).

For the real coefficient case, each factor (1 — ejωkz-1) is paired with 
(1 — e-jωkz-1) unless ωk = 0 or π. The factor of A(z) which represents the 
complex conjugate pair of zeros is, therefore, 1 - 2 cos ωkz-1 + z-2. This is 
a symmetric polynomial so that the product of such factors is symmetric. 
Transmission zeros at ω = 0 and π give rise to the factors (1 — z-1) (anti- 
symmetric) and (1 + z-1) (symmetric). Thus, for a real filter with all zeros 
on the unit circle, the numerator A(z) is either symmetric or antisymmetric. 
That is,

(even number of zeros at ω = 0) 
(odd number of zeros at ω = 0). (2.4.2)

For the more general case of complex systems, if all zeros are on the unit 
circle then A(z) is generalized-Hermitian (Problem 2.3). Notice, however, 
that these conditions on A(z) are not sufficient to ensure that all zeros are 
on the unit circle.

2.4.1 Magnitude Response and Phase Response
The frequency response which in general is a complex quantity, can be ex- 
pressed as

Figure 2.4-1 Various types of magnitude responses for real-coefficient filters.
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(2.4.3)
The real-valued quantities ∣H(ejω)∣ and φ(ω) are, respectively, called the 
magnitude response and the phase response of the filter. The quantity 
r(ω) = —dφ(ω)∕dω is said to be the group delay of the system H(z).

Depending on the nature of ∣H(ejω)∣, filters are typically classified as 
lowpass, bandpass and so on. Figure 2.4-1 demonstrates this for real coeffi- 
cient filters (see below).



Real Coefficient Filters
For real h(n), the magnitude ∣H(ejω)∣ is an even function of ω whereas 

the phase response φ(ω) is an odd function. For example, let H(z) = 1—az-1 
with real a. Then, H(ejω) = 1 — ae-jω, and
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so that ∣H(ejω)∣ is even, and φ(ω) odd indeed. So the response needs to be 
shown only for the region 0 ≤ ω ≤ π. If H(z) has real coefficients, an input 
cos(ω0n) produces the output y(n) = ∣H(ejω0)∣ cos(ω0n + φ(ω0)). †
Unwrapped and Wrapped Phase

Consider the filter H(z) = (1+z-1/2)6. The frequency response is given 
by H(ejω) = e-j3ω cos6(ω∕2). So, the phase response is φu(ω) = —3ω and 
varies from 0 to -6π as ω changes from 0 to 2π. If we replace φu(ω) with 
its principal value φω(ω) = φu(ω) mod 2π, this does not change the value 
of H(ejω), as seen from (2.4.3). The quantities φu(ω) and φω(ω) are called 
the unwrapped and wrapped phase responses, respectively (this also explains 
the introduction of subscripts for this discussion).

The unwrapped phase φu(ω) can have any value whereas the wrapped 
phase φω(ω) is always within a range of length 2π, for example, -2π < 
φω(ω) ≤ 0 or —π < φω(ω) ≤ π. The unwrapped phase φu(ω) is related to 
the group delay r(ω) according to the integral

Most computer programs that evaluate the phase response actually return 
the wrapped phase φω(ω). There exist good algorithms to obtain the un- 
wrapped phase from the wrapped phase [Tribolet, 1977], [Oppenheim and 
Schafer, 1989].

If the distinction between the wrapped and unwrapped phases is not 
necessary (as in the majority of our discussions), the subscript will be omit- 
ted. The distinction is sometimes essential, for example, when dealing with 
the so-called complex cepstrum. We will have occasion to describe this in 
Appendix D, where we study the spectral factorization problem.
Decibel (dB) Plots

The plot of 20 log10 ∣H(ejω)∣ as a function of ω is particularly useful in 
revealing the stopband details of the response. This is often referred to as 
the dB plot of the (magnitude) response. Figure 2.4-2 demonstrates this for

† Notice that, in general, signals of the form cos(ω0n) are not eigenfunc­
tions of LTI systems.



a lowpass filter. It is helpful to remember that ∣H(ejω)∣ = 10-k implies a 
level of -20k dB on this plot. For example, ∣H(ejω1)∣ = 0.01 implies that 
the filter provides 40 dB attenuation at ω1 (see Sec. 3.1 later).

Figure 2.4-2 Demonstration of decibel (dB) plot of the magnitude response.

2.4.2 Linear Phase Filters

Strictly speaking, a digital filter is said to have linear phase if the phase 
response φ(ω) is linear in ω (i.e., of the form αω where α is constant). In 
engineering practice, a less stringent definition is used, which we employ in 
this text. According to this definition, H(z) has linear phase if

(2.4.4)

where c is a possibly complex constant, K is real, and HR(ω) is a real valued 
function of ω. Note that HR(ω) does not necessarily have period 2π [for 
example, try H(z) = 1 + z-1], and we have to avoid the notation HR(ejω).

The quantity HR(ω) is called the amplitude response or zero-phase re­
sponse. Linear phase filters for which c is real and K = 0 are called zero­
phase filters. For a zero-phase filter H(ejω) itself is real, but it can become 
negative (this typically happens in the stopband).

In a region where HR(ω) has fixed sign, the group delay of a linear- 
phase filter is constant, that is, r(ω) = K. For filters with nonlinear phase, 
it is common practice to plot the group delay r(ω) to show the nonlinear­
ity. The degree to which r(ω) is a nonconstant reveals the degree of phase 
nonlinearity.
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Four Types of Real Coefficient Linear Phase Filters

Let H(z) = ΣNn=0 h(n)z-n, with real h(n). It is well known that the 
response has the form (2.4.4) if h(n) is symmetric or antisymmetric. De- 
pending on whether N is even or odd, and whether h(n) is symmetric or 
antisymmetric, we obtain four types of real coefficient linear phase filters. 
These are summarized in Table 2.4.1.

Notice that some of these filters have transmission zeros at ω = 0 and/or 
π, so that they cannot be used for certain applications. For example, Types 
3 and 4 (antisymmetric cases) cannot be used for lowpass filter design, and 
Type 2 cannot be used for highpass design. If H(z) is Type 1 or 3, then the 
filter G(z) = zMH(z) (where M = N∕2) is a zero-phase filter. In this text 
whenever we refer to linear phase filters of Type 1-4, it is implicit that the 
coefficients are real so that the properties in Table 2.4.1 hold.
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TABLE 2.4.1 Four types of real coefficient linear phase FIR filters.
Here with h(n) real

Type 1 2 3 4

Symmetry h(n) = h(N - n) h(n) = h(N - n) h(n) = -h(N — n) h(n) = -h(N - n)

Parity of N N even N odd N even N odd

Expression for 
frequency 
response 
H(ejω)

e-jωN/2 HR(ω) e-jωN/2 HR(ω) je-jωN/2 HR(ω)

Amplitude response 
or zero-phase 

response 
HR(ω)

Special features Zero at ω = π Zero at ω = 0 and π Zero at ω = 0

Can be used for Any type of 
bandpass response 
(LPF, HPF, etc.)

Any bandpass 
response except 

Highpass

Differentiators and 
and Hilbert 

transformers†

Differentiators, 
Hilbert 

transformers, 
and high pass filters

†See Rabiner and Gold, 1975



For Type 1 filters, HR(ω) does have period 2π, whereas for Type 2 filters 
the period is 4π. (This can be deduced from Table 2.4.1.) Notice that ΗR(ω) 
changes sign at ω = 0 in some cases. Note also that [HR(ω)]2 has period 2π 
in all cases.

Efficient structures for linear phase filters. Because of the prop- 
erty h(n) = ±h(N-n), Type 1-4 linear phase FIR filters can be implemented 
with only about (N + 1)∕2 multipliers. For example, Fig. 2.4-3 shows how 
we can implement a fifth order (Type 2) filter with only 3 multipliers.

Figure 2.4-3 Efficient di- 
rect form implementation of 
a linear phase filter.

Advantage of Linear Phase Property
Suppose we have a signal u(n) whose energy is dominantly in the region 

∣ω∣ < σ. Suppose this is passed through a real lowpass filter with passband 
edge at σ. (This is often done to attenuate the out-of-band noise.) The 
output signal is
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(2.4.5)
If we assume that the filter H(z) is a 'good' lowpass filter, then ∣H(ejω)∣ ≈ 1 
in the passband. Moreover, both ∣Y(ejω)∣ and ∣U(ejω)∣ are very small in the 
stopband. So we have

(2.4.6)
for all ω. The approximate nature of this relation is due to the facts that (a) 
the filter is not ideal, and (b) u(n) is not perfectly bandlimited. Nevertheless, 
(2.4.6) implies that the output signal y(n) tends to resemble u(n) provided 
that there is no phase distortion.

The phase distortion, in turn, is eliminated if U(ejω) and Y(ejω) have 
same phase (except for a linear offset term). This can be satisfied if H(z) 
has linear phase. In this case (2.4.4) holds so that (2.4.5) can be replaced 
with

(2.4.7)
For the case where c is real and K an integer, this implies y(n) ≈ cu(n - K), 
which is a (scaled) and delayed version of u(n).



Summarizing, if the input has energy confined to the passband of the 
filter then the output signal is approximately equal to (a scaled and shifted 
version of) this input provided the filter has linear phase and 'good' passband 
and stopband. (The above discussion assumes K is an integer. But this is 
not always the case, e.g., when the filter order is odd.)

If the filter has nonlinear phase, then we still have (2.4.6), but due to 
phase distortion, the time domain relation y(n) ≈ cu(n - K) does not hold. 
Whether this distortion is acceptable or not depends largely on applications. 
For example, in speech processing a certain degree of phase distortion can 
be tolerated, but in image processing, phase distortion is often disastrous 
[Lim, 1990].
Most General Conditions for the Linear Phase Property

Let H(z) = ΣNn=0 h(n)z-n with h(0) ≠ 0 and h(N) ≠ 0. Then it 
is a linear phase filter if and only if the impulse response is generalized- 
Hermitian, that is, satisfies the condition
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(2.4.8)

for some d with ∣d∣ = 1 (Problem 2.12). The following points are worth 
noting:

1. For the real coefficient case, the above condition reduces to h(n) = 
±h(N — n). So, the impulse response has to be symmetric or antisym­
metric.

2. In the transform domain, (2.4.8) is equivalent to the condition

(2.4.9)

3. Zero-locations of linear-phase filters. One consequence of (2.4.9) is that, 
if zk is a zero then so is 1∕z*k. So, the zeros of a linear phase FIR filter 
H(z) occur in reciprocal conjugate pairs. This also explains why it is 
not possible to design causal stable IIR linear phase filters (Problem 
2.11 requests a more rigorous discussion.)

2.4.3 Analytic Continuation
Let H0(z) and H1(z) be two transfer functions such that H0(ejω) = H1(ejω) 
for all ω. This implies that their impulse responses are identical, that is, 
h0(n) = h1(n), and, therefore, that the transfer functions are identical. 
Thus, two filters with identical frequency responses must have identical 
transfer functions. In other words, if

(2.4.10)

then
(2.4.11)



This is called the analytic continuation property. If H0(z) and H1(z) in the 
above discussion are replaced with p× r transfer matrices H0(z) and H1(z), 
then the analytic continuation property still holds.

The above mentioned property might appear to be trivial but it holds 
because all practical transfer functions are rational (hence analytic), and the 
unit circle is in the region of analyticity. If H0(z) and H1(z) were arbitrary 
(nonanalytic) functions, then (2.4.10) would not imply (2.4.11). Consider, 
for example, a function P(z), defined to be zero in an annulus around the 
unit-circle, but unity otherwise (Fig. 2.4-4). This satisfies P(ejω) = 0, but 
P(z) is not identically zero for all z.

Figure 2.4-4 A function P(z), defined to be zero everywhere on the unit circle, 
but not identically zero for all z.
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PROBLEMS

2.1. In Sec. 2.1.2 we stated that exponential sequences are eigenfunctions of LTI 
systems. Conversely, suppose s(n) is an eigenfunction of a rational IIR transfer 
function H(z) (with order > 0 to avoid trivial answers). Does this necessarily 
mean that s(n) is an exponential? Justify (that is, prove if yes; give counter 
example if no ).

2.2. Suppose we apply the truncated exponential anU(-n) to a causal stable LTI 
system H(z). Assume ∣a∣ > 1 so the input does not blow up for n → —∞. (a) 
What is the output y(n) for n ≤ 0? (b) Suppose y(n) is zero for n > 0, i.e., 
the output becomes zero as soon as the input becomes zero. This leads us to 
suspect that the system might be memoryless, [i.e., H(z) = constant]. This is 
indeed true. Prove this.

2.3. Let H(z) = ΣNn=0 h(n)z-n be a transfer function with all zeros on unit circle. 
Show that h(n) is generalized-Hermitian. [In particular if h(n) is real, this 
reduces to the fact that h(n) is symmetric or antisymmetric.]

2.4. Let H(z) = Σ∞n=0 h(n)z-n, h(0) ≠ 0, be a rational transfer function represent­
ing a causal, stable LTI system. So, H(z) = A(z)∕B(z) where A(z) and B(z) 
are relatively prime polynomials in z-1. We shall now develop a time domain 
interpretation of “poles”, which is more appealing than the definition which 
says that H(z) "blows up" at a pole.

a) Suppose p ≠ 0 is a pole of H(z). Show that there exists a causal finite 
length input x(n) and a finite integer L such that the output y(n) has the 
form pn for n > L.

b) Conversely suppose there exists a causal finite length input x(n) and a 
finite integer L such that the output y(n) has the form pn for n > L. 
Show that p is a pole of H(z).

2.5. We know that if zk is a zero of H(z) then the output in response to the input 
znk is zero for all n. This input is noncausal (and doubly infinitely long). 
In this problem we develop another engineering insight for the meaning of a 
zero of H(z). This is based on causal inputs, and might be more appealing. 
Assume H(z) is in irreducible rational form as in (2.1.10). Also, assume that 
it is causal so that it can be implemented with the difference equation (2.1.14) 
(with b0 = 1). Assume a0 ≠ 0, and bN ≠ 0.

a) Consider the first order case (N = 1). We know the system has a zero at 
z1 = —a1∕a0. Suppose, we apply an input of the form zn1U(n) where U(n) 
is the unit step. Find an initial value y(—1) such that y(n) = 0 for all 
n ≥ 0.

b) More generally, for the Nth order system suppose z1 is a zero and we 
apply the causal input zn1U(n). Show how you can find an initial state 
y(-1), y(-2), . . . ,y(-N) such that y(n) = 0 for all n ≥ 0.

c) Conversely, suppose there exists an initial state y(-1), y(-2), . . . , y(-N) 
such that the input zn1U(n) produces zero output for all n ≥ 0. Show that 
z1 is a zero of H(z).

2.6. Let H(z) = Σ∞n=0 h(n)z-n, h(0) ≠ 0, be a rational transfer function represent­
ing a causal, stable LTI system. So, we can write H(z) = A(z)∕B(z) where 
A(z) and B(z) are relatively prime polynomials in z-1.
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a) Let z0 be a zero of the system. Then show that there exists a causal finite 
length sequence s(n) such that the input
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(P2.6)
produces a causal, finite-length output.

b) Conversely, let there exist an input of the form in (P2.6) where s(n) is 
causal and finite-length, such that the output is of finite length. Then 
show that z0 is indeed a zero, assuming z0 ≠ 0.

Note. This gives the following engineering interpretation of a zero: there exists 
a causal input such that, if you wait for finite time after applying the input, 
the input will look like an exponential zn0 whereas the output will become zero 
and stay zero!

2.7. You are given a black box, which you can imagine to be a computer program. 
This black box takes an input sequence x(n) and computes each sample of the 
output y(n) in finite amount of time. You are given the additional information 
that any exponential input an produces an exponential output H(a)an. Can 
you conclude that the black box is an LTI system? Justify (i.e., prove if yes; 
give counter example if no).

2.8. Let H(z) = ΣΝn=0 h(η)z-n be a Type 1 linear phase FIR filter. Define a new 
filter G(z) with g(n) = h(n) cos[ω0(n — K)] where K is an integer. How would 
you choose K so that G(z) also has linear phase?

2.9. Let x(n) = cos(ω0n) be the input to a Type 1 linear phase FIR filter H(z). 
Find an expression for the output y(n) and simplify as best as you can. Can 
you say that y(n) = cx(n — K) for some c and K? What if the filter were Type 
3?

2.10. Let H(z) = 1∕[1 + ΣΝn=1 bnz-n] represent a causal filter with linear phase. 
Prove that it is unstable (unless bn = 0 for all n).

2.11. Let H(z) be causal stable with irreducible form A(z)∕B(z). Suppose this has 
linear phase, that is, satisfies (2.4.4). Show then that H(z) is FIR! [This is 
a generalization of Problem 2.10. It is somewhat subtle because, you have to 
wonder whether H(z) might have linear phase even if A(z) and B(z) are not, 
individually, linear phase functions.]

2.12. This is a continuation of (2.4.8) and the paragraph preceding it. We stated 
that (2.4.8) is necessary and sufficient for linear phase property. Prove this.

2.13. This pertains to stability.
a) Consider a causal IIR filter with transfer function H(z) = 1∕D(z) where

with dn real for all n. Show that this is BIBO stable only if D(1) > 0 and 
D(-1) > 0.

b) As a special case, consider a second order causal IIR filter with transfer 
function H(z) = 1∕(1 + az-1 + bz-2), with a,b real. Show that this is 
BIBO stable only if the values of a and b are restricted to be strictly inside 
the triangular area in Fig. P2-13 (called the stability triangle).



Figure P2-13

c) Finally, show that, in the above second-order case, the converse is also 
true, that is, if a,b are stritctly inside the triangular region then H(z) is 
BIBO stable.

2.14 The deterministic cross correlation between two sequences x(n) and y(n) is 
defined as
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(P2.14)

The integer k is called the lag variable. Let Sxy(z) denote the z-transform 
of Rxy(k). Show that Sxy(z) = X(z)Y(z). [Note: A special case of this re­
sult arises when y(n) = x(n). The quantity Rxx(k) is called the determin­
istic autocorrelation of x(n). Its z-transform is Sxx(z) = X(z)X(z), so that 
Sxx(ejω) = ∣X(ejω)∣2.]

2.15. Give example of a function xa(t) such that (a) it is not σ-BL, and (b) if it is 
sampled at the rate 2π∕T = 2σ, no two terms in (2.1.22) overlap.



3

Review of Digital Filters

3.0 INTRODUCTION

This chapter includes a brief review of digital filter design techniques. Many 
of these topics are treated in Oppenheim and Schafer [1989]. Other related 
texts are [Rabiner and Gold, 1975], [Antoniou, 1979], and [Jackson, 1989]. 
Because of the availability of these references, our review is brief and limited 
to those techniques that are directly relevant to multirate systems. Dis­
cussions on relatively recent developments, for example eigenfilters (Section 
3.2.3), and allpass decomposition of IIR filters (Section 3.6), are not available 
in the above references.

Some design techniques and structures will be treated in greater detail 
here. These include (a) the Window design (FIR), (b) eigenfilters approach 
(FIR), (c) elliptic filters (IIR), (d) properties of allpass functions, and (e) 
allpass lattice structures. This elaboration is motivated by the applications 
in multirate filter bank design, as we indicate at the appropriate places.

Section 3.1 describes the common filter design specifications. In Sec. 3.2 
and 3.3 we consider the design of finite impulse response (FIR) and infinite 
impules response (IIR) filters. Section 3.4 discusses allpass filters, which 
play a key role in the design of filter banks. Section 3.5 summarizes several 
special filters. In Sec. 3.6 we will shoW that many IIR filters (e.g., elliptic) 
can be expressed as a sum of two allpass filters. A special case of this (called 
IIR power symmetric filters) will find application in two-channel QMF bank 
design (Chap. 5).

3.1 FILTER DESIGN SPECIFICATIONS

The specifications on the magnitude response of a digital filter are usually 
given in terms of certain tolerances as demonstrated in Fig. 3.1-1(a) for 
the lowpass case. We assume the coefficients to be real, so only the region 
0 ≤ ω ≤ π has to be specified. Between the passband and stopband, we 
have to specify a transition band region since the response cannot change

42



abruptly from unity to zero. The region 0 ≤ ω ≤ ωp is the passband and 
ωs ≤ ω ≤ π the stopband. The responses in the passband and stopband are 
required to lie Within the tolerance regions.

Figure 3.1-1 Magnitude response specifications for real-coefficient lowpass fil­
ters. (a) unnormalized magnitude, and (b) normalized magnitude.

(Note that BW is an abbreviation for bandwidth.) The variable f=ω∕2π is 
said to be the normalized frequency. Frequency response plots in the range
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The following terminology is standard.

(3.1.1)



0 ≤ ω ≤ π correspond to the range 0 ≤ f ≤ 0.5 in terms of f. Figure 
3.1-l(a) also shows example of a response conforming to these specifications.

Normalized specifications. It is sometimes convenient to normalize 
the peak passband magnitude to unity. This can be done by dividing the 
response by (1 + δ1). If δ1 << 1, this does not significantly affect the ripple 
sizes. Figure 3.1-1(b) shows this normalized set of specifications. One can 
verify that

Figure 3.1-2 Specifications in terms of attenuation function, normalized to 0 
dB. The attenuation goes to infinity at the transmission zeros.

Criteria for Optimality
We often talk about optimal filters, that is, filters that are “best” in 

some sense. The criterion of optimality has to be mentioned in order to 
make the meaning complete, as elaborated next.

Equiripple filters. For an equiripple filter, the extremal values of the 
error are the same throughout a given band. The examples in Fig. 3.1-1 are 
equiripple. To describe the optimality of such filters, let N denote the filter 
order, and let δ1, δ2 and ∆f be defined as above. If any three of these four 
quantities are fixed, then the fourth parameter is minimum for an equiripple 
filter. Such a filter is said to be optimal in the minimax sense because, the 
maximum ripple sizes have been minimized for fixed N and ∆f.
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(3.1.2)

The quantity A(ejω) = -20 log10 ∣H(ejω)∣ is said to be the attenuation 
characteristics for the filter. -A(ejω) is the magnitude response in dB. 
Fig. 3.1-2 shows how to specify the tolerances in terms of this quantity, for 
the case of normalized response. Note that the normalization of ∣H(ejω)∣ 
corresponds to setting the minimum value of A(ejω) to 0 dB. The quantity 
Amax shown in this figure is called the maximum passband attenuation. With 
δ1 << 1, one can verify that

(3.1.3)



Least-squares filters. In the design of these filters, the square of 
the difference between the ideal and actual responses is integrated over the 
appropriate frequency bands and minimized. The simplest examples are 
FIR filters based on rectangular windows (Sec. 3.2). In Sec. 3.2.3 we will 
describe more useful variations, called eigenfilters.

Flatness constraints. In some applications it is desirable to have a 
high degree of flatness around zero frequency in the passband. Such flat­
ness is usually specified in terms of the number of zeros of the derivative of 
∣H(ejω)∣2 at ω = 0. These specifications are called flatness constraints. In the 
IIR case, Butterworth filters (Sec. 3.3) serve this purpose. In the FIR case 
also it is possible to design filters With flatness constraints [Herrmann, 1971], 
and [Kaiser, 1979]. We Will study this while discussing wavelet transforms 
in Chap. 11, where the flatness constraint is used to generate orthonormal 
basis functions With “regularity” properties.

3.2 FIR FILTER DESIGN
Consider Fig. 3.2-1(a) which shows an ideal lowpass response Hi(ejω) With 
cutoff frequency ωc, that is,

(3.2.1)

Figure 3.2-1 (a) The ideal lowpass response, and (b) truncated filter response.

So, this is a zero-phase filter With magnitude equal to unity in the passband 
and zero in the stopband (and no transition band whatsoever). Its impulse
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response [inverse transform of Hi(ejω)] is given by

(3.2.2)

It can be shown that this impulse response does not satisfy the BIBO stabil­
ity requirement (Sec. 2.1.2). So, the ideal filter is not stable. In addition it 
is noncausal and IIR. No amount of delay Would make the impulse response 
causal.

The simplest Way to obtain an FIR lowpass filter from this would be to 
truncate the impulse response

(3.2.3)

It can be shown (Problem 3.5) that the resulting response H(ejω) approxi­
mates Hi(ejω) in the least squares sense, that is, for a given N, ∫02π[Hi(ejω)- 
H(ejω)]2 dω is minimized. (Note that both H(ejω) and Hi(ejω) are real.) 
However, the above truncation causes ripples in the passband and stopband 
[Fig. 3.2-1(b)], and the ripple size grows as we get closer to ωc from either 
side. As N increases, the ripples get crowded closer to the cutoff frequency 
ωc, but the size of the peak ripple does not decrease. This is called the Gibbs 
phenomenon. This is demonstrated in Fig. 3.2-2 where we shoW dB plots 
of the truncated response for N = 20 and N = 50. The minimum stopband 
attenuation As in both cases is only about 21 dB.

3.2.1 Window Design
An improvement over the truncation technique is offered by the use of win­
dows. Here the impulse response is obtained as
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(3.2.4)

where v(n) is a windoW function, which is zero for ∣n∣ > N∕2. As long as v(n) 
is symmetric, we obtain a zero-phase filter h(n) [since hi(n) is already sym­
metric]. If we set v(n) = 1 for ∣n∣ ≤ N/2 (rectangular Window), windowing 
is equivalent to simple truncation.

In the frequency domain, the response H(ejω) is a convolution of the 
ideal response Hi(ejω) with V(ejω). Two parameters of the windoW which 
control the quality of the filter response are: (a) the main lobe width ΔB 
of V(ejω) which controls the filter transition bandwidth ∆ω, and (b) the 
peak sidelobe level of V(ejω) which controls the peak passband and stop- 
band ripples of ∣H(ejω)∣. If the main lobe width of V(ejω) is made smaller, 
the transition bandwidth of H(ejω) is reduced. On the other hand, if the 
window has smaller side lobe ripples, the stopband attenuation provided by 
H(ejω) is correspondingly improved. By appropriate choice of the window,



it is, therefore, possible to control both the attenuation and the transition 
bandwidth of the response H(ejω).

Figure 3.2-2 Magnitude responses obtained by truncation of the ideal impulse 
response.

Several windows have been invented (e.g., the Hamming window, Black- 
mann window, etc.), which offer various degrees of tradeoff between Δf and 
As [Oppenheim and Schafer, 1975]. A systematic way to obtain such a 
tradeoff is offered by the Kaiser window [Kaiser, 1974], which is actually a 
family of windows spanned by a parameter β. By adjusting β, one obtains

Sec. 3.2 FIR filter design 47



any desired stopband attenuation for |H(ejω)|; the order N is adjusted to 
satisfy the requirement on ∆f. In all window-based methods, the resulting 
filter has δ1 ≈ δ2.

The Kaiser window is given by

where I0(x) is the modified zeroth-order Bessel function, which can be com­
puted from the power series

(3.2.6)

Note that I0(x) is positive for all (real) x. In most practical designs, only 
about tWenty terms in the above summation need to be retained. Once v(n) 
is computed in this manner, the coefficients of the filter can be found from 
(3.2.4) where hi(n) is as in (3.2.2) (with ωc = 0.5(ωp + ωs)). The filter order 
is evidently equal to N. Since v(n) and hi(n) are even functions of n, the 
resulting FIR filter h(n) has zero phase.

The parameter β depends on the attenuation requirements of the low­
pass filter. Kaiser has developed simple formulas for estimating the param­
eters β and N, for given AS and ∆f. The quantity β is found from

(3.2.8)

Notice that once β and N are determined, we do not have independent 
control over δ1. In most designs, the resulting δ1 comes out to be very close 
to δ2 (which in turn is determined by AS).

It has been demonstrated [Saramaki, 1989] that the Kaiser window can 
also be obtained from a rectangular window by means of a change of vari- 
ables.
Design Example 3.2.1: FIR Lowpass Filter Using Kaiser Window

Suppose the design specifications are ωp = 0.2π, ωs = 0.3π, As = 40 dB, 
and δ1 = δ2. (The value of As implies δ2 = 0.01.) The estimated values of 
β and N are β = 3.395, N = 44.6. The order can be rounded off to the next
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(3.2.5)
otherwise,

(3.2.7)

Given the quantities As and ∆f, the filter order N is estimated from



even integer, that is, N = 46. (This makes N/2 even in (3.2.5).) The cutoff 
frequency ωc = 0.5(ωp + ωs) = 0.25π.

Figure 3.2-3 Design example 3.2.1. Lowpass filter based on Kaiser window. (a) 
Magnitude response, and (b) impulse response.

We can now compute the coefficients of v(n) and hi(n) as above, and 
obtain h(n) from (3.2.4). Fig. 3.2-3(a) shows the magnitude response plot 
(with N = 46) which meets the required specifications. For clarity, the 
passband details are shown separately in magnified form. One can verify
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that the peak ripple δ1 is very close to δ2, that is, δ1 ≈ 0.01. Part (b) of the 
figure shows the impulse response coefficients.

Summary. The Kaiser window technique offers a very simple means 
of designing linear phase FIR filters. No elaborate optimization steps are 
involved. The quantities ωp, ωs, and δ2 can be specified independently, but 
not δ1 (which turns out to be close to δ2). The Windowing technique is not 
suitable for design of filters with more sophisticated specifications (such as 
unequal ripple sizes, nonconstant passband responses, and so on).
The Dolph-Chebyshev Function: An Optimal Window

The Dolph-Chebyshev (DC) window v(n) has the property that the 
maximum side lobe level of ∣V(ejω)∣ is minimized in the region σ ≤ ω ≤ 
π. Consequently, this is called a minimax window. The plot of ∣V(ejω)∣ 
is equiripple in the region σ ≤ ω ≤ π. For this windoW a closed form 
expression in the frequency domain, based on Chebyshev polynomials, is 
available. This can be found in Helms [1971]. The window coefficients in 
the time domain can be found by performing an inverse Fourier transform. 
Details are omitted.

3.2.2 The Prolate Sequence: Another Optimal Window
The Kaiser window is a good approximation to a class of optimal windows 
called prolate spheroidal (or just prolate) Wave sequences v(n) [Slepian, 1978]. 
A prolate sequence is a real sequence of finite length N + 1 and unit energy, 
with the energy in the frequency region σ ≤ ω ≤ π minimized. The quanti­
ties N and σ can be regarded as parameters of the prolate sequence family. 
In all our discussions we assume 0 < σ < π.

We now shoW how the optimal window coefficients can be computed. 
This makes use of some results from matrix theory (especially Rayleigh’s 
principle), reviewed in Appendix A. The derivation will show how we can 
pass from optimal windows to optimal (least squares) filters (Sec. 3.2.3).
Matrix-vector formulation of the Optimization Problem

Assume v(n) is causal with length N + 1 so that V(z) = ΣNn=0 v(n)z-n. 
Define

(3.2.10)

[Remember v(n) is real.] Fig. 3.2-4 demonstrates the idea: we minimize the 
area of the shaded region, for a fixed total area under the curve. Minimizing
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(3.2.9)

This is the quantity to be minimized under the unit-energy constraint. Be­
cause of Parseval's theorem we can Write the constraint either in the time 
domain or in the frequency domain:



φs under the constraint (3.2.10) is equivalent to maximizing

(3.2.11)

Figure 3.2-4 Design 
of the optimal window.
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Defining the vectors

(3.2.12)

we have V(ejω) = v†(n)e(ejω) so that

(3.2.13)

(We could have used vT instead of v† since v is real; we will use v† for 
notational uniformity). We can rewrite the objective function φ as

(3.2.14)

where
(3.2.15)

The (N + 1) × (N + 1) matrix R(ω) has (m, n) element

(3.2.16)

so that R(ω) is Hermitian. Its imaginary part Q(ω) is therefore antisym­
metric. So, v† Q(ω)v = 0 (since v is real). Thus, φ can be simplified to

(3.2.17)

where P has (m, n)th entry

(3.2.18)



The unit-energy constraint (3.2.10) can also be rewritten in terms of v as 

that is, v has unit norm. Summarizing, the problem of finding the unit- 
energy window function v(n) with smallest energy in σ ≤ ω ≤ π has been 
converted to the problem of finding a unit-norm vector v which maximizes 
(3.2.17).
Solution to the Optimization Problem

Now the matrix P is evidently real and symmetric (so it is Hermitian). 
From Rayleigh’s principle (Appendix A) we know that all the eigenvalues 
of P are real, and that φ is maximized under the constraint (3.2.19) if, and 
only if, v is an eigenvector corresponding to the largest eigenvalue λΝ. We 
can therefore compute the coefficients of the optimal window v(n) simply 
by computing this eigenvector. There exist standard techniques such as the 
power-method (Appendix A) for this computation. The eigenvalue λΝ is 
the quantity (3.2.11) after maximization, and satisfies λΝ < 1 [in view of 
(3.2.10)].
Design Example 3.2.2: Optimal Window

As an example, let σ = 0.1π and N = 32. The optimum window com­
puted in the above manner has response shown in Fig. 3.2-5 which also 
shows the Kaiser window response with same N, and β = 4.55. The agree- 
ment between the plots demonstrates that the Kaiser window is an excellent 
approximation to the optimal window. The parameter σ of the optimal win- 
dow has the same role as the tradeoff parameter β of the Kaiser window. 
It is intuitively clear that if we increase σ, then the optimum window has 
smaller peak side lobe level. This is indeed the case as one can verify by 
plotting ∣V(ejω)∣ for different values of σ.

Notice that there are precisely 16 transmission zeros of V(ejω) in the 
range σ ≤ ω < π, that is, a total of 32 on the unit circle. More generally, the 
optimal window always has all zeros on the unit circle. This is a consequence 
of the properties of P, as will be elaborated.

Properties of P
The quantity φ is the energy of the window in the region 0 ≤ ∣ω∣ ≤ σ 

and cannot be zero for σ > 0. This statement is true for any nonzero v(n), 
hence any nonzero v. In other words, P is positive definite for any σ > 0. 
It is also clear from (3.2.18) that P is Toeplitz (Appendix A). So, P is real, 
symmetric, positive definite and Toeplitz.

Denote the eigenvalues of P by λi, 0 ≤ i ≤ N. We have λi > 0 due to 
positive definiteness. Combining with λΝ < 1, we get
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Less obvious is the fact [Slepian, 1978] that the above inequalities are strict, 
that is, λi < λi+1. This means that the eigenvectors are unique (up to scale) 
so that, in particular, the optimal window v is unique.

Zeros of the window. Based on this uniqueness, one can show (Prob­
lem 3.6) that all the zeros of the optimal window V(z) lie on the unit 
circle. This implies, in turn, that v(n) is a symmetric sequence, that is, 
v(n) = v(N — n). [It cannot be antisymmetric, as it would mean V(ej0) = 0.] 
Redefining v(n) to be v(n + M), where M = N∕2, we obtain the zero-phase 
optimal window which can now be used in (3.2.4) to design h(n). The filter 
is guaranteed to have linear phase because of the symmetry of v(n).

Figure 3.2-5 Design example 3.2.2. Responses of the optimal window and the 
Kaiser window.
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3.2.3 Optimal Lowpass Eigenfilters
As discussed in Sec. 3.1, there are several classes of optimal filters, accord- 
ing to the choice of the performance measure (or objective function) to be 
minimized. In general, FIR filters based on the window approach do not 
yield filters which are optimal in any sense, even if the window is optimal in 
some sense.

An exception is the rectangular window which yields a filter H(ejω) 
which is optimal in the least squares sense, that is, the integral

is minimized, where is the ideal response (3.2.1) (see Problem 3.5).
These filters, however, suffer from Gibbs phenomenon as seen earlier. Fur-



thermore, the above integral includes the transition band error, which should 
actually be excluded.

In this section, we introduce lowpass eigenfilters [Vaidyanathan and 
Nguyen, 1987a]. These are optimal in the least squares sense but the objec- 
tive function itself is defined differently, by formulating it as a sum of the 
passband and stopband errors. The error of approximation in the transition 
band is not included. Such an objective function is obtained by adding a 
second term to (3.2.9), which was used to design an optimal window. The 
second term represents a 'squared measure' of the deviation from the ideal 
passband response. The formulation is such that we can obtain the optimal 
filter coefficients from an eigenvector of an appropriate matrix.

The eigenfilter approach is different from other types of least squares 
approaches for FIR design, which are obtainable by matrix inversion, for 
example, the one described in Roberts and Mullis [1987, Sec. 7.2].

Why eigenfilters? One of the advantages of eigenfilters over other 
FIR filters (such as equiripple filters) is that, they can be designed to incor- 
porate a wide variety of time domain constraints such as the step response 
constraint, Nyquist constraint and so on, in addition to the usual frequency 
domain requirements. The filter coefficients are obtained simply by com­
puting an eigenvector of a positive definite matrix, which is derived from 
the time and frequency domain specifications. Eigenfilters can be used for 
optimal design of the so-called Nyquist filters, which are ideally suited for 
interpolation filtering (Chap. 4). Nyquist filters also find use in filter bank 
design.

To introduce the basic idea of eigenfilters, consider Type 1 linear phase 
filters (Table 2.4.1). These have the form H(z) = ΣNn=0 h(n)z-n, where h(n) 
is real and satisfies h(n) = h(N — n). Moreover N is even. The amplitude 
response is
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(3.2.21)

where M = N/2 and

(3.2.22)
The aim is to find the coefficients b such that an appropriate objective 
function is minimized. The objective function should reflect the stopband 
energy (energy in ωs ≤ ω ≤ π) as well as the passband accuracy. We will 
formulate the minimization problem in such a way that the optimal b can 
be computed as an eigenvector of an appropriate positive definite matrix.

Since H(ejω) = e-jωM HR(ω) we have
(3.2.23)

So the stopband energy is

(3.2.24)



where

(3.2.25)

which can be evaluated in terms of ωs, m, and n. The passband error can 
be included in the objective function as follows. The amplitude response at 
zero frequency is given by HR(0) = bT1, where 1 is the vector of all 1's. By 
taking this as a reference, the passband deviation at any frequency can be
written as

(3.2.26)

so that the quantity
(3.2.27)

is a measure of mean square passband error, where

(3.2.28)

Now define the objective function

(3.2.29)

where 0 < α < 1. Here α is a tradeoff parameter between passband and 
stopband performances. We then have

(3.2.30)

It is easily verified that R is a real, symmetric and positive definite matrix 
(Problem 3.8). The unit-norm vector b which mimimizes φ is the eigenvector 
corresponding to the minimum eigenvalue λ0 of R, and can be calculated 
using the 'power method' described in Sec. A.8, Appendix A.
Design Example 3.2.3. Linear Phase Eigenfilters.

Consider an example with bandedges ωp = 0.3π, ωS = 0.5π, and order 
N = 30. Fig. 3.2-6 shows the magnitude responses of the eigenfilters designed 
as above, for two values of α. The passband details are also shown separately. 
It is clear that as α is increased the peak stopband ripple is reduced at the 
expense of peak passband ripple.
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The (m, n) element of P is

where
(3.2.31)



Even though the role of the tradeoff parameter α is very dear, there is 
no known analytical relation between α and the relative peak ripple sizes δ1 
and δ2.

Figure 3.2-6 Design example 3.2.3. Magnitude response plots for linear phase 
eigenfilters.

Extensions of the eigenfilter approach. The approach is readily 
extended to the case of other types of filters such as highpass and bandpass 
filters, differentiators, and Hilbert transformers [Pei and Shyu, 1989]. It is 
also possible to extend the method to include certain flatness constraints in 
the passband. Finally, extensions to the case of two dimensional filters have 
also been made. These extensions permit faster design of two dimensional 
FIR filters than most other methods. See Nashashibi and Charalambous 
[1988], and Pei and Shyu [1990].

3.2.4 Equiripple FIR Filters
The filters which result from the Kaiser window approach, and the eigenfilter 
approach are such that the ripple size grows as we move closer to the band 
edge. Because of this, the filter performace exceeds (i.e., is better than the 
specifications) for most frequencies except around ωp and ωs. So, the filter 
has actually been overdesinged in this sense. If this can be avoided, it is 
possible to reduce N while meeting the same set of specifications. The way 
to achieve this is to distribute the approximation error uniformly in the 
passband (and also in the stopband). This leads to the idea of equiripple 
FIR filters (Fig. 3.2-7). Here all the local extrema of the approximation 
error in the passband are equal. The same is true in the stopband.

For a given set of specifications ωp, ωs, δ1, and δ2 it turns out that an 
equiripple filter has the smallest possible order N. A more precise state­
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ment of optimality is given by the so-called 'alternation theorem' [Rabiner 
and Gold, 1975]. Based on this theorem, the problem of designing equiripple 
linear phase filters has been solved, by using a technique called the Remez 
exchange algorithm. The resulting algorithm [Parks and McClellan, 1972], 
often referred to as the McClellan-Parks algorithm, permits unequal ripple 
sizes in each of the frequency bands (unlike the window techniques). We skip 
details here. Suffice it to say that the method is very systematic, and per- 
mits one to design a large family of linear phase FIR filters (all four Types in 
Table 2.4.1.) including differentiators and Hilbert transformers. Special re- 
quirements such as time domain constraints and flatness constraints cannot, 
however, be incorporated in a straightforward manner.

Estimating the filter order. Several formulas have been proposed 
for estimating the order of a linear phase equiripple lowpass filter with spec­
ifications ωp, ωs, δ1, δ2. The most well known of these are:

where ∆f = (ωs-ωp)∕2π. Notice the simplicity of these formulas. They also 
clearly reveal the nature of dependency of N on the ripple sizes and ∆f. A 
more accurate (but not as simple) formula has been reported by Herrmann, 
and can be found in Rabiner, et al. [1975].

3.2.5 Spectral Factorization
In some filter design problems, one finds it necessary to compute a spectral 
factor (defined below) of a transfer function. An example is in the design of 
FIR QMF banks (Chap. 5). We now describe the basic idea.

Let H(z) = ΣMn=-M h(n)z-n be a zero-phase FIR transfer function so 
that H(ejω) is real. If in addition H(ejω) ≥ 0 for all ω, we can factorize it 
as H(ejω) = ∣H0(ejω)∣2. That is, we can write
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(3.2.32)
(Kaiser’s formula)

(Bellanger’s formula),

Figure 3.2-7 An 
equiripple amplitude 
response.

(3.2.33)



where H0(z) is causal FIR with order M, that is, H0(z) = ΣΜn=0 h0(n)z-n. 
The filter H0(z) is said to be a spectral factor of H(z). [The notation H0(z) 
is described in Sec. 2.3.]

To see how H0(z) can be identified, recall that the zero-phase property 
of H(z) implies that, if zk is a zero then so is 1/z*k. The property H(ejω) ≥ 0, 
on the other hand, implies that if zk is on the unit circle, then it is a zero of 
even multiplicity (e.g., a double zero). Fig. 3.2-8 shows a typical set of zeros 
of the function H(z). Once these zeros are known, we can obtain H0(z) by 
assigning to it the zero located at either zk or 1∕z*k, for each k. The figure 
demonstrates this. If zk is assigned to H0(z), then 1/z*k is assigned to H0(z). 
We can write H0(z) as

Figure 3.2-8 Obtaining a spectral factor of a transfer function H(z).

Nonuniqueness. The spectral factor H0(z) is in general not unique 
because we can replace a particular factor (1 — z-1zk) in H0(z) with (1 — 
z-1∕z*k) (and readjust c) so that (3.2.33) continues to hold. In other words, if 
we replace a zero zk of H0(z) with 1∕z*k, the result continues to be a spectral 
factor after scaling. If H(z) happens to have all zeros on the unit circle, 
then the spectral factor is unique (up to a scale factor of unit-magnitude). 
If we choose all zeros such that they satisfy ∣zk∣ ≤ 1 (or ∣zk∣ ≥ 1) then 
we have a minimum (or maximum) phase spectral factor. Such a spectral 
factor is unique (up to a scale factor of unit magnitude). If H(z) is free 
from unit-circle zeros, then these become strictly minimum (or maximum)
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(3.2.34)

so that

(3.2.35)

Equation (3.2.33) can now be satisfied for appropriate constant c.



phase factors. Finally, note that if the zero-phase function H(ejω) is an even 
function of ω, then h(n) is real. In this case we can find H0(z) with real 
coefficients; in particular we can find minimum or maximum phase spectral 
factors with real coefficients.

The most obvious technique to compute a spectral factor is to find the 
2M zeros of H(z) and pick an appropriate subset of M zeros to define H0(z). 
There exist more efficient procedures, which do not compute the zeros of 
H(z) [Mian and Nainer, 1982], and [Friedlander, 1983]. One such procedure 
is described in Appendix D.
Application in Nonlinear Phase FIR Design

In some applications linearity of phase is not particularly important, 
even though FIR filters are still preferred for other reasons. This situation 
arises, for example, in one dimensional QMF banks and will be discussed 
in Chap. 5. In general, by relaxing the linear phase property, it is possible 
to reduce the filter order required for a given set of magnitude response 
specifications. We now describe a technique [Herrmann and Schüssler, 1970], 
for designing nonlinear phase FIR filters.

Let G(z) = ΣMn=-M g(n)z-n be a zero phase FIR filter designed using 
any one of the techniques described above. Let δ2 denote the peak stopband 
ripple. Now consider the filter

(3.2.36)

The impulse response of H(z) is given by

(3.2.37)

The frequency response of H(z) is

(3.2.38)

Since G(z) has zero phase, G(ejω) is real, so that H(ejω) is obtained just by 
lifting the response G(ejω) by δ2. This is demonstrated in Fig. 3.2-9 for the 
equiripple case. It is clear that H(ejω) ≥ 0 for all ω, so that we can find a 
spectral factor H0(z) of H(z) (as demonstrated in Fig. 3.2-8). In particular 
if G(z) has real coefficients, then so does H0(z). The spectral factor H0(z) 
in general does not have linear phase. As explained above it is possible to 
find a minimum or maximum phase (or even a mixed phase) spectral factor.

Suppose we wish to design a minimum phase equiripple FIR filter H0(z) 
with bandedges ωp, ωs, and peak ripples ε1, and ε2. We then design a zero 
phase filter G(z) with same bandedges ωp and ωs but with ripples as follows:

(3.2.39) 
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We can now obtain H(z) = G(z) + δ2 and compute the minimum-phase 
spectral factor H0(z).

Notice that the stopband attenuation of G(z) is more than twice that 
of H0(z). For example suppose H0(z) requires a stopband attenuation of 
60 dB. Then H(z) has stopband attenuation 120 dB and G(z) has 126 dB. 
Spectral factorization of systems with such large attenuation is typically 
subject to considerable numerical error, particularly if the procedure involves 
the computation of zeros of H(z).

Figure 3.2-9 Lifting the amplitude response of a zero-phase filter G(z) to obtain 
H(z) with nonnegative amplitude response.

3.3 IIR FILTER DESIGN
The most striking advantage of FIR filters is that they can be designed to 
have exact linear phase. In situations where linearity of phase is not impor- 
tant, it is sometimes preferable to use IIR filters because an IIR filter usually 
requires a much lower order for the same set of magnitude response speci­
fications. (See Design Example 3.3.2 later). This implies fewer multipliers 
and adders.

For various reasons, a comparison of IIR and FIR filters is more involved 
that the above remark appears to imply. First, there exist techniques (which 
are perhaps less readily available), for the design of nonlinear phase FIR 
filters. For a given magnitude response specification, such FIR filters are less 
expensive than the linear phase versions. Second, there are some commercial 
signal processing chips, specifically tailored for the implementation of FIR 
filters. In these chips, the implementation of IIR filters is not necessarily 
more efficient. Finally, there exist multistage design techniques for the design 
of narrowband FIR filters (Sec. 4.4) which are sometimes more efficient 
than IIR filters. It is, therefore, difficult to provide a comparison that is 
fair under all contexts. In this text, we will merely compare the number 
of multiplications and additons. It should be cautioned that in many cases 
these do not provide a good measure of complexity.
Working PrincipIe of IIR Filters

An IIR filter has transfer function of the form H(z) — P(z)∕D(z), where 
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P(z) and D(z) are polynomials in z-1. The zeros of P(z) are typically located 
on the unit circle, and therefore, have the form ejωk. They can be seen in 
the magnitude response plots, since H(ejωk) = 0. These zeros are there to 
provide stopband attenuation. Figure 3.3-1(a) shows a typical plot of the 
numerator ∣P(ejω)∣ with several zeros on the unit circle.

Figure 3.3-1 (a) The roles played by the numerator P(z) and denominator
D(z), (b) typical behavior of 1∕∣D(ejω)∣ with a single pole, and (c) clustering of 
poles around the bandedge.

The plot of ∣P(ejω)∣ has the appearance of a lowpass filter, but the 
passband response is very poor (i.e., not close to unity). The denominator 
D(z) compensates for this. Figure 3.3T(a) also indicates a typical response 
of 1∕∣D(ejω)∣, which grows as ω increases in the passband. Thus the mag­
nitude 1∕∣D(ejω)∣ is large near the band edge. The product of the two solid 
curves tends to approximate unity (the broken curve) in the passband.

Figure 3.3-1(b) demonstrates the behavior of 1∕∣D(ejω)∣ for the case 
where D(z) = 1 - Rejθz-1. Here R and θ are the radius and angle of the 
pole of 1∕D(z). We see that the plot has a peak near the pole angle θ. This 
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peak gets steeper as the pole moves closer to the unit circle (i.e., as R → 1). 
Since 1∕∣D(ejω)∣ is required to have large values near the passband edge, the 
zeros of D(z) (i.e., poles of the filter) are typically crowded near the band 
edge [Fig. 3.3-1(c)].

Effect of narrow transition-bands. If the transition bandwidth ∆f 
is small, then the quantity ∣P(ejωp)∣ gets smaller, so that 1∕∣D(ejωp)∣ has 
to be 'large' in order for the product to be close to unity. For this reason, 
the zeros of D(z) are placed closer to the unit circle for 'sharp cutoff' filters. 
Summarizing, the poles are typically crowded near the band edge, and for 
sharp cutoff filters they are also close to the unit circle.

3.3.1 The Bilinear Transformation
The most common technique to design an IIR filter is to first design an 
analog filter Ha(s) and convert it into a digital filter using a transformation. 
Suppose we are given an analog filter with rational transfer function Ha(s), 
having magnitude response ∣Ha(jΩ)∣ as shown in Fig. 3.3-2. This is lowpass 
with band edges Ωp and Ωs, peak passband ripple δ1 and peak stopband 
ripple δ2. (The frequency ∞ is shown at a finite point just for convenience.) 
Suppose we take the transfer function and replace the Laplace transform 
variable s as follows:

(bilinear transformation). (3.3.1)

The result is a rational function H(z) in the variable z-1. With s = jΩ and 
z = ejω, we have from (3.3.1)

(3.3.2)
which shows that the mapping transforms Ω = 0 into ω = 0, and Ω = ∞ into 
ω = π (Fig. 3.3-3). The above mapping is called the bilinear transform and 
is the most popular technique to convert analog filters into digital. It can 
be shown that the transformed version H(z) is stable if and only if Ha(s) is 
stable.

Figure 3.3-2 A typical magnitude response of an analog lowpass filter.
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The digital filter response ∣H(ejω)∣ corresponding to the analog response 
of Fig. 3.3-2 has the appearance shown earlier in Fig. 3.1-1(b). The band- 
edges ωp and ωs are determined by (3.3.2) as 

Figure 3.3-3 The frequency mapping property of bilinear transformation.

3.3.2 Analog Filters
The magnitude response for most of the standard analog filters takes the 
form

(3.3.3)

The sizes of the ripples δ1 and δ2 are unchanged.
If we are given the digital filter specifications ωp, ωs, δ1, and δ2, a design 

procedure based on bilinear transformation would run as follows: (a) find 
Ωp = tan(ωp∕2) and Ωs = tan(ωs∕2), (b) design the analog filter which 
meets the specifications Ωp, Ωs, δ1, and δ2, and (c) transform Ha(s) into 
H(z) using bilinear transformation. It remains only to provide details for 
the second step, that is, the design of classical analog filters.

(3.3.4)

where F(Ω) is a real-valued rational function of Ω. Clearly ∣Ha(jΩ)∣ < 1. 
The extreme values of the response are

(3.3.5)

Butterworth (or Maximally Flat) Filters
The simplest and most illuminating example is the Butterworth filter 

for which F(Ω) = (Ω∕Ωc)N. So, the frequency response has the form

(3.3.6)

This is monotone lowpass, and varies from unity (at Ω = 0) to zero (at 
Ω = ∞). See Fig. 3.3-4. The quantity N is the order of Ha(s). Here is a 
summary of the main features:
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1. We have ∣Ha(jΩc)∣2 = 1/2 which corresponds to an attenuation of 3 dB. 
So Ωc is called the three dB point. This is not necessarily the passband 
or stopband edge.

2. For Ω >> Ωc we have

Figure 3.3-4 The magni- 
tude response characteristics 
of a Butterworth filter.

Expression for the digital transfer function. Since the response 
is zero only at Ω = ±∞, the transfer function Ha(s) has the form
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(3.3.7)

This shows that as Ω is increased by one decade (i.e., by a factor of ten) 
the attenuation increases by 20N dB. This is called the 20N dB/decade 
property (equivalent to 6.02N dB/octave).

3. The first 2N — 1 derivatives of ∣Ha(jΩ)∣2 are equal to zero at Ω = 0 (see 
Problem 3.11). This is the maximum possible number of derivatives 
that can be zero, since Ha(jΩ) has order N. So, the Butterworth filter 
is said to be maximally flat at Ω = 0.

(3.3.8)

where
(3.3.9)

(assuming Ha(0) = 1.) In other words, Ha(s) is an all-pole filter. After 
bilinear transformation, the digital Butterworth filter therefore has the form

(3.3.10)

All zeros are now at z = —1, that is, at ω = π which corresponds to Ω = 
∞. Note that H(z) can be implemented with 2N adders and only N + 1 
multipliers (rather than 2N + 1) because of the special form of the numerator.

Location of poles. The N zeros of Da(s) [poles of the Butterworth 
filter Ha(s)] lie on a circle in the s plane, with center at the origin and radius 
Ωc. The pole angles are given by

(3.3.11)



Given Ωc and N, one can compute the pole locations as above, and hence 
the coefficients of Da(s). The pole locations are demonstrated in Fig. 3.3-5 
for N = 3. The pole angles are ±2π∕3 and π so that, with Ωc = 1, we have

(3.3.12)

Figure 3.3-5 Pole loca­
tions of a third order Butter­
worth filter.

(3.3.13)

Figure 3.3-6 Specifications in dB for the Butterworth example.
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So, the third order Butterworth lowpass filter with Ωc = 1 is given by 
Ha(s) = 1∕(s3 + 2s2 + 2s + 1).

Note that the transfer function is determined completely by the two 
parameters N and Ωc. We have only two degrees of freedom available. In 
the above example, we see that Da(s) is a symmetric polynomial; this is true 
for any N as long as Ωc = 1.

From the above demonstration, and more generally from (3.3.11) one 
can see that the poles are in the open left half plane (i.e, Re[s] < 0) so that 
the filter Ha(s) is always stable.
Design Example 3.3.1: Butterworth FiIters

Suppose we wish to design a Butterworth filter with Ωp = 2π × (10kHz), 
Ωs = 2π × (20kHz), As = 60 dB and Amax = 0.1 dB. This is illustrated in 
Fig. 3.3-6. Since As = —10 log10 ∣Ha(jΩs)∣2 and so on, we obtain



Dividing one equation by the other we eliminate Ωc and obtain N = 
12.677. This is the estimated order which should be rounded to the nearest 
integer, that is, N = 13. Since Ωp, Ωs, As and Amax are known we can solve 
for Ωc from either equation in (3.3.13). Suppose we use the second equation, 
then Ωc = Ωs∕1.701. The resulting filter has the specified As, and the value 
of Amax is slightly better than specified (because N was rounded up).
Equiripple Filters

As in the digital FIR case, an analog filter with equiripple response 
requires smaller order for the same set of ripple sizes and transition band- 
width. A Chebyshev filter, for example, has an equiripple passband. This 
is obtained by choosing F(Ω) = εCN(Ω∕Ωp) in (3.3.4) where CN(x) is the 
so-called Nth order Chebyshev polynomial. The transfer function Ha(s) 
corresponding to this is again all-pole. The filter is optimal in the sense 
that among all all-pole filters of order N, this filter has the smallest Amax 
for fixed Ωp, Ωs, and As. We will not discuss Chebyshev filters (or inverse 
Chebyshev filters) further in this text. (However, Problems 3.13 and 3.14 
cover some details.)
Elliptic filters

An elliptic filter is an improvement over Chebyshev in the sense that 
both the passband and stopband are equiripple, as in Fig. 3.3-2. From 
the figure, we see that there are transmission zeros at finite frequencies, so 
that Ha(s) is not an all-pole filter. The filter is optimal in the sense that 
among all rational transfer functions of a given order, elliptic filters have the 
smallest Amax for fixed Ωp, Ωs, and As.
Design of Elliptic Filters

A simple algorithm for the design of analog elliptic filters is presented 
in pp. 125 to 128 of Antoniou [1979]. The algorithm designs the coefficients 
of Ha(s) with magnitude response specified as in Fig. 3.3-2. It is assumed 
that the bandedges are related as
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(3.3.14)
This is called the frequency normalization condition. Given the quantities 
δ1, δ2 (equivalently Amax, As) and r ≜ Ωp∕Ωs, the algorithm first estimates 
the required order which will meet these specifications. This estimate may 
turn out to be a noninteger. The coefficients of Ha(s) with nearest integer 
N (or next higher integer N, if the user prefers it) are then calculated.

The complete procedure to design a digital elliptic filter is as follows: 
given the specifications ωp, ωs, δ1 and δ2, compute

(3.3.15)
If these bandedges do not satisfy (3.3.14) then define

(3.3.16)



where α = (ΩpΩs)-0.5 > 0. This ensures that the frequency normalization 
Ω'pΩ's = 1 holds. We can now design the analog elliptic filter H'a(s) whose 
specifications are Ω'p, Ω's, Amax and As. If we define Ha(s) = H'(αs), then 
Ha(s) meets the specifications Ωp, Ωs, Amax and As. We finally obtain the 
digital filter as

(3.3.17)

The filter can then be implemented using the direct form or cascade form 
structure (or, better still, using the structure to be derived in Section 3.6, 
which has least complexity).

For odd N the elliptic lowpass digital filter has one real pole, and a zero 
at z = — 1. The remaining poles are complex conjugate pairs and so are the 
zeros. Furthermore all zeros are on the unit circle. Based on these facts we 
can express the transfer function as

(3.3.18)

where ωk are the transmission zeros, φk are the pole angles and Rk the pole 
radii for the complex conjugate pairs. (See Chap. 2, discussions around eqs.
(2.1.18),  and (2.1.19).) The order is N = 2m + ℓ, where ℓ = 0 or 1 depending 
on N.

The numerator of the above H(z) is a symmetric polynomial. The direct 
form as well as cascade form structures can be implemented with a total of 
2N additions and about 1.5N (rather than 2N + 1) multipliers because of 
numerator symmetry.
Design Example 3.3.2: Elliptic Filters

Suppose the digital lowpass filter specifications are ωp = 0.15π, ωs = 
0.20π, δ1 = 0.01 and δ2 = 0.001. (This δ2 implies 60dB attenuation.) By 
using the above procedure in conjunction with the algorithm in Antoniou 
[1979], the order of the elliptic filter is estimated as N = 6.56, which can be 
rounded to the integer seven. The resulting digital filter H(z) has magnitude 
response as shown in Fig. 3.3-7(a), and satisfies the stated specifications. 
The group delay response is shown in Fig. 3.3-7(b). Since this is not con- 
stant, the system has a nonlinear phase response. The group delay shows a 
variation from about 10 samples to 60 samples.

By using (3.2.32) one can verify that a linear phase FIR equiripple filter 
with same specifications requires an order of 101. The 7th order elliptic IIR 
filter can be implemented with only 7 multiplications (as we will see in Sec. 
3.6) whereas the FIR filter requires 51 multipliers!

Comparison with Butterworth filters. Because of the equirip­
ple nature in both passband and stopband, the elliptic filter requires much 
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smaller order that a Butterworth filter meeting same specifications. In the 
above design example, a Butterworth filter would require an order of 28.

Figure 3.3-7 Design example 3.3.2. Responses of the elliptic filter. (a) Magni- 
tude and (b) group delay.

3.3.3 Properties of Digital Elliptic Filters
Elliptic filters are very important in the design of multirate filter banks, as 
we will see in Chap. 5. For this reason we now describe their most impor- 
tant features. Since we will be using digital elliptic filters (i.e., bilinearly 
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transformed analog elliptic filters), our discussions will directly address the 
digital transfer function H(z).

For any real transfer function, we can write ∣H(ejω)∣2 as H(z-1)H(z) 
(with z = ejω). This is notationally more convenient. For an elliptic filter, 
H(z-1)H(z) takes the form

(3.3.19)

where R(z) is a rational function of the form

(3.3.20)

The order of H(z) is given by N = 2m + ℓ, with

If we set z = ejω then R(z)R(z-1) = ∣R(ejω)∣2 ≥ 0 so that

It is easily verified that

(3.3.21)

(3.3.22)

(3.3.23)

This is illustrated in Fig. 3.3-8 for N = 5 and N = 6. There are precisely 
N frequencies (in the region 0 ≤ ω < 2π) where ∣H(ejω)∣ = 1, and N 
frequencies where ∣H(ejω)∣ = 0. For odd N we have ℓ = 1 so that ∣H(ej0)∣ = 
1 and ∣H(ejπ)∣ = 0. For even N this is not true. By inspecting plots of 
the form in Fig. 3.3-8 one can immediately identify the order of the elliptic 
filter.

The frequencies ωk, as we know, are the transmission zeros of H(z). 
The frequencies θk, where ∣H(ejω)∣ = 1 (maximum magnitude) are called 
the reflection zeros.† The values of θk and ωk are such that the response 
∣H(ejω)∣ has equiripple behavior.

The elliptic family. It turns out that for a given ωp, ωs, and N, the 
quantities θk and ωk are fixed. The parameter e in (3.3.19) acts as a tradeoff
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† This name has to do with doubly terminated LC realizations of electrical 
filters; the interested reader can see Chap. 12 in Antoniou [1979].



between δ1 and δ2 (Fig. 3.3-9). By varying e, one spans a complete family 
of elliptic transfer functions. Each e corresponds to a unique elliptic filter in 
the family.

Figure 3.3-8 Typical responses of digital elliptic lowpass filters (a) odd order 
(N = 5), and (b) even order (N = 6).

Uniqueness. Suppose G(z) is an Nth order stable equiripple lowpass 
filter with bandedges ωp, ωs and the same number of ripples as an Nth order
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Figure 3.3-9 Two responses belonging to the same elliptic family characterized 
by wp, ws and N. The two curves differ only in terms of e.



elliptic lowpass filter. Then, G(z) is elliptic and belongs to the elliptic family 
characterized by N, ωp, and ωs.

3.4 ALLPASS FILTERS
Allpass filters play an important role in some multirate applications. Promi- 
nent among these is the two channel IIR QMF bank to be discussed in Sec.
5.3. In this section we study the fundamental properties of allpass functions. 
A tutorial on allpass filters can be found in Regalia, et al. [1988].

Definition and examples. A discrete-time transfer function H(z) is 
said to be allpass if

(3.4.1)

that is, the magnitude response is constant. As a result the frequency re- 
sponse has the form

(3.4.2)
where φ(ω) is the phase response. If ∣H(ejω)∣ = 1 (i.e., ∣c∣ = 1) we say that 
H(z) is unit-magnitude allpass.

Simple examples of allpass functions are: H(z) = 1 and H(z) = z-κ 
where K is an integer. A nontrivial example is the first-order filter

(3.4.3)

To verify that this is allpass, rewrite

(3.4.4)

so that the frequency response is

(3.4.5)

Clearly, ∣H(ejω)∣ = 1 for all ω.
More complicated examples can be obtained by multiplying first order 

filters of the form (3.4.3) because the product of two allpass functions is 
allpass. The sum of two allpass functions is, in general, not allpass. For 
example H1(z) = 1 and H2(z) = z-1 are allpass but their sum has magnitude 
response 2 cos(ω∕2) which is not constant.

3.4.1 Properties of Allpass Functions
We restrict attention only to allpass functions which can be expressed as 
rational functions (though not necessarily with real coefficients). In what
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follows, we will freely use notations and terms such as “tilde”, “dagger”, 
subscript asterik, and “generalized-Hermitian”, which are summarized in 
Sec. 2.3.

It is often convenient to express the property (3.4.1) in terms of the 
z-transform variable. For this note that (3.4.1) is equivalent to the property

(3.4.6)

Invoking analytic continuation (Sec. 2.4.3), we see that this implies

(3.4.7)

We can verify this for (3.4.3) as follows:

(3.4.8)
The allpass property, expressed in the form (3.4.7), will be frequently used 
to derive deeper properties.
A. Poles and Zeros of Allpass Functions

The poles and zeros of an allpass function occur in reciprocal conjugate 
pairs. In other words, if α is a pole, then its reciprocal conjugate 1∕α* is a 
zero. This is easily verified for (3.4.3), where the pole = -a and the zero 
= — 1∕a* indeed.

For a general proof, note that (3.4.7) yields

(3.4.9)

In view of the definition of the 'tilde' notation this implies

(3.4.10)

Conjugating both sides and exploiting the meaning of "subscript asterik" we 
see that this in turn implies H(1∕α*) = 0. That is, 1∕α* is a zero of H(z).
B. Most General Form of Rational Allpass Functions

Suppose Hn(z) is an Nth order rational allpass function with a pole at 
α1. This implies that HN(z) has a zero at 1∕α{ so that HN(z) has the factor 
(-α*1 + z-1)∕(1 — α1z-1). This factor is clearly a first order allpass function. 
We can then write

(3.4.11)
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By taking magnitudes on both sides, we see that HN-1(z) is allpass (with 
order N — 1). Repeating the above factorization process, we arrive at

(3.4.12)

where β is a (possibly complex) constant. Summarizing, we have proved 
that an Nth order allpass function has the general form (3.4.12). Note that 
if αk = 0 for some k, the corresponding factor reduces to z-1. Thus, the 
special case HN(z) — β-N is also covered by the above form.

Most general unfactored form; The form (3.4.12) is induced by 
the fact that the poles and zeros of an allpass function come in reciprocal 
conjugate pairs. It is often convenient to write an expression for an allpass 
function in unfactored form. This can be done by multiplying out the factors 
in (3.4.12). It can be shown that after such multiplication the result takes 
the form

(3.4.13)

We have restricted d to be real and positive because b0 can be arbitrary.
Except for the scale factor d, the numerator coefficients are therefore 

obtainable by writing the denominator coefficients in reverse order and con- 
jugating them. In other words if H(z) = A(z)∕B(z) with

(3.4.14)

then an = db*N-n. We can express this in the z-domain as

So any rational allpass filter can be expressed as above.
Conversely, the form (3.4.12) is allpass since each factor is allpass. Sim­

ilarly any transfer function of the form (3.4.16) is allpass because

(3.4.17)
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(3.4.15)

so that (3.4.13) reduces to the form

(3.4.16)



which has magnitude d for all ω.
Summarizing, an Nth order rational function H(z) is allpass if and only 

if it can be expressed as in (3.4.16) for d > 0 [or equivalently as in (3.4.12)]. 
Furthermore, for unit-magnitude allpass functions, we can always take d = 1.
C. Energy Balance Property (Losslessness)

Let u(n) and y(n) be the input and output of a stable allpass filter 
H(z). In view of (3.4.1) we have ∣Y(ejω)∣ = c∣U(ejω)∣. So,

Thus Ey = c2Eu, that is, the energy-amplification factor c2 is independent 
of the input. In particular if c = 1 in (3.4.1), then the output energy is equal 
to the input energy for all possible input sequences. For this reason allpass 
functions are also called lossless functions, (whether c = 1 or not).
D. Time Domain Meaning of Allpass Property

In Problem 2.14, we defined the autocorrelation r(k) of a sequence h(n) 
to be
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(3.4.18)

for any input u(n). By Parseval's theorem this implies

(3.4.19)

From this problem we can conclude that the z-transform of r(k) is given by 
R(z) = H(z)H(z). If H(z) is allpass, H(z)H(z) = c2. This implies that r(k) 
is an unit pulse function, that is,

(3.4.20)

Conversely, if r(k) is an unit pulse, then its z-transform H(z)H(z) is con- 
stant and H(z) is allpass. Summarizing, H(z) is allpass if and only if the 
autocorrelation of h(n) is a unit pulse.
E. The Modulus Property of Allpass Functions

We now derive a property of causal stable allpass functions based on a 
well-known theorem in the theory of complex variables [Churchill and Brown, 
1984] called the maximum modulus theorem. This property was observed in 
[Schüssler, 1976].



♠The maximum modulus theorem. Let F(z) be a complex function 
of the complex variable z. Let F(z) be analytic on and inside a closed 
contour C in the z-plane (Fig. 3.4-1). Let the maximum value of ∣F(z)∣ on 
the contour C be denoted Fmax. Then we have ∣F(z)∣ ≤ Fmax for all z inside 
the contour C. Equality holds somewhere inside the contour if and only if 
F(z) is constant.

Figure 3.4-1 Pertaining to 
the maximum modulus theo­
rem.
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Now let H(z) be a transfer function with all poles strictly inside the unit 
circle of the z-plane. Let ∣H(ejω)∣ have maximum value (that is, maximum 
over all ω) equal to c. By defining F(z) = H(1∕z) and invoking the maximum 
modulus theorem we conclude that ∣H(z)∣ ≤ c for all z outside the unit 
circle. Equality holds for some z outside the unit circle if and only if H(z) 
is a constant.

In particular, if the above H(z) is allpass, then more is true. In this 
case we can also make a claim about the magnitude ∣H(z)∣ inside the unit 
circle. For this note that (3.4.7) implies

(3.4.21)

for any α. Using the fact that H(α) = H*(1∕α) and conjugating both sides,

(3.4.22)

For ∣α∣ > 1 we know ∣H(α)∣ < c so that by taking magnitudes we get

(3.4.23)

for every α outside the unit circle, that is, ∣H(β)∣ > c for every β inside the 
unit circle.

Summarizing we have proved this: if H(z) is a causal stable allpass 
function with ∣H(ejω)∣ = c, then

(3.4.24)



unless H(z) is constant for all z. The example H(z) = z-1 provides a simple 
way to remember the above inequalities.

F. The Monotone Phase-Response Property
Consider the delay function H(z) = z-K, K > 0. This is allpass with 

H(ejω) = e-jωK. The phase response is φ(ω) = -Κω, which is a monotone 
decreasing function spanning a total range of 2πK as ω increases from 0 to 
2π. More generally, let H(z) be any rational Nth order allpass function. If 
H(z) has all poles inside the unit circle, we will prove that φ(ω) is monotone 
decreasing, and spans a range of 2πN as ω increases from 0 to 2π.

First order case. First consider H(z) = (a* + z-1)∕(1 + az-1). The 
pole is at z = -a. Let R and θ represent the radius and angle of the pole so 
that a = —Rejθ. Then

(3.4.25)

The phase response φ(ω) can be obtained from this as

(3.4.26)

Differentiating with respect to ω we arrive at

(3.4.27)

If the pole is inside the unit circle, we have 0 ≤ R < 1. So dφ(ω)/dω < 0, 
that is, φ(ω) is monotone decreasing.

Figure 3.4-2 demonstrates this for θ = 0 (real pole at —R). As ω varies 
from 0 to 2π, the range spanned by the phase is 2π. For arbitrary θ we can 
simply shift this curve by θ (and add a constant) to obtain φ(ω). If the pole 
is outside the unit circle, then all discussions remain the same except that 
the phase is monotone increasing.

Figure 3.4-2 The mono- 
tone phase response of a first 
order allpass filter (θ = 0).
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Since an Nth order stable allpass function is a product of N first order 
stable allpass functions, its (unwrapped) phase response is the sum of the 
N individual phase responses, and is thus monotone. The range spanned by 
φ(ω) is the sum of individual ranges, that is, 2πN.

The converse result. Suppose H(z) is a causal Nth order allpass 
function with monotone decreasing phase response spanning a range of 2πN 
as ω varies from 0 to 2π. This is possible only if each of the N first order 
factors has a monotone decreasing phase response. So, each factor is stable, 
showing that H(z) is stable.

Some of the above discussions turn out to be conceptually simpler if we 
think in terms of continuous time allpass functions. See Problems 3.17 and 
3.18.

3.4.2 Simple Structures for Allpass Filters
Figure 3.4-3 shows the direct form structure for the first order allpass func- 
tion H(z) = (a* + z-1)∕(1 + az-1). It has one (complex) delay, two (complex) 
multipliers and two (complex) adders. For the real coefficient case we have 
a = a* and the equivalent structure of Fig. 3.4-4 can be obtained (since a 
and z-1 are interchangeable in this case).

Figure 3.4-3 The direct 
form structure for a first or- 
der allpass function.

An arbitrary Nth order allpass function can be implemented by cascad- 
ing first order sections (Fig. 3.4-5). For the real-coefficient case we know 
that poles (and zeros) are either real or occur in complex conjugate pairs so 
that the allpass function is a product of first order sections of the form

(3.4.28)

Figure 3.4-4 A one-multiplier implementation of a real coefficient first order 
allpass function.
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(3.4.29)

second order sections of the form

Figure 3.4-5 Cascade form implementation of an Nth order allpass function. 
Each section is first-order allpass.

Figure 3.4-6 Direct form structures for second order real coefficient allpass 
fuctions (a) 4 multiplier, 2 delay version, and (b) 2 multiplier, 4 delay version.
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A real-coefficient second order section can be implemented as in Fig. 
3.4-6(a) requiring four multipliers, four adders and two delays. A second 
implementation requiring two multipliers, four adders and four delays is 
shown in Fig. 3.4-6(b). It is possible to obtain more efficient implementa­
tions having the smallest possible number of multipliers and delays. One 
of these is the one-multiplier lattice structure to be derived in the next sec- 
tion. Several other interesting allpass structures have been derived in Mitra 
and Hirano [1974], by use of a systematic technique called the multiplier 
extraction approach. Also see Szczupak, et al. [1988].

3.4.3 Lattice Structures for Allpass Filters
We now derive an allpass structure called the cascaded lattice structure, also 
known as the Gray and Markel structure [Gray and Markel, 1973]. Such a 
structure can be derived for any Nth order stable unit-magnitude allpass 
filter, and has the property that all multipliers have magnitude less than 
unity. Its importance lies in the fact that the transfer function remains stable 
(and allpass) inspite of multiplier quantization, as long as the multiplier 
magnitudes remain less than unity. The derivation of this structure depends 
on the following result.

♠ Theorem 3.4.1. The order reduction step. Let Gm(z) be an 
mth order causal, stable, unit-magnitude allpass function. Then it can be 
implemented as in Fig. 3.4-7 where (a) ∣km∣ < 1, and (b) Gm-1(z) is a 
causal, stable, unit-magnitude allpass function with order m - 1. ◊

Proof. Gm(z) has the form Gm(z) = z-mBm(z)∕Bm(z) where

(3.4.30)

Bm(z) has all zeros inside the unit circle, since Gm(z) is stable. Now Fig. 
3.4-7 implies

(3.4.31)

Equivalently, by inversion of this, we have

(3.4.32)

that is,

(3.4.33)

Our aim is to show that there exists km with ∣km| < 1, such that the right- 
hand side above does indeed have the form z-1Gm-1(z), with Gm-1(z) 
having the stated properties. It is clear that km must be such that the poly­
nomial Bm(z) — kmz-mBm(z) has order m - 1 (so that it can be taken as 
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the denominator of Gm-1(z).) By using the definition of tilde we see that 
this polynomial has highest term

(3.4.34)

so that the only possible choice of km is

(3.4.35)

Figure 3.4-7 Generation of an allpass function Gm(z) from a lower order allpass 
function Gm-1(z).

Now the constant term in the numerator polynomial z-mBm(z) — k*mBm(z) 
is b*m,m — k*mbm,0 which automatically reduces to zero by the above choice 
of km. As a result, the ratio on the righthand side of (3.4.33) has the form 
z-1Am-1(z)∕Bm-1(z), where Am-1(z) and Bm-1(z) are polynomials in z-1 
with order ≤ m - 1. From the relation z-1 Am-1(z) = z-mBm(z) — k*mBm(z) 
it is easy to verify that Am-1(z) = z-(m-1)Bm-1(z) so that Gm-1(z) = 
z-(m-1)Bm-1(z)∕Bm-1(z).

Summarizing, the above choice of km ensures that Gm-1(z) in (3.4.32) 
is indeed a causal allpass function, with order m — 1. [It cannot be less than 
m — 1, as Gm(z) in (3.4.31) has order m.] To prove that ∣km∣ < 1, note that 
the magnitude of the product of all roots of Bm(z) is equal to ∣bm,m∕bm,0∣. 
Since all poles of Gm(z) are inside the unit circle, this implies ∣km∣ < 1 
indeed.

Next, let α be a pole of Gm-1(z). From (3.4.32) we then have 1 — 
kmGm(α) = 0 so that ∣Gm(α)∣ = i∕∣km∣ > 1. In view of the modulus 
property (3.4.24), this implies ∣α∣ < 1 proving that all poles of Gm-1(z) are 
inside the unit circle, that is, Gm-1(z) is stable. ▽ ▽ ▽

Repeated Application of the Order Reduction Step
We can repeat the order reduction step, and express Gm-1(z) in terms 

of a reduced order allpass function Gm-2(z). If we continue this we finally 
obtain the constant function G0 with ∣G0∣ = 1. This proves that an Nth 
order unit-magnitude allpass function GN(z) with all poles inside the unit 
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circle can be implemented with the cascaded lattice structure of Fig. 3.4-8, 
with ∣km∣ < 1 for all m. The N quantities km are called the lattice coefficients 
of GN(z). All multipliers (km and k*m) in the structure have magnitude less 
than unity.

The real-coefficient case. If GN(z) has real coefficients, then kN is 
real [see (3.4.35)], so that GN-1(z) also has real coefficients. So all the lattice 
coefficients km are real. Since G0 has the form B0∕B0, we have G0 = 1.

The Lattice Guarantees Stability and Allpass Property

We saw above that any causal, stable, unit magnitude allpass function 
GN(z) can be implemented as in Fig. 3.4-8, where ∣km∣ < 1 and ∣G0∣ = 1. 
Conversely, the transfer functions Gm(z) indicated in the figure are stable 
unit-magnitude allpass filters, as long as ∣km∣ < 1 and ∣G0∣ = 1. This can 
be proved by a minor variation of the above reasonings (Problem 3.19). 
One consequence of this property is that, stability and allpass property are 
preserved inspite of quantization of km, as long as the quantized multipliers 
satisfy ∣km∣ < 1 and ∣G0∣ = 1.

Figure 3.4-8 (a) The cascaded lattice structure, and (b) details of the rectan-
gular boxes labelled km.

Variations of the Lattice Structure

Many variations of the lattice structure are known. We now present 
two of these, which are particularly attractive in practice. To derive these, 
notice that the structure of Fig. 3.4-7 can be schematically represented as
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in Fig. 3.4-9, where the quantities Tij(z) are

Figure 3.4-9 Schematic redrawing of Fig. 3.4-7.

More generally, for arbitrary Tij(z), the relation between Gm(z) and 
Gm-1(z) is given by

(3.4.37)

Thus, Gm(z) is unchanged if we change T01(z) and T10(z) in such a way that 
the product T10(z)T01(z) is unchanged. For example if

(3.4.38)

then Gm(z) is unchanged, for a given Gm-1(z). The resulting lattice section, 
shown in Fig. 3.4-10, is called the normalized lattice. An advantage of this 
structure is that the internal signals are automatically scaled in a certain 
sense [Gray and Markel, 1975].

Figure 3.4-10 The nor­
malized lattice section.
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where
(3.4.39)



For the special case of real coefficient filters, the choice

Figure 3.4-11 The one- 
multiplier lattice section for 
real coefficient allpass filters.

(3.4.40) 
results in a useful structure, requiring only one multiplier per lattice section! 
This structure is shown in Fig. 3.4-11, and requires an extra adder. The 
complete allpass lattice structure, therefore, requires N real multipliers, N

3.5 SPECIAL TYPES OF FILTERS
We now summarize a number of special transfer functions, that arise fre- 
quently in this text.

1. Linear phase transfer functions (Sec. 2.4.2).
2. Allpass transfer functions (Sec. 3.4).
3. Bounded and BR transfer functions. If H(z) is stable and such that 

∣H(ejω)∣ ≤ 1, then we say that H(z) is bounded. A bounded transfer 
function with real coefficients is said to be bounded real (BR).

4. Lossless transfer functions. A transfer function is said to be lossless if 
it is stable and allpass. The name arises from the fact that for such 
a system the input and output energies are related as Ey = c2Eu, for 
all finite-energy inputs. (If c2 = 1, the name "lossless" is particularly 
appealing, but this condition is not there in the definition.)

5. LBR transfer functions. A lossless transfer function with real coeffi- 
cients is said to be (LBR). So an LBR function is a real-coefficient 
stable allpass function.

6. Power complementary transfer functions. Two transfer functions H0(z) 
and H1(z) are said to be power complementary if
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(3.5.1a)

This can also be rewritten as

(3.5.1b)



with z = ejω. Since our filters are always rational functions, this con- 
dition holds for all z (Sec. 2.4.3). In practice the transfer functions 
are scaled so that c2 = 1. Thus, if H0(z) is a good lowpass filter, then 
H1(z) is a good highpass filter. As a generalization, a set of M transfer 
functions Hk(z) is said to be power complementary if
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(3.5.2)

This concept will be used in many chapters.
7. Mth band or Nyquist(M) filters. These will be described in Section 

4.6.1.

3.6 IIR FILTERS BASED ON TWO ALLPASS FILTERS

3.6.1 The Allpass Decomposition Theorem
A wide family of practical transfer functions including Butterworth, Cheby- 
shev, and elliptic filters can be represented as

where A0(z) and A1(z) are stable unit-magnitude allpass filters. This has 
been observed by a number of authors, for example, Fettweis [1974], Con- 
stantinides and Valenzuela [1982], Ansari and Liu [1985], Saramäki [1985], 
and Vaidyanathan, et al. [1986].

The following special case is particularly noteworthy: Let the transfer 
function H0(z) be Butterworth, Chebyshev or elliptic lowpass, with order 
N. Let n0 and n1 denote the orders of A0(z) and A1(z). Then the following 
things are true.

1. If N is odd, A0(z) and A1(z) have real coefficients, and N = n0 + n1.
2. If N is even, A0(z) and A1(z) have complex coefficients and n0 = n1 = 

N∕2. In this case, the coefficients of A1(z) are conjugates of those of 
A0(z).
The proof of the first statement (odd N) follows from the theorem to 

be proved next. In this text, only odd N will be of interest, and will be used 
in Sec. 5.3 (alias-free IIR QMF banks). See Vaidyanathan et al. [1987] for 
details of even N, which will not be considered here. Also see Problem 3.20.

The fact that a sum of two allpass filters can give rise to good lowpass 
behavior might occassion an initial surprise. To appreciate the basic idea, 
recall that the allpass functions have frequency responses A0(ejω) = ejφ0(ω) 
and A1(ejω) = ejφ1(ω). Now the behavior of the magnitude of

(3.6.1)



is governed by the phase difference φ0(ω) — φ1(ω). From Sec. 3.4.1 we know 
that the phase responses of stable allpass filters are monotone decreasing 
functions. Figure 3.6-1 shows typical sketches of φ0(ω) and φ1(ω) which will 
ensure that H0(z) is a good lowpass filter. In the passband φ0(ω) ≈ φ1(ω) so 
that ∣H0(ejω)∣ ≈ 1. In the stopband φ0(ω)-φ1(ω) ≈ π so that ∣H0(ejω)∣ ≈ 0.

Thus, an appropriate behavior of relative phases of the two allpass filters 
can give rise to a good lowpass response. More generally, we will now state 
and prove the following result.

♠Theorem 3.6.1. Allpass decomposition. Let H0(z) and H1(z) 
be two Nth order bounded real (BR) transfer functions (Sec. 3.5) with 
irreducible rational forms H0(z) = P0(z)∕D(z) and H1(z) = P1(z)∕D(z) 
where,

(3.6.2)

Suppose the following conditions are satisfied:
1. P0(z) is symmetric and P1(z) antisymmetric, that is,

(3.6.3)

2. H0(z) and H1(z) are power complementary, satisfying (3.5.1b) with 
c = 1.
Then H0(z) and H1(z) can be expressed as

(3.6.4)

(3.6.5)

where A0(z) and A1(z) are stable real coefficient allpass functions

(3.6.6)

with orders n0 and n1, respectively. Moreover N = n0 + n1. ◊

Comments
1. The BR nature of H0(z) and H1(z) means that these are stable, that 

the coefficients p0, n, p1, n and dn are real and that the magnitudes on 
the unit circle are bounded by unity.

2. The allpass functions A0(z) and A1(z) have unit magnitude on the unit 
circle and their orders A0(z) and A1(z) add up to N.
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3. Out of the N poles of H0(z), a subset of n0 poles are assigned to A0(z) 
and the remaining n1 poles assigned to A1(z). This partitioning of the 
poles of H0(z) completely determines its numerator. The zeros of H0(z) 
are, therefore, not independent parameters any more. The transfer func- 
tion has only N degrees of freedom.

4. Figure 3.6-2 indicates a structure which implements the two transfer 
functions.

Figure 3.6-1 Demonstrating the phase responses of the two allpass functions.

Figure 3.6-2 Implementing two transfer functions by adding and subtracting 
two allpass filters.

Proof of Theorem 3.6.1. First notice that (3.5.1b) can be rearranged 
as
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(3.6.7)
since c2 = 1. In view of (3.6.3) we have

(3.6.8)
Substituting into (3.6.7) we obtain P20(z) - P21(z) = z-ND(z)D(z), which 
can be rewritten as

(3.6.9)



Notice that P0(z)-P1(z) = z-N(P0(z) + P1(z)) so that the zeros of P0(z)- 
P1(z) are the reciprocal conjugates of those of P0(z) + P1(z).

We know that the zeros of D(z) are inside the unit circle so that those 
of D(z) are outside. So, none of the zeros of P0(z) + P1(z) can be on the 
unit circle (from (3.6.9)). Let n1 be the number of zeros of P0(z) + P1(z) 
inside the unit circle. Then, there is a factor of D(z), denote it D1(z), of 
order n1 which is also a factor of P0(z) + P1(z). Clearly, P0(z) + P1(z) has 
n0 ≜ N — n1 zeros outside the unit circle. As seen from (3.6.9) there is then a 
factor of D(z), say D0(z), of order n0 which is also a factor of P0(z) + P1(z). 
Clearly D0(z) is a n0th order factor of D(z). Summarizing we can always 
write
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where

(3.6.11)

are factors of D(z), and α is a real nonzero constant.
As the orders of D0(z) and D1(z) add up to the order of D(z), we get

(3.6.12)

By using (3.6.10) and (3.6.12) in (3.6.9) we obtain

(3.6.13)

But the symmetry relation (3.6.8) along with (3.6.10) also leads to this 
equation, with α in place of 1∕α. This implies α = ±1. We take α = 1 
(because the other choice α = — 1 does not change the magnitude responses 
of H0(z) and H1(z) anyway). Dividing both sides of (3.6.10) and (3.6.13) 
by D(z) we finally arrive at

(3.6.14)

Rearranging (3.6.14), we therefore obtain (3.6.4) and (3.6.5). ▽ ▽ ▽

3.6.2 Elliptic, Butterworth, and Chebyshev Filters
Figure 3.6-3 shows the typical magnitude response of a fifth-order elliptic 
lowpass filter H0(z) = P0(z)∕D(z). The coefficients are known to be real, 
and the magnitude is bounded by unity so that H0(z) is BR. We know that 
all the zeros are on the unit circle. The zero at ω = π contributes to the 
factor (1+z-1) and the complex conjugate pairs of zeros contribute to factors



of the form (1 — 2z-1 cos ωk + z-2). So, the numerator P0(z) is indeed a 
symmetric polynomial.

Figure 3.6-3 A fifth order elliptic lowpass filter, and its power complementary 
response.

The figure also shows the magnitude of the power complementary filter 
H1(z). Clearly, ∣H1(ejω)∣ is equal to zero at frequencies where, ∣H0(ejω)∣ 
takes the maximum value of unity. ∣H1(ejω)∣ has one zero at ω = 0 and 
two complex conjugate pairs of zeros on the unit circle so that all the zeros 
are on the unit circle again. The zero at ω = 0, however, contributes to an 
antisymmetric factor (1 — z-1). As a result, the numerator P1(z) of H1(z) is 
antisymmetric. Summarizing, H0(z) has a symmetric numerator and H1(z) 
has an antisymmetric numerator.

Figure 3.6-4 Example 3.6.1. Magnitude response of a 3rd order elliptic filter.
More generally, if H0(z) represents an odd order lowpass Butterworth, 

Chebyshev or elliptic filter, the above conclusions remain valid. That is, the 
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numerator of H0(z) is symmetric and that of H1(z) is antisymmetric. We 
can, therefore, apply Theorem 3.6.1 to conclude that H0(z) and H1(z) can 
be expressed as in (3.6.4) and (3.6.5).

Example 3.6.1

Consider the third order elliptic lowpass filter

(3.6.15)

whose magnitude response is shown in Fig. 3.6-4. The reader can verify 
that H0(z) can be expressed as

Evidently A0(z) and A1(z) indicated above are unit-magnitude allpass.

Efficiency of the Allpass Based Structure
The cost of the implementation of Fig. 3.6-2 (say an elliptic filter) is 

equal to the cost of the two allpass filters plus the two adders. We know from 
Sec. 3.4.3 that a real coefficient allpass filter of order nk can be implemented 
with nk multipliers. So, the structure requires only n0 + n1 = N multipliers. 
For this cost, we get two filters H0(z) and H1(z), that is, we require N/2 
multipliers per filter! In contrast, a direct form implementation of a single 
elliptic filter would require as many as 1.5N multipliers (even after taking 
numerator symmetry into account)!
The Pole Interlace Property

Given an odd order elliptic transfer function H0(z) = P0(z)∕D(z), what 
is the procedure to identify the allpass functions A0(z) and A1(z)? One 
method would be to identify P1(z) using (3.6.7), and compute the zeros of 
P0(z) + P1(z). The zeros inside the unit circle determine D1(z), and those 
outside are used to determine D0(z). The allpass functions can then be found 
from (3.6.6).

There exists a simpler procedure, whenever the zeros of D(z) [poles of 
H0(z)] are known. Let the poles of H0(z) be z0, z1, . . . , with pole angles 
θ0, θ1, . . . Let the numbering of poles be such that θ0 < θ1 < . . . . Then the 
poles of A0(z) are given by z2k and those of A1(z) by z2k+1. This is called the 
pole interlace property [Gazsi, 1985]. Using this we can identify the allpass 
functions as demonstrated in Fig. 3.6-5.
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Figure 3.6-5 Demonstration of interlace property. The nine poles of H0(z) are 
split into those of A0(z) and A1(z) as indicated.

Case When N is Even
What happens if the filter has even order? Consider a sixth order elliptic 

lowpass filter H0(z) = P0(z)∕D(z) with response as shown in Fig. 3.6-
6. In the region 0 ≤ ω ≤ π, there are three zeros. Thus we have three 
complex conjugate pairs of zeros, giving rise to three factors of the form 
(1 — 2z-1 cos ωk + z-2) for the numerator P0(z). This numerator, therefore, 
is symmetric.

Figure 3.6-6 A sixth or- 
der elliptic lowpass filter and 
its power complementary re­
sponse.

Now consider the power complementary response ∣H1(ejω)∣ which is also 
shown in the figure. This is zero whenever ∣H0(ejω)∣ is unity. Since ∣H0(ejω)∣ 
does not have a maximum at ω = 0, we conclude that ∣H1(ejω)∣ ≠ 0 at ω = 0. 
So the numerator P1(z) of H1(z) does not have the factor (1 — z-1). In fact 
P1(z) has three factors of the form (1 — 2z-1 cos θk + z-2) because it also has 
three pairs of complex conjugate zeros on the unit circle. As a result P1(z) 
is symmetric rather than antisymmetric. More generally whenever H0(z) is 
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a Butterworth, Chebyshev or elliptic lowpass filter of even order, the above 
conclusion remains true. That is, the numerators of H0(z) and H1(z) are 
both symmetric. So, the conditions of Theorem 3.6.1 are not satisfied.

In this case it can be shown [Vaidyanathan, et. al., 1987] that we can 
still express H0(z) as 0.5[A0(z)+A1(z)], where A0(z) and A1(z) are complex- 
coefficient allpass filters, and the coefficients of A1(z) are conjugates of those 
of A0(z). Finally, note that if H0(z) is bandpass or bandstop, then it can 
often be implemented in terms of real allpass filters, even if its order is even. 
(Example: start from an odd order elliptic lowpass filter and replace z with 
z2 or -z2.)

TABLE 3.7.1 Comparison of four techniques for lowpass filter design.
The specifications are ωp = 0.15π, ωS = 0.20π, δ1 = 0.01 and δ2 = 0.001.

Method IIR 
elliptic

IIR 
Butterworth

FIR 
equiripple

FIR 
Kaiser window

Special 
features

Optimal 
in minimax 

sense
Maximally 

flat at 
ω = 0, π

Linear phase. 
Also optimal 

in minimax sense
Linear phase.
Very easy to 

design

Required 
order N

7 28 101 146

Complexity of 
Implementation

11 mul*
14 add 

(direct form)
28 mul,
56 add 

(direct form)

51 mul,
101 add

74 mul,
146 add

* 7 mul and 22 add, if the allpass based structure is used (with one-multiplier lattice sections).

3.7 CONCLUDING REMARKS

In Sec. 3.1 to 3.3 we reviewed many techniques for digital filter design. A 
summary and comparison of many of the earlier methods can be found in Ra- 
biner and Gold [1975]. In Table 3.7.1 we have compared the filter orders and 
computational complexities of several methods, for a given set of specifica­
tions on the magnitude response. It is clear that the IIR elliptic design is the 
least expensive, but it introduces phase distortion. The FIR filters, on the 
other hand, have exact linear phase, but are more expensive. As explained 
at the beginning of Sec. 3.3, the complexity in terms of multiplications and 
additions is not always a fair measure of comparison. One should take into 
account the architecture of the implementation and, if possible, use more 
efficient FIR implementations (e.g., multistage implementations, Sec. 4.4).

The following Chapters will show that in the context of multirate signal 
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processing, some of the methods we described are particularly suitable, for 
example, window techniques, eigenfilter techniques and IIR elliptic designs. 
For this reason, we have elaborated them in this chapter. We will see later 
(Sec. 5.3) that IIR filters based on a sum of two allpass functions (Sec. 3.6) 
are particulary useful in filter bank designs.
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PROBLEMS

3.1. Let H(z) = ΣΝn=0 h(n)z-n be a Type 1 linear phase FIR filter and let G(z) = 
ΣNn=0 g(n)z-n with

Figure P3-2

Plot the magnitude response of this new system for 0 ≤ ω ≤ π. What kind of 
a filter is this (i.e., lowpass or highpass or ...)?

3.3. Let H(z) and H(z) be two lowpass filters. Let δ1 and δ2 be the peak passband 
and stopband ripples for H(z), and δ1 and δ2 the corresponding ripples for 
H(z). Assume that all these ripples are very small compared to unity. The 
cascaded filter H(z)H(z) is clearly lowpass. Show that its peak passband 
ripple ≤ δ1 + δ1, and peak stopband ripple ≤ max(δ2, δ2).

3.4. Consider a zero phase FIR lowpass filter H(z) with the frequency response 
shown in Fig. P3-4(a). Here δ1 and δ2 represent the peak ripple sizes. Our 
aim is to generate a better filter by making multiple use of the filter H(z). In 
Fig. P3-4(b)-(d) we have shown three structures which attempt to do this.
a) In each case give a qualitative plot of the amplitude response and ver- 

ify that the resulting filter continues to be lowpass with (nearly) same 
bandedges as H(z).

b) In each case find the peak to peak passband and stopband ripple. Assum- 
ing δ1 = 0.0025 and δ2 = 0.002, compute all these ripple sizes, and present 
them in the form of a neat table.

c) If you wish to design a filter which is better than H(z) in the passband, 
which of the three methods would you choose?

d) If you wish to design a filter which is better than H(z) in the stopband, 
which of the three methods would you choose?

e) If you wish to design a filter which is better than H(z) in the passband 
and stopband, which of the three methods would you choose?
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(P3∙1)

Prove that G(z) is also a linear phase filter. Assuming that the amplitude 
response of H(z) is as in Fig. 3.2-7, give a qualitative plot of the amplitude 
response of G(z). Clearly indicate the bandedges and ripple sizes in terms of 
the known quantities ωp, ωS, δ1, δ2. What sort of filter is G(z) (i.e., lowpass or 
highpass or . . .)?

3.2. Let G(z) be an ideal transfer function such that G(ejω) = 1 for 0 ≤ ∣ω∣ ≤ π∕4 
and zero elsewhere.

a) Consider the new system H(z) = G(z2). Plot ∣H(ejω)∣ for 0 ≤ ω ≤ π.
b) Consider the system constructed according to the following flowgraph:



f) Show how these three structures should be modified if H(z) is not zero- 
phase, but Type 1 linear-phase with order N (with Fig. P3-4(a) repre- 
senting the amplitude response).

Figure P3-4

Note. You can assume that δ1 and δ2 are 'sufficiently small' in order to make 
wise engineering simplification of your expressions.

3.5. Let
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(P3.5a)

where Φk(ω) is a set of orthonormal functions in the range a < ω < b, that is, 
∫baΦk(ω)Φ*m (ω)dω = δ(k — m). In other words, F(ω) is a linear combination 
of an orthonormal set of basis functions Φk(ω) in the interval a ≤ ω < b. The 
most common example is when

(P3.5b)



In this case, the above summation reduces to the familiar Fourier transform of 
the sequence f(k).
a) Suppose we wish to approximate F(ω) with the finite summation

(P3.5c)

in the region a ≤ ω < b. We wish the approximation to be "best in the 
least squares sense", that is, e ≜ ∫ba ∣F(ω)-FM(ω)|2dω must be minimized. 
Show that the choice f(k) = f(k), -M < k < M achieves this.

b) With f(k) = f(k), what is the minimized error e? Simplify as best as you 
can.

c) Consider the window design procedure for zero-phase FIR lowpass filters. 
Show that, if we use the rectangular window, the resulting filter is optimal 
in the least square sense.

3.6. In Sec. 3.2.2 we stated that the matrix P in the real-coefficient optimal window 
design problem is real, symmetric, positive definite and Toeplitz, with a unique 
eigenvector (up to scale) for each eigenvalue. In this problem we use some or 
all of these properties to derive two useful conclusions.
a) Prove that the optimal window is symmetric, that is, v(n) = v(N — n). 

(Note: You can ignore the possibility of an antisymmetric window, as 
that would imply a zero at ω = 0, which in turn conflicts the energy 
maximization requirement.)

b) Prove that the z-transform V(z) of the optimal window v(n) has all zeros 
on the unit circle.

Note: Part (b) was stated in text without proof. Evidently (b) implies (a). 
However, an independent proof of (a) is easier than (b).

3.7. Shown in the following figure is an example of a typical bandpass response.

Figure P3-7

Here ω0 is the center (or reference) frequency and ω1, ω2, ω3, ω4 represent the 
bandedges. In Sec. 3.2.3 we described how to design lowpass eigenfilters, which 
are optimal in the sense of minimizing the stopband and passband errors in a 
certain least square sense. Describe how this can be extended for the design of 
bandpass filters of the above form. Assume the filter to be Type 1 linear phase 
FIR for simplicity.
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3.8. Consider the method of Sec. 3.2.3 for design of lowpass eigenfilters. It is clear 
from the definition of Es that it cannot be zero as long as ωs ≠ π. Similarly 
Ep cannot be negative. Based on these physical considerations prove that the 
Hermitian matrices P and R are positive definite (as long as α is restricted to 
0 < α < 1).

3.9. Let H{z) be a Type 3 linear phase FIR filter, with passband in the range 
0 < ω1 ≤ ω ≤ ω2 < π. Suppose x(n) is a real signal with no energy outside the 
passband of H(z). It is obvious that the output y(n) is real because h(n) and 
x(n) are real. However, we also know that H(ejω) = ce-jωN/2 HR(ω), where c 
is a complex constant (c = j). Assuming that H(ejω) has a “good passband”, 
that is, very small passband ripple, do you still think that y(n) has the form 
y(n) ≈ αx(n — M) where α is a real constant? {Hint: Try x(n) = cos(ω0n + θ) 
where ω0 belongs to the passband and θ is real.)

3.10. Find the coefficients of a second order digital lowpass Butterworth filter with 
3 dB point at ω = 0.2π.

3.11. Consider the Butterworth response (3.3.6). Show that the first 2N — 1 deriva- 
tives are zero at Ω = 0.

3.12. Suppose we wish to transform an analog filter Ha(s) into digital filter H(z). 
Assume that the following transformation has been used: s = 1 — z-1. This is 
called the backward difference approach. (The motivation for this substitution 
is that s represents differentiation and 1 — z-1 represents a first difference.)
a) Suppose Ha(s) has all poles in Re[s] < 0. Does it necessarily mean that 

H(z) has all poles inside the unit circle?
b) Suppose H{z) has all poles inside the unit circle. Does it mean that Ha(s) 

has all poles in Re[s] < 0?
c) Instead of the above mapping assume that we use the mapping s = z — 1 

(forward difference approach). Repeat parts (a) and (b).
3.13. In this problem we shall give an overview of Chebyshev polynomials. Recall 

that the hyperbolic cosine function is defined as cosh θ = (eθ + e-θ)∕2. Let us 
denote this as x, that is,
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(P3.13a)

Here θ could be real or complex. If x is real then either θ is real or eθ is the 
conjugate of e-θ.

a) For real θ show that x ≥ 1. Also justify that — 1 ≤ x ≤ 1 if, and only if, 
θ = jω where ω is real.

b) Show that

(P3.13b)

Hence, prove the recursion
(P3.13c)

where CN(x) = cosh(Nθ) = cosh(N cosh-1 x). For example C1(x) — 
cosh θ = x.



c) Evidently, C0(x) = 1 and C1(x) = x. Prove by use of the recursion 
(P3.13c) that CN(x) is a polynomial for any x. CN(x) is called the 
Nth order Chebyshev polynomial. Give qualitative plots of CN(x) for 
N = 0,1,2,3,4.

d) Prove that CN(x) is an even polynomial (i.e., has only even powers of x) 
for even N, and odd polynomial for odd N. Also show that CN(1) = 1 
and that the highest power xN has coefficient 2N-1 for N ≥ 1.

e) Show that all the N zeros of CN(x) are real and lie in the range — 1 < x < 1. 
(Hint. CN(x) = cosh(Nθ) = cos(Nω) for θ = jω, ω real.) So, in the region 
∣x∣ > 1, the behavior is monotone as demonstrated below.

Figure P3-13

f) Let CN(x) = cN(0) + cN(1)x + . . . cN(N)xN. Let P(x) = p(0) + p(1)x + 
. . . + p(N)xN be some real coefficient polynomial with p(N) = cN(N). 
Prove that

This shows that among all polynomials of order N with highest coefficient 
equal to that of CN(x), the Chebyshev polynomial has the smallest peak 
value in —1 ≤ x ≤ 1. So, the polynomial has the minimax property (i.e., 
maximum magnitude in —1 ≤ x ≤ 1is minimized).

3.14. Consider the response

where Ωp > 0. This is called the Chebyshev response and a stable tranfer 
function Ha(s) with this response is called a Chebyshev filter.

a) Justify that the magnitude response has the behavior shown in Fig. P3- 
14, when N = 7. The quantity Ωp is the passband edge, and e directly 
controls the passband ripple size. The passband is equiripple. All the 2N 
zeros of (P3.14a) are at Ω = ∞.

b) By making wise engineering assumptions show that the required order N 
(for a given set of specifications) can be estimated from

(P3.14b)
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c) Plot the response ∣Ga(jΩ)∣2 = 1— ∣Ha(j∕Ω)∣2. This should be lowpass with 
equiripple stopband and monotone passband. A stable transfer function 
Ga(s) with this behavior is called an inverse Chebyshev filter.

Figure P3-14

d) Suppose H(z) is obtained by use of bilinear transformation on Ha(s). 
Specify any special feature that the numerator of H(z) might have.

3.15. For an analog elliptic lowpass filter Ha(s), assume that the bandedges are 
related as ΩpΩS = 1. Let Ga(s) be a stable filter such that ∣Ga(jΩ)∣2 = 
1 - ∣Ha(j∕Ω)∣2.
a) Qualitatively plot the responses ∣Ha(jΩ)∣2 and ∣Ga(jΩ)∣2 for N = 5.
b) Give a simple argument to justify that the reflection and transmission 

zeros (αk's and βk's in Fig. 3.3-2) satisfy αk = 1∕βk.
3.16. Suppose we wish to design a digital lowpass filter with specifications ωp, ωS, δ1 

and δ2 as in Table 3.7.1. Verify that the required order N is as in the table, 
for the two FIR cases and for the IIR Butterworth case.

3.17. In the continuous-time world a rational transfer function G(s) of degree N > 0 
with real coefficients is said to be a reactance if it satisfies the following two 
properties: (a) Re[G(jΩ)] = 0 for all frequencies Ω and (b) Re[G(s)] > 0 for 
all s in the right half plane, that is, for all s such that Re[s] > 0. Now define a 
discrete-time transfer function H(z) as follows:

(P3.17)

Show then that H(z) represents an allpass function with all poles strictly inside 
the unit circle. (Note. It turns out that G(s) is a reactance if and only if 
it is the input impedance of a lossless electrical network (LC network with 
positive elements). This establishes the link between digital allpass functions 
and continuous-time LC networks.)

3.18. Allpass functions have played an important role in continuous-time filter theory 
also. Consider a causal system with transfer function
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Here a and —a* are the pole and zero respectively.
a) Prove that this is allpass, that is, ∣H(jΩ)∣ = 1.
b) Assuming Re[a] < 0 (that is, H(s) stable) prove by explicitly writing down 

∣H(s)∣ that ∣H(s)∣ < 1 for Re[s] > 0 and ∣H(s)∣ > 1 for Re[s] < 0.
c) Consider the following pole-zero diagram for H(s).

Figure P3-18

Show that the phase response at frequency Ω is the angle θ(Ω) indicated in 
the figure. This shows, essentially by inspection, that this is a monotone 
decreasing function of Ω.

An Nth order unit-magnitude allpass function is a product of N first order func- 
tions of the form (P3.18). So if all the poles are in the left half plane, properties 
(b) and (c) continue to hold. Since any discrete-time stable allpass function 
can be derived from a continuous-time counterpart using bilinear transform, 
this gives a second proof of these same properties for the discrete-time case.

3.19. Consider Fig. 3.4-7, and assume ∣km∣ < 1. Assume Gm-1(z) has all poles inside 
the unit circle, and let ∣Gm-1(ejω)∣ = 1 for all ω.
a) Show that ∣Gm(ejω)∣ = 1 for all ω, and that all its poles are inside the unit 

circle.
b) Consider the lattice structure of Fig. 3.4-8. Let ∣G0∣ = 1, and ∣km∣ < 1 

for all m. Show that the transfer function GN(z) has all poles inside the 
unit circle, and that |GN(ejω)| = 1.

3.20. Generalization of allpass decomposition. Let H0(z) = P0(z)∕D(z) and H1(z) = 
P1(z)∕D(z) be two stable transfer functions (with possibly complex coefficients) 
of order N with
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Assume that the following properties are true. (a) P0(z) is Hermitian, (b) 
P1(z) is generalized-Hermitian (i.e., P1(z) = czN P1(z) for some c with ∣c∣ = 1) 
and (c) ∣H0(ejω)∣2 + ∣H1(ejω)∣2 = 1, (i.e., power complementarity). Prove that 
H0(z) and H1(z) can be expressed as

where A0(z) and A1(z) are stable unit-magnitude allpass of orders n0 and n1 
with n0 + n1 = N and where ∣β∣ = ∣d∣ = 1.

3.21. Let G(z) = A0(z) +A1(z), where A0(z) and A1(z) are allpass. Show that G(z) 
is allpass if, and only if, A1(z) = cA0(z) for some constant c.



4

Fundamentals of Multirate 

Systems

4.0 INTRODUCTION
This chapter is basic to the study of multirate systems and filter banks. 
Section 4.1 introduces decimation, interpolation, and filter bank systems, 
and Sec. 4.2 discusses interconnections of building blocks. The polyphase 
decomposition is introduced in Sec. 4.3, along With some applications. Mul­
tistage filter design is discussed in Sec. 4.4. Several applications of multirate 
systems are described in Sec. 4.5. Many special types of filters such as half- 
band filters and Nyquist filters, and complementary filter banks are discussed 
in Sec. 4.6. Finally, Sec. 4.7 introduces multigrid techniques which are Well 
known in the literature on numerical computation.

Some of these topics have also been covered in various chapters of 
Crochiere and Rabiner [1983]. However, a number of new topics are also 
introduced here, for example, complementary filters (power complementary, 
Euclidean complementary, etc.), and multigrid methods.

4.1 BASIC MULTIRATE OPERATIONS

4.1.1 Decimation and interpolation
The most basic operations in multirate digital signal processing are decima­
tion and interpolation. In order to describe these, two new building blocks 
are introduced, called the decimator and the expander.

The M-fold decimator. Figure 4.1-1(a) shows the M-fold decimator, 
which takes an input sequence x(n) and produces the output sequence
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(4.1.1)
where M is an integer. Only those samples of x(n) which occur at time 
equal to multiples of M are retained by the decimator. Figure 4.1-2 demon­
strates the idea for M = 2. The decimator is also called a downsampler,



subsampler, sampling rate compressor, or merely a compressor. We will use 
the term "decimator" consistently. As Will be mathematically substantiated, 
decimation results in aliasing unless x(n) is bandlimited in a certain Way. In 
general, therefore, it may not be possible to recover x(n) from yD(n) because 
of loss of information.

Figure 4.1-1 The decimator and expander.

Figure 4.1-2 Demonstration of decimation for M = 2. The samples of x(n) 
shown by heavy lines are retained.

(4.1.2)

Here L is an integer. Figure 4.1-3 is a demonstration of this operation for 
L = 2. It is evident that the expander does not cause loss of information. 
We can recover the input x(n) from γΕ(η) by L-fold decimation.

Other names for the expander are: sampling rate expander, upsampler, 
and interpolator. Of these, the term 'interpolator' is really a misnomer. We 
will consistently use the term 'expander' in this text. The expander is used 
in interpolation, but a filter is required to complete the process; we will 
see how the zero-valued samples are converted into interpolated samples by 
using a lowpass filter at the output of the expander.
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The L-fold expander. Figure 4.1-1(b) shows a building block which 
is commonly called an L-fold expander. This device takes an input x(n) and 
produces an output sequence



Transform Domain Analysis of Decimators and Expanders
First consider the expander which is easier to analyze. We have

(4.1.3)

So YE(ejω) = X(ejωL). This means that YE(ejω) is an L-fold com­
pressed version of X(ejω) as demonstrated in Figs. 4.1-4(a),(b). The mul­
tiple copies of the compressed spectrum are called images, and we say that 
the expander creates an imaging effect. [The quantity X(ejω) in the figure 
is taken to be nonsymmetric With respect to ω = 0, to improve clarity and 
generality.]

For the M-fold decimator (4.1.1), we now derive an expression for the 
output YD(ejω) in terms of X(ejω). We will show that

(4.1.4)

This can be graphically interpreted as follows: (a) stretch X(ejω) by a factor 
M to obtain X(ejω/M), (b) create M - 1 copies of this stretched version by 
shifting it uniformly in successive amounts of 2π, and (c) add all these shifted 
stretched versions to the unshifted stretched version X(ejω/M), and divide 
by M. The stretched quantity X(ejω/M) does not have period 2π, but after 
adding the shifted versions the result is periodic with period 2π (which is a
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requirement for the Fourier transform of a sequence). See Figs. 4.1-4(c) and
4.1-5 which demonstrate these for M = 2, and 3.

Figure 4.1-4 Transform-domain effects of the expander and decimator. The 
Fourier transforms of (a) the input signal x(n), (b) the expanded signal (L = 5), 
and (c) the decimated signal (M = 2).

Proof of (4.1.4). The z-transform of yD(n) can be Written as

Define an intermediate sequence

(4.1.5)

so that yD(n) = x(Mn) = x1(Mn). Now

(4.1.6)

This step is valid because x1(k) is zero unless k is a multiple of M. So

(4.1.7)
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It only remains to express X1(z) in terms of X(z). For this note that (4.1.5) 
can be Written as

(4.1.9)

We can express the comb sequence as

(4.1.10)

where Wm is the Mth root of unity defined as

(4.1.11)

Figure 4.1-5 Demonstrating the frequency-domain effect of decimation with 
M = 3.
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(4.1.8)
where CM(n) is the 'comb' sequence defined as



The subscript Μ on W is usually deleted, unless there is room for confusion. 
We can now obtain
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(4.1.12)
The inner summation above is equal to X(zWk) so that from (4.1.7)

(4.1.13)

In terms of the frequency variable ω this becomes (4.1.4) indeed.
We often use the following notation to indicate the relation (4.1.13):

(4.1.14)

This notation means that yD(n) is the M-fold decimated version of x(n).
Aliasing Created by Decimation

From Fig. 4.1-4(c), which demonstrates the effect of decimation for 
M = 2, we see that the stretched version X(ejw/M) can in general overlap 
with its shifted replicas. If this happens, we cannot recover x(n) from the 
decimated version yD(n). This overlap effect is called aliasing.

Avoiding aliasing. It is clear that aliasing can be avoided if x(n) 
is a lowpass signal bandlimited to the region ∣ω∣ < π∕M. The example in 
Fig. 4.1-5 demonstrates this for M = 3. In this case we can recover x(n) 
from the decimated version by use of an expander, followed by filtering, 
as demonstrated in Fig. 4.1-6. This recovery scheme Works as follows: in 
the frequency domain, the output V(ejω) of the expander is a compressed 
version of YD(ejω) [part (c)]. By using a lowpass filter H(ejω) [part(d)] we 
can therefore eliminate the images and extract the original spectrum X(ejω) 
[part (e)].

The above condition on bandwidth is, however, not necessary to avoid 
aliasing. For example if X(ejω) is zero everywhere in 0 ≤ ω < 2π except in 
ω1 < ω < ω1 + 2π∕M for some ω1, then there is no overlap between any pair 
of terms in (4.1.4). Also see Problem 4.3. The most general condition for 
alias-free decimation can be found in [Sathe and Vaidyanathan, 1993].

It can be verified (Problem 4.4) that the decimator and expander are 
linear but time-varying (LTV) systems.
Decimation Filters and Interpolation Filters.

In most applications, the decimator is preceded by a lowpass digital 
filter called the decimation filter [Fig. 4.1-7(a)]. The filter ensures that the



signal being decimated is bandlimited. The exact bandedges of the filter 
depend on how much aliasing is permitted. For example, in QMF banks 
(Chapters 5-8), a certain degree of aliasing is usually permitted because this 
can eventually be canceled off. The simplest form of lowpass decimation 
filter has magnitude response as sketched in Fig. 4.1-7(b).

Figure 4.1-6 Recovering bandlimited x(n) from its decimated version.

Next, an interpolation filter (Fig. 4.1-8) is a digital filter that follows 
an expander. The typical purpose is to suppress all the images. Thus, it 
retains only the shaded portion of the compressed spectrum YE(ejω) in Fig. 
4.1-4(b). Typically the interpolation filter is lowpass with cutoff frequency 
π∕L. In the time domain, y(n) is a convolution of yE(n) with the impulse 
response h(n). The effect is that the zero-valued samples introduced by the 
expander are filled with 'interpolated' values [Fig. 4.1-8(c)].
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Figure 4.1-7 (a) The complete decimation circuit, and (b) typical response of
the decimation filter.

Figure 4.1-8 (a) The complete interpolation circuit, (b) typical response of the
interpolation filter, and (c) examples of the sequence x(n), the filter h(n), and the 
interpolated signal y(n).
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Figure 4.1-9 Demonstrating several possible choices for the interpolation filter.

More generally, it is possible to make other choices of the interpolation 
filter, as demonstrated in Fig. 4.1-9 for L = 10. Here YE(ejω) has nine images 
(unshaded copies in Fig. 4.1-9(a)). If the filter is chosen as in part (b), the
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filter output is as in part (c), and contains all information about X(ejω) 
[which is the 10-fold stretched version of the shaded portion in part (a)]. If 
the filter is as in part (d), then two images are retained. This is analogous 
to cosine modulation of the shaded portion in part (a). See Problem 4.5 for 
precise relation between cosine modulation and interpolation-filtering. Both 
filtering schemes in this figure are such that the filter coefficients are real [so 
that the filter output is real if x(n) is].
Fractional Sampling Rate Alteration

Figure 4.1-10 Pertaining to fractional decimation.

The above techniques permit us to alter the sampling rate of a signal 
by an integer factor (such as L or M). In some applications, however, it is 
necessary to change the rate by a rational fraction (such as L/M). For ex- 
ample consider Fig. 4.1-10(a) which shows the transform X(ejω) of a signal 
bandlimited to ∣ω∣ < 2π∕3. We cannot decimate the signal by two because 
that Would create aliasing error. It appears to be possible to decimate by
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the factor 1.5 (so that the Fourier Transform gets stretched as shown by 
broken lines). One procedure for this would be to convert the signal into a 
continuous-time signal and resample at the lower rate. It is however simpler 
to perform the fractional rate-alterations directly in the digital domain, by 
judicious combination of interpolation and decimation.

Figure 4.1-10(b) shows a simple technique which can be used for this 
purpose. For the example under consideration, we will take L = 2,M = 3 so 
that the overall reduction of sampling rate is by the factor M/L = 3/2. The 
quantity X1(ejω) = X(ej2ω) is shown in part (c). If we design H(z) to be a 
zero-phase lowpass filter with response as in part (d), then the filter output 
X2(ejω) is the shaded part in part (c). Decimation by 3 finally results in 
y(n) whose transform Y(ejω) is as shown by broken lines in part (a)

It is clear that this technique can be generalized to reduce the sampling 
rate by any rational number M/L. In practice the quality of the filter H(z) 
[i.e., passband and stopband ripples] determines the quality of the result [i.e., 
the degree to which Y(ejω) agrees with the stretched version in
the region 0 ≤ ω ≤ 2π.] Fig. 4.1-11 demonstrates the time-domain meaning 
of decimation by a factor of 3/2. The samples numbered 1,3,... are the 
newly generated (interpolated) samples.

Notice that the permissible transition bandwidth of H(z) is not unduly 
narrow. In the above example it can be as large as π/3 (equal to the passband 
width!). As a quick example, suppose we wish to be a linear phase
equiripple filter with peak ripples δ1 = δ2 = 0.01 (so that As = 40 dB). The 
normalized transition bandwidth is ∆f = (π∕3)∕2π = 1/6. The estimated 
order from Sec. 3.2.4 is then N ≈ 11 which requires only 6 multipliers and 
11 adders for implementation.

Figure 4.1-11 A signal x(n) and the fractionally decimated version y(n). The 
decimation factor is 3/2.

More generally the transition bandwidth of the filter is ∆f = (π-σ)∕πL 
[where x(n) is bandlimited to ∣ω∣ < σ]. So, for a given σ, the filter order is 
proportional to L. In Sec. 4.3 we see how this system can be implemented 
with even fewer computations per input sample, using a technique called 
the polyphase approach. We will show that even though the filter order 
goes up as L increases, the number of computations per output sample is 
independent of L.
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The scheme of Fig. 4.1-10(b) also works when L > Μ. In this case, there 
is an overall increase of sampling rate by L∣M. There exist other methods 
for fractional sampling rate alteration. These combine filtering techniques 
with polynomial fitting, and are more suitable when L∣M is a ratio of very 
large integers. See Lagadec et al. [1982] and Ramstad [1984a].

The Physical Time Scale.

In the above we defined decimators and expanders purely as devices 
which work on sequences of numbers x(n) to produce a related sequence 
of numbers. Upon reflection, these definitions are somewhat strange. For 
example, an M-fold decimator is a noncausal device, that is, output sample 
yD(n) in general depends on x(m),m > n. (Thus, with M = 2, the sample 
yD(1) = x(2).) The L-fold expander is also a noncausal device. To see this, 
let L = 2 and think of negative values of n. The sample yE(—2) = x(—1) 
which implies noncausality.

Figure 4.1-12 The physical time and frequency scales associated with a deci­
mator.
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Figure 4.1-13 Demonstration of various real-time dimensions that go with a 
decimator.

Figure 4.1-14 Demonstration of real-time dimensions that go with an expander.



However, when these devices are operated in real time, noncausality 
does not arise. Figure 4.1-12 shows a sampled analog waveform xs(t) with 
sampling instants labeled in multiples of T (sampling interval). The output 
signal ys(t) is an undersampled version with samples spaced apart by 2T. 
No physical noncausality is really involved. Typical Fourier transforms are 
also shown in the figure.† Here Ω is the real-time frequency variable in 
radians/second, and Ωs = 2π∕T is the sampling rate for xs(t). There is no 
physical stretching of the Ω variable. Only the repetition rate of the basic 
spectrum is changed by a factor of 2 (consistent with decimation factor = 2).

In Fig. 4.1-13 we indicate the various real-time frequencies for the 
example of a 50-fold decimator with input sampling frequency of 8 kHz and 
output sampling frequency 160 Hz. So the 'digital' frequency π for the input 
sequence corresponds to 4 kHz. The lowpass filter H(z) now has stopband 
edge at π∕50 (= 2π∕100) which corresponds to 8,000/100 = 80 Hz. In other 
words, the signal has to be bandlimited to 80 Hz before the sampling rate 
can be cut down to 160 Hz.

The operation of the expander in real time is demonstrated in Fig. 4.1- 
14 for L = 2, along with frequency domain quantities. In the frequency 
domain there is really no fundamental difference between the input Xs(jΩ) 
and the output Ys(jΩ). If we think of the plot of Xs(jΩ) as a discrete-time 
Fourier transform, we would label Ωs as 2π whereas for Ys(jΩ) we would 
label 2Ωs as 2π.

4.1.2 Digital Filter Banks

A digital filter bank is a collection of digital filters, with a common input 
or a common output. Both of these cases are shown in Fig. 4.1-15. The 
system in Fig. 4.1-15(a) is called an analysis bank, and the filters Hk(z) 
the analysis filters. The system splits a signal x(n) into M signals xk(n) 
typically called subband signals. The system in Fig. 4.1-15(b) is called a 
synthesis bank, and Fk(z) are the synthesis filters. These filters combine 
the M subband signals into a single signal x(n). Figure 4.1-15(c)-(e) shows 
typical frequency responses for the analysis filters. These could be marginally 
overlapping, non overlapping, or very much overlapping, depending on the 
application.

Example 4.1.1: The DFT Filter Bank

We will present a filter bank based on the DFT matrix (Sec. A.6, Ap- 
pendix A). The M × M DFT matrix W has elements [W]km = Wkm 
where W = e-j2π/M. Now consider Fig. 4.1-16(a). Here x(n) is a 
sequence from which we generate M sequences si(n) by passing x(n) 
through a delay chain, so that si(n) = x(n — i). The matrix W*  repre- †

† Frequency domain effects of sampling were reviewed in Sec. 2.1.4.
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sents the conjugate of W. ‡ From the definition of W we, therefore, 
have

Figure 4.1-15 Digital filter banks and typical filter responses.

In other words, for every value of time index n, we compute the set of 
M signals xk(n) from the set of M signals si(n) according to the above

(4.1.15)

‡ Since WT = W, the quantity W* is same as W†.
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equation which is exactly the inverse DFT (IDFT) relation given in Sec. 
A.6 (Appendix A), except for a scale factor 1/M. From (4.1.15) we have

Summarizing, the system is equivalent to an analysis bank with analysis 
filters Hk(z) as above. Let us take a closer look at these filters. Equation

Sec. 4.1 Basic multirate operations 115

(4.1.16)

Figure 4.1-16 The simplest example of a uniform-DFT filter bank.

So we can write Xk(z) = Hk(z)X(z) where

(4.1.17)
with

(4.1.18)



(4.1.18) implies ∣H0(ejω)∣ = ∣ sin(Mω∕2)∕ sin(ω∕2)∣, which is plotted in 
part (b) of the figure. The filter Hk(z) has response

Uniform DFT banks. A filter bank in which the filters are related 
as in (4.1.17) is called a uniform DFT filter bank, even though the matrix 
appearing in Fig. 4.1-16(a) is W* rather than W.

Can we attach a physical meaning to xk(n) which are outputs of the 
analysis filters? Like x(n), these are time-domain quantities (assuming that 
n represents time). For convenience let us talk about the shifted version 
xk(n + M - 1). For fixed n we have

116 Chap. 4. Multirate system fundamentals

(4.1.19)

which is a shifted version of H0(ejω). So we have a bank of M filters, 
and these are uniformly shifted versions of H0(z) (part(c) in the figure). 
The responses evidently have large amount of overlap. Each analysis 
filter in this example has order M, and offers about 13 dB of minimum 
stopband attenuation (with respect to zero-frequency gain).

(4.1.20)

after making a change of variables ℓ = M — 1 - i and using WM = 1. So, 
xk(n + M — 1) is Wk times the kth point of the DFT of the M-point sequence

(4.1.21)

This sequence is nothing but a M-point segment of the input sequence x(n), 
starting from time n. So the magnitude of xk(n + M — 1) represents the 
magnitude of the (kth point of the) DFT of the sequence (4.1.21). As time 
advances (that is, as n increases), this quantity gets updated that is, recom- 
puted for the next segment of M samples. And this goes on for ever.

Summarizing, we can think of the filter bank of Fig. 4.1-16(a) as a 
spectrum analyzer. The kth output xk(n) is the 'spectrum' (i.e., kth point 
of the DFT except for scale factor Wk) computed based on the most recent 
M samples of the sequence x(n). Since xk(n) is the output of Hk(ejω), it 
dominantly represents the portion of X(ejω) around the region ω = 2πk∕M. 
Actually xk(n) represents some kind of averaged version of the exact spec- 
trum X(ejω) at this frequency, because the filter actually permits a range 
of frequencies to pass. The resolution of the spectrum analyzer can be im- 
proved by increasing Μ. In any case, the overlapping nature of the filter 
responses ensures that xk(n) tends to represent an averaged effect around 
2πk/M.

Figure 4.1-17 explains the operation in a pictorial way. In practice 
one can multiply x(m) with a window as indicated, in order to reduce the



sidelobe level of the frequency response. This is equivalent to inserting the 
multipliers αi just after the delay chain in Fig. 4.1-16(a). As time advances, 
the window in Fig. 4.1-17 merely slides past the data, computing the M 
DFT coefficients afresh for each increment of n. Thus, the window helps to 
localize the time domain data, before computation of the Fourier transform.

Figure 4.1-17 The sliding 
window interpretation of the 
uniform DFT bank.

This sliding window mechanism gives rise to the idea of short-time 
Fourier transform (STFT), discussed in Chap. 11. A generalization of this, 
called the wavelet transform is also discussed in that chapter.

Reducing Overlap by Improving the Filters
In Example 4.1.1, the M analysis filters are obtained from a single filter 

H0(z) (which we call the prototype filter) by uniformly shifting the response 
according to the relation Hk(z) = H0(zWk). The filters themselves are not 
very good (they had wide transition bands, and stopband attenuation of 
only 13 dB) because the prototype (4.1.18) itself is a very simple filter.

Now suppose that we use a higher order prototype H0(z) with a sharper 
response, for example, as in Fig. 4.1-15(c). Then, the shifted versions have 
reduced amount of overlap. Such systems with marginal overlap are used in 
quadrature mirror filter banks (Chap. 5). In Sec. 4.3.2 we will show how 
the DFT bank can be modified to implement these M filters at the cost of 
(almost) one filter.

4.1.3 Time Domain Descriptions of Multirate Filters

So far we have seen three types of multirate filters: decimation filters, in­
terpolation filters, and fractional decimation filters [Figs. 4.1-7, 4.1-8, and
4.1-10(b)].  For each of these, we give below the input-output relation in the 
time domain:

(4.1.22)
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Note that the relation for decimation filter can be written in two ways:

(4.1.23)

4.2 INTERCONNECTION OF BUILDING BLOCKS
We now consider some interconnections of building blocks which occur com­
monly in multirate systems. Figure 4.2-1 shows a number of interconnections 
and equivalences which can be easily verified.

Figure 4.2-1 Simple identities for interconnected systems. All of these hold if 
the decimators are replaced with expanders.

Decimator-expander cascades. Figure 4.2-2 shows two common in- 
terconnections of a decimator with an expander. The two structures in the 
figure are in general not equivalent (i.e., the decimator and expander do not 
commute). For example, if L = M then we can verify that y2(n) = x(n) 
whereas y1(n) = x(n)CM(n) where CM(n) is the comb sequence (4.1.9).

The two systems in Fig. 4.2-2 are equivalent [i.e., y1(n) = y2(n) for 
every possible input x(n)] if, and only if, L and M are relatively prime 
integers (i.e., greatest common divisor = 1). To prove this, note first that

(4.2.1)

We know that the set S1 of numbers WkM, 0 < k < M — 1 are the M distinct 
Mth roots of unity. The set S2 of numbers WkLM, 0 ≤ k ≤ M - 1 is equal to 
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the set S1 if and only if L and M are relatively prime (Problem 4.7). As a 
result, for arbitrary X(z), the set of M terms in Y1(z) is same as the set of 
M terms in Y2(z) if, and only if, L and M are relatively prime.

A time-domain proof of the above result (which is perhaps more appeal- 
ing) is requested in Problem 4.8.

Figure 4.2-2 Two popular interconnections of decimators with expanders. 
These are equivalent if and only if L and M are relatively prime.

The Noble Identities
We have already seen cascades of decimators and expanders with LTI 

systems [e.g., Figs. 4.1-7(a) and 4.1-8(a)]. A different type of cascade is 
shown in Fig. 4.2-3(a) where a filter G(z) follows a decimator, and in Fig.
4.2-3(c)  where a filter G(z) precedes an expander. Such interconnections arise 
when we try to use the polyphase representation (Sec. 4.3) for decimation 
and interpolation filters. If the function G(z) is rational (i.e., a ratio of 
polynomials in z or z-1) then we can redraw Fig. 4.2-3(a) as in Fig. 4.2- 
3(b) and Fig. 4.2-3(c) as in Fig. 4.2-3(d). These are called noble identities 
and are very useful in the theory and implementation of multirate systems.

Figure 4.2-3 The noble identitites for multirate systems.

Before proving these identities, note that they may not work if G(z) 
is irrational, for example, G(z) = z-1/2. Thus, consider the system of Fig.
4.2- 4(a). If the identities were applicable, this could be redrawn as in Fig.
4.2- 4(c). But it is easy to verify that these are not equivalent. For example,
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if the input x(n) is such that x(2n) = 0 for all n, then y2(n) is zero for all 
n, but y1(n) is not necessarily so.

To prove the noble identities note that

which is the same as Y1(z). Also

which agrees with Y3(z), completing the proof.

4.3 THE POLYPHASE REPRESENTATION
An important advancement in multirate signal processing is the invention 
of the polyphase representation [Bellanger, et al., 1976], [Vary, 1979]. This 
permits great simplification of theoretical results and also leads to compu- 
tationally efficient implementations of decimation/interpolation filters, as 
well as filter banks (both single and multifate). These applications will be 
elaborated in Sec. 4.3.1-4.3.3, and used throughout the book.

To explain the basic idea, consider a filter H(z) = Σ∞n=-∞ h(n)z-n. By 
separating the even numbered coefficients of h(n) from the odd numbered 
ones, we can write
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(4.2.2)

(4.2.3)

Figure 4.2-4 Demonstrat­
ing incorrect use of the noble 
identities.

(4.3.1)

Defining

(4.3.2)

we can, therefore, write H(z) as

(4.3.3)



Note that these representations hold whether H(z) is FIR or HR; causal or 
noncausal. As an example if H(z) = 1 + 2z-1 + 3z-2 + 4z-3 then

(4.3.4)

For an IIR example, let H(z) = 1∕(1 -αz-1). By using the identity (1-x) = 
(1 — x2)∕(1 + x) we can write

(4.3.5)

so that E0(z) = 1∕(1 - α2z-1) and E1(z) = α∕(1 — α2z-1).
Extending this idea further, suppose we are given any integer Μ. We 

can always decompose H(z) as

(4.3.6)

Equation (4.3.7) is called the Type 1 polyphase representation (with respect 
to M) and Eℓ(z) the polyphase components of H(z). Figure 4.3-1 summa- 
rizes the generation of eℓ(n) from h(n). Notice that Eℓ(z) depends on choice 
of Μ. So a notation such as E(M)ℓ(z) would have been more logical, but 
is avoided here for simplicity. Normally the value of M is clear from the 
context.
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This can be compactly written as

(4.3.7)

where
(4.3.8a)

with
(4.3.8b)



Figure 4.3-1 Schematic 
of the relation between h(n) 
and its ℓth polyphase com- 
ponent.

A variation of (4.3.7) is given by

(4.3.9)

The Type 2 polyphase components Rℓ(z) are permutations of Eℓ(z), that is, 
Rℓ(z) = Em-1-ℓ(z).

The reader who is curious about the origin of the term 'polyphase' 
should see Sec. 4.6.5.

4.3.1 Efficient Structures for Decimation and Interpolation Filters
Consider the decimation filter (Fig. 4.1-7) with M = 2. If we represent 
H(z) as in (4.3.3) then we can redraw the system as in Fig. 4.3-2(a). By 
invoking noble identity 1, this can be redrawn as in Fig. 4.3-2(b). This 
implementation is more efficient than a direct implementation of H(z) as 
explained next.

Figure 4.3-2 The decimation filter. (a) Polyphase implementation, (b) moving 
the polyphase components, and (c) direct implementation.

Let H(z) be Nth order FIR. Its traditional direct form implementation 
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is shown in Fig. 4.3-2(c).‡ Only the even numbered output samples y(2n) 
are computed. This computation requires N + 1 multiplications and N 
additions. As time changes from 2n to 2n + 1, the stored signals in the 
delays change, so that the above computation must be completed in one 
unit of time. The speed of operation should therefore correspond to N + 1 
multiplications and N additions per unit time. However, during the odd 
instants of time, the structure is merely resting. This is inefficient resource 
utilization.

Next consider the polyphase implementation of Fig. 4.3-2(b). Let n0 
and n1 be the orders of E0(z) and E1(z) (so that N + 1 = n0 + n1 + 2). 
So Eℓ(z) requires nℓ + 1 multiplications and nℓ additions. The total cost 
[including the extra adder in Fig. 4.3-2(b)] is again N + 1 multipliers and 
N adders. However, since Eℓ(z) operates at the lower rate, only a total 
of (N + 1)∕2 multiplications per unit time (abbreviated MPUs), and N/2 
additions per unit time (APUs) are required. The multipliers and adders in 
each of the filters E0(z) and E1(z) now have two units of time available for 
doing their work, and they are continually operative (i.e., no resting time).
Interpolation Filters

Now consider an interpolation filter (Fig. 4.1-8) with L = 2. A direct- 
form implementation of H(z) is again inefficient because, at most 50% of 
the input samples to H(z) are nonzero, which means that at any point in 
time, only 50% of the multipliers h(n) have nonzero input. So the remaining 
multipliers are resting. And those multipliers which are not resting are 
expected to complete their job in half unit of time because the outputs of 
the delay elements will change by that time. A more efficient structure can 
again be obtained by using the Type 2 polyphase decomposition
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(4.3.10)

This is shown in Fig. 4.3-3. Here Rℓ(z) are operating at the input rate, and 
none of the multipliers is resting. Each multiplier gets one unit of time to 
finish its task. The complexity of the system is (N + 1) MPUs and N — 1 
APUs. Note that the extra adder following the expander is not counted 
because, the signal y(n) is obtained merely by interlacing y0(n) and y1(n), 
that is, y(n) is

which is a time-multiplexed version of the outputs of R0(z) and R1(z). 
More generally, an M-fold decimation filter can be implemented with 

approximately M-fold reduction in the number of MPUs and APUs by using 
the polyphase structure of Fig. 4.3-4(a). To see this note that the number of

‡ In all discussions, the input sample spacing is taken to be one unit of 
time.



multipliers and adders required to implement the M polyphase components 
independently is equal to N +1 and N - M +1 respectively. This is followed 
by M — 1 additions (to combine the outputs of polyphase components) so 
that we have a total of N + 1 multiplications and N additions. All of these 
are performed at 1/Mth of the input rate. In other words, M units of time 
are available to perform this computation once. The polyphase structure 
has complexity (N + 1)∕M MPUs and N/M APUs.

Figure 4.3-3 The polyphase implementation of an interpolation filter.

Figure 4.3-4 Polyphase implementations of (a) M-fold decimation filter and 
(b) L-fold interpolation filter.
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Similar comments hold for L-fold interpolation filters [Fig. 4.3-4(b)], 
which require (N + 1) MPUs and (N — L + 1) APUs.
Case of Linear Phase FIR Decimation Fitters

Suppose H(z) = ΣNn=0 h(n)z-n where h(n) = h(N — n). Let us see 
how the symmetry of h(n) reflects into the polyphase components E0(z) 
and E1(z). For example, let N = 4 and
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Then,

So each of the filters E0(z) and E1(z) has symmetric impulse response. Now 
consider odd N, say N = 5. Let

Now

So E0(z) and E1(z) do not have symmetric impulse responses, but the im- 
pulse response e1(n) is the mirror image of e0(n).

These facts can be generalized as follows: Let H(z) = ΣNn=0 h(n)z-n 
with h(n) = h(N — n). Let E0(z) and E1(z) be the Type 1 polyphase com­
ponents. If N is even, then e0(n) and e1(n) are symmetric sequences. If N 
is odd then e0(n) is the mirror image of e1(n).

Impact on computational complexity. Consider Fig. 4.3-2(b). 
When N is even (so that e0(n) and e1(n) are symmetric), we obtain a factor 
of two saving in multiplication rate (in addition to the factor of two saving 
due to decimation). On the other hand if N is odd, then e0(n) and e1(n) 
are not symmetric, but e1(n) is the mirror image of e0(n). This fact can be 
exploited to obtain a factor of two saving in multiplication rate (see Problem 
4.17).

Summarizing, the polyphase structure for a two fold decimation fil- 
ter (symmetric impulse response with order N) requires about N/4 MPUs 
whether N is even or odd. See Problem 4.22 for the case of linear phase 
M-fold decimation filters.

4.3.2 Polyphase Implementation of Uniform DFT Filter Banks
Recall that a set of M filters is said to be a uniform-DFT filter bank if they 
are related as in (4.1.17), where W = e-j2π/M . The polyphase decomposi­
tion can be used to implement such a filter bank in a very efficient manner. 
Assume that the prototype H0(z) has been expressed as in (4.3.7). The kth 
filter can now be expressed as

(4.3.11a)



because (zWk)M = zM. With Xk(z) denoting the output of Hk(z), we obtain

(4.3.11b)

This shows that the M filters can be implemented by using the structure 
shown in Fig. 4.3-5(a). If H0(z) is FIR with order N, we require N + 
1 multiplications and N — M + 1 additions to implement the polyphase 
components. Add to this the DFT cost, and this gives the total cost for 
implementing the M filters.

If we set Eℓ(z) = 1 for all ℓ, Fig. 4.3-5(a) gives rise to the special case 
of Fig. 4.1-16(a). The presence of Eℓ(z) permits the use of a prototype 
H0(z) with larger length as compared to Fig. 4.1-16(a), where the filter 
length was limited to M. Thus the prototype (and hence all the M filters) 
can have sharper cutoff and higher stopband attenuation [Fig. 4.3-5(b)]. 
As in Fig. 4.1-17, we can once again interpret the filter bank system as a 
DFT computation with a sliding window. But now the window is longer 
[with length equal to the length of the filter H0(z)], even though the DFT is 
still M × M. A more elaborate discussion of this can be found in Sec. 11.2 
(short-time Fourier transform).

For composite M (for example M = 2m) the DFT can be performed 
efficiently using fast Fourier Transform (FFT) techniques [Rabiner and Gold, 
1975]. For example, let M = 32 and N = 50. A standard 32-point radix-2 
FFT requires (approximately) 136 real multiplications. So the total number 
of multiplications is 136 + 51 = 187. If each of the 32 filters were implemented
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Figure 4.3-5 (a) Implementation of the uniform DFT bank using polyphase
decomposition, and (b) typical magnitude responses of filters. Here Hk(z) = 
Xk(z)∕X(z).



indepedently, the number of multiplications would have been 32 × 51 = 1,632 
which is about nine times larger! [In fact it is even worse because most of 
the filters Hk(z) have complex multipliers even if H0(z) has real coefficients.] 
The polyphase implementation of Fig. 4.3-5(a) is, therefore, very efficient 
indeed.

Decimated uniform DFT banks. In many applications (such as 
QMF banks, Chap. 8,9), we are interested in decimating the outputs of 
Hk(z) by the factor M. This is logical because each of these outputs has 
a bandwidth which is approximately M times narrower than that of x(n). 
By using noble identity 1, the polyphase uniform-DFT filter bank structure 
with decimators can be redrawn as in Fig. 4.3-6. This structure requires 
M times fewer MPUs and APUs than Fig. 4.3-5(a) so that it is even more 
efficient.

For the above numerical example, the total number of real MPUs is 
only about 6. So for 6 multiplications per unit time (i.e., per input sample) 
we are able to implement 32 filters, each of order 50.

4.3.3 Efficient Structures for Fractional Decimation
Recall that Fig. 4.1-10(b) is a technique for decimating a sequence by a 
rational number Μ/L. Implementing H(z) directly (i.e., no polyphase) is 
inefficient because of two reasons: first, at any point in time, L — 1 out of 
L multipliers have input equal to zero. Second, only one out of M output 
samples is being retained. Neither of these facts has been exploited in the 
implementation.

To obtain a more efficient implementation, we begin by considering the 
M = 3, L = 2 example again. By using the Type 1 polyphase representation 
and rearranging we obtain the implementation of Fig. 4.3-7(a). On the 
other hand if we use the Type 2 decomposition and rearrange, we get Fig. 
4.3-7(b). Clearly these are more efficient than a direct implementation by 
factors of M and L respectively. Notice that Fig. 4.3-7(a) exploits the 
presence of the decimator, whereas Fig. 4.3-7(b) exploits the presence of the 
expander. But we have not exploited both yet. For example in Fig. 4.3-7(a) 
the inputs to Ek(z) still have some zero-valued samples. In Fig. 4.3-7(b),

Sec. 4.3 Polyphase representation 127 

Figure 4.3-6 Redrawing Fig. 4.3-5(a) when xk(n) have to be decimated by M.



some of the outputs computed by Rk(z) are discarded by the decimator. 
Can we rearrange the structure so that we can take full advantage of both 
the decimator and the expander?

Figure 4.3-7 Two ways to improve the efficiency of the fractional-decimation 
filter. (© Adopted from 1990 IEEE.)

The answer is in the affirmative [Crochiere and Rabiner, 1981, p. 311], 
and [Hsiao, 1987]. We now outline the technique reported by Hsiao, which 
is based on the z-domain formulation and polyphase decomposition. First 
notice that we are stuck in Fig. 4.3-7 mainly because we cannot move the 
expander any more to the right (and decimator any more to the left). This 
is because, the noble identities simply cannot be applied anymore!

However, here is the nice trick which comes to our rescue: we can write 
z-1 = z-3z2 so that Fig. 4.3-7(b) can be redrawn as in Fig. 4.3-8(a). With 
the help of the noble identities this becomes Fig. 4.3-8(b). Next we can 
interchange the decimator with the expander (which is valid because 2 and 
3 are relatively prime; see Sec. 4.2) to obtain Fig. 4.3-8(c). Finally we can 
perform a Type 1 polyphase decomposition of the polyphase components 
R0(z) and R1(z) as follows:
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(4.3.12)

so that Fig. 4.3-8(c) can be redrawn as in Fig. 4.3-8(d). So Fig. 4.3-8(d) is 
equivalent to Fig. 4.3-8(a)!

If H(z) = ΣNn=0 h(n)z-n, then we still have only N + 1 multipliers 
in Fig. 4.3-8(d). However, each multiplier operates at the lowest possible 
rate, which is one-third of the input rate. This trick works for arbitrary 
M, L as long as they are relatively prime because in that case, two things 
are true: (a) there exist integers n0 and n1 satisfying —n0L + n1M = 1



(Euclid’s theorem, [see Sec. 2.3 in Bose, 1985]) so that we can replace each 
z-1 with zn0Lz-n1M, and (b) the decimator and expander in cascade can 
be interchanged.

The above polyphase implementation requires only (N + 1)/M MPUs 
and (N + 1 — L)∕M APUs. Note that the 'additions' which follow expanders 
are not counted, as these represent time-domain interlace operations. (The 
reduction of MPUs obtainable due to linear-phase symmetry has not been 
accounted here.) The structure is most efficient because, the decimators have 
been moved to the left of all the computational units, and the interpolators 
moved to the right of these computational units.

Figure 4.3-8 Successive redrawings of the fractional decimation circuit, to 
maximize computational efficiency. (© Adopted from 1990 IEEE.)
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Computations per output sample. It is instructive to estimate the 
complexity per computed output sample y(n). Since there are L/M output 
samples per unit time, we have (M/L) × (N + 1)∕M — (N + 1)∕L multi- 
plications per output sample. Similarly, there are (N + 1 — L)∕L additions 
per output sample. In Sec. 4.1 we saw that for a given set of specifications 
on in-band ripples, and for a given σ, the order N of H(z) is proportional 
to L. So the number of multiplications and additions per output sample are 
essentially independent of L!

4.3.4 Commutator models
A very appealing conceptual tool to visualize the operation of polyphase 
implementations is the commutator model. To understand this note that any 
polyphase implementation is characterized either by a delay chain followed 
by a set of decimators, or by a set of expanders followed by a delay chain 
(e.g., Fig. 4.3-4).

Figure 4.3-9 demonstrates a commutator-model equivalent circuit (with 
M = 3) which is useful for Type 1 polyphase implementations. The model 
is almost self-explanatory but the following comments are in order. We have 
a switch (shown by a heavy line) which can assume one of three possible 
positions. The switch position shown in the figure corresponds to n = 0 
(because of the label 'n = 0' attached to the switch). The switch rotates 
at uniform speed and takes on the three postions in the manner indicated. 
Thus whenever n mod 3 = -2, the switch is at the bottom position; when 
n mod 3 = -1, the switch is at the middle position; and when n mod 3 = 0, 
the switch returns to the top position. The switch keeps rotating in this 
way in a counter clockwise direction. Figure 4.3-10 shows the polyphase 
implementation of the decimation filter, redrawn using the counterclockwise 
commutator model. It is explicitly clear that each polyphase component has 
only to operate at three-fold lower rate.

A second type of commutator model, useful for Type 2 polyphase im- 
plementations, is shown in Fig. 4.3-11. This is called the clockwise model, 
as the switch rotates in a clockwise direction. The label 'n = 0' in the figure 
means that the switch is in this particular position (i.e., bottom position) 
for n mod 3 = 0. The switch is in the middle position for n mod 3 = 1 and 
in the top position for n mod 3 = 2.

4.3.5 Further Applications of the Polyphase Concept

Periodically Time Varying Property
Some of the multirate systems introduced in this chapter can be consid- 

ered to be linear periodically time varying (LPTV) systems. The simplest 
example is the cascade shown in Fig. 4.2-2(a) with L = Μ. We then have 
the input output relation

(4.3.13)
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otherwise.



Figure 4.3-9 The counterclockwise commutator model for a delay chain followed 
by decimators. (a) Example with M = 3, and (b) operation of the commutator 
switch.

Figure 4.3-10 The polyphase implementation of a decimation filter (M = 3) 
using a counterclockwise commutator model.

Figure 4.3-11 The clockwise commutator model for a set of expanders followed 
by a delay chain.
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Figure 4.3-12 An analysis/synthesis system with the perfect reconstruction 
property.

In this text we will see many applications where the analysis bank and 
synthesis bank of Fig. 4.1-15 are connected back to back, that is, yk(n) is 
taken to be equal to xk(n). [Most of these applications are, in fact, such that 
there are decimators following xk(n) and expanders preceding yk(n), but let 
us ignore them for this discussion.] Such a system is said to be a perfect 
reconstruction (PR) system if x(n) = cx(n — n0) for some c ≠ 0 and integer 
n0.

A simple PR system is shown in Fig. 4.3-12 where the analysis bank is 
the same as the uniform DFT bank of Fig. 4.1-16(a). The analysis filters
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This system is equivalent to a multiplier, whose value is unity when n is a 
multiple of M and zero otherwise. So, this is a linear system, with periodi­
cally time varying coefficient (period M).

A second example is the interpolation filter (Fig. 4.3-3). Denoting the 
impulse responses of the polyphase filters Rk(z) by rk(n), the output is given 
by

(4.3.14)

In other words, the even numbered samples of y(n) are obtained by filter­
ing x(n) with R1(z), and odd numbered samples obtained by filtering x(n) 
with R0(z). The rate of y(n) is two times that of x(n), unlike the previous 
example. Strictly speaking, this system does not fall under the category of 
LPTV systems (which should have the same input and output rates).

A third example is the quadrature mirror filter (QMF) bank, (shown in 
Fig. 4.5-3 later). In Chap. 5 we will see that this is an LPTV system (with 
same input and output rates), and reduces to an LTI system when aliasing 
is completely eliminated.
Perfect Reconstruction (PR) Systems



So the synthesis filters form a uniform DFT bank except for the scale fac- 
tors W-k. Since WW* = MI, the system of Fig. 4.3-12 has the perfect 
reconstruction property, that is, x(n) = M2x(n — M + 1).
The Polyphase Identity.

Consider the structure of Fig. 4.3-13(a) which is a cascade of an ex- 
pander followed by a filter H(z), which in turn is followed by a decimator. 
This is similar to the fractional decimation scheme of Fig. 4.1-10(b), but 
with L = Μ. Such a strange interconnection arises in many applications 
(e.g., transmultiplexers to be discussed in Sec. 4.5.4).

Even though the decimator and expander are time-varying building 
blocks, the above cascaded system happens to be time-invariant. To see 
this note that the input to the decimator has z-transform X(zM)H(z). The 
decimated version therefore has the z-transform

Figure 4.3-13 The polyphase identity. (a) An unusual cascade, and (b) its 
equivalent circuit.

where E0(z) is the 0th polyphase component of H(z). The remaining poly 
phase components of H(z) are irrelevant here! Thus Fig. 4.3-13(a) represents 
a linear time invariant system with transfer function E0(z).

Figure 4.3-14 An application of the polyphase identity.

As an interesting application of this, suppose H(z) = z-k, with 0 ≤ 
k ≤ M — 1. We then have

(4.3.17)
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are Hk(z) = ΣM-1ℓ=0 z-ℓW-kℓ. The synthesis filters Fk(z) for this system are 
given by (Problem 4.20)

(4.3.15)

(4.3.16)



Fig. 4.3-14 shows this equivalence.

4.4 MULTISTAGE IMPLEMENTATIONS
In many applications, it is necessary to decimate by a large integer factor. 
Even though this can be done by designing a filter H(z) and using polyphase 
structures, it is even more efficient (in terms of number of computations per 
unit time) to design the decimation filter in multiple stages. Figure 4.4-1 
shows an example where M = 16. Since 16 = 4 × 2 × 2, it is possible to 
implement the system in three stages as shown.

This proposal raises several questions: What is the best way to split 
M into factors? In what order should these factors be arranged? These 
questions are not easy to answer. However, the fact that multistage imple­
mentations result in more efficient systems can be demonstrated very easily.

Our discussion relies on the fact that a linear phase FIR lowpass filter 
meeting specifications as in Fig. 3.1-1 has order

(4.4.1)

where D(δ1, δ2) is a function of the peak passband ripple δ1 and peak stop 
ripple δ2. A formula of this type holds for equiripple designs [Eq. (3.2.32)] 
as well as Kaiser-window based designs [Eq. (3.2.8)], even though D(δ1, δ2) 
depends on the method. Note that for fixed ripple size, the order varies as 
1∕∆f.

Figure 4.4-1 A multistage implementation of a 16-fold decimator.

4.4.1 The Interpolated FIR (IFIR) Approach
Multistage techniques for decimation and interpolation filters are best mo- 
tivated by first presenting an efficient technique for the design (and imple- 
mentation) of narrow band lowpass filters called the Interpolated FIR (IFIR) 
technique [Neuvo, et al., 1984]. This technique, by itself, has nothing to do 
with decimators and expanders, and is applicable for any narrowband filter. 
In the context of decimation and interpolation filtering, it also shows how 
multistage structures arise naturally. Independent treatement of multistage 
structures can also be found in Crochiere and Rabiner [1983].

To explain the basic idea, consider Fig. 4.4-2(a) which shows a lowpass 
specification (with ripples not shown). Let N denote the required filter 
order. Now, instead of meeting these specifications, suppose we try to meet 
a two-fold stretched specification (Fig. 4.4-2(b)). The stretched filter G(z) 
has transition bandwidth 2∆f so that its order is N∕2. This means that the 
number of multiplications and additions are reduced by a factor of two.
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Figure 4.4-2(c) shows the magnitude response of G(z2). This filter has 
two passbands. One of these is similar to the desired passband, whereas the 
other passband (centered around π) is unwanted. The unwanted passband 
can be suppressed by cascading G(z2) with a new filter I(z) [Fig. 4.4-2(d)]. 
For small ωS, this filter has a very wide transition band so that it requires 
very low order.

Figure 4.4-2 The IFIR technique for efficient design of narrowband filters.

Sec. 4.4 Multistage implementations 135

Figure 4.4-2(e) shows the complete system. Denoting the orders of G(z)



Figure 4.4-3 Design example 4.4.1. Magnitude response plots for various filters. 
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and I(z) by Ng and Ni, the system requires a total of (Ng + 1) + (Ni + 1) 
multipliers and Ng + Ni adders. This is much less than the complexity 
required to implement a filter designed directly to meet the specifications of 
Fig. 4.4-2(a).

Adjusting ripple sizes. Notice that the passband of the overall re- 
sponse G(z2)I(z) can have ripples larger than the ripples of G(z2) and I(z). 
To meet the desired specifications, we can take the peak passband ripples 
of G(z) and I(z) to be δ1∕2 so that the peak passband ripple of the overall 
system G(z2)I(z) is no greater than δ1. (Review Problem 3.3). If the peak 
stopband ripples of G(z) and I(z) are δ2, then the system G(z2)I(z) has 
stopband ripple no larger than δ2. The order of G(z) is somewhat larger 
than N/2 because of the more stringent passband requirement.

Terminology. The filter G(z) is called the model filter. The purpose 
of I(z) is to suppress the extra copy (image) of the basic passband. I(z) 
was originally called an interpolator [Neuvo, et al., 1984] because the odd- 
numbered impulse response coefficients of G(z2), which are zero-valued, get 
“filled in” when we cascade G(z2) with I(z). In this text, since an interpo­
lator has a different meaning, we will call I(z) an image suppressor.
Design Example 4.4.1: IFIR Design

As a specific example, let ωp = 0.09π, ωS = 0.11π, δ1 = 0.02, and δ2 = 
0.001. Then a direct equiripple design using the McClellan-Parks algorithm 
would require an order N = 233.

If we use the IFIR method, the filter G(z) has specifications ωp = 
0.18π, ωS = 0.22π, δ1 = 0.01 and δ2 = 0.001. The filter I(z) has speci­
fications ωp = 0.09π, ωS = 0.89π, δ1 = 0.01 and δ2 = 0.001. If G(z) and 
I(z) are designed using the McClellan-Parks algorithm, then the filter or­
ders Ng = 131 and Ni = 6 are found to be sufficient. So, G(z) [hence G(z2)] 
requires 66 multipliers and 131 adders, whereas I(z) requires 4 multipliers 
and 6 adders. The total complexities of the IFIR method and the direct 
method are summarized in Table 4.4.1. The filter I(z) is very inexpensive, 
whereas the cost of G(z2) is little more than half the cost of the direct de- 
sign. Notice finally that the system G(z2)I(z) has linear phase since G(z) 
and I(z) have this property. Fig. 4.4-3 shows plots of appropriate frequency 
responses.

In addition to the computational advantage, the IFIR approach also 
offers advantages during the filter design phase: a direct equiripple design of 
a filter with as high an order as 233 can result in numerical inaccuracies, and 
convergence-difficulties. The IFIR technique allows us to design two filters 
G(z) and I(z) of much lower order, which can be used to eventually meet 
the same specifications.

Extensions. Several extensions of this idea can be found in Neuvo, et 
al. [1984]. For example, instead of stretching the specifications by two, it is 
possible to stretch by an amount M1 > 2. In principle M1 can be as large 
as the integer-part of π/ωS. (So, in the above example, a much larger M1 is 
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possible.) If G(z) is the filter which meets the stretched specifications, then 
the system which meets the original specifications is given by G(zM1)I(z). 
The filter G(zM1) has M1 — 1 unwanted passbands (images) in addition to 
the desired passband centered around ω = 0. The image-suppressor I(z) 
eliminates these unwanted passbands.

The transition bandwidth of I(z) depends on ωS (the original desired 
stopband edge) and M1 (see Fig. 4.4-4). If M1 is too large (i.e., if the 
given specifications are stretched too much), then the transition band of 
I(z) becomes very narrow [so that I(z) dominates the cost], and we begin to 
get decreasing returns. (Essentially we have “stretched our luck” too far!) 
Summarizing, as M1 increases the cost of G(z) decreases and that of I(z) 
increases. There is some M1 which minimizes the cost.

Extensions of the IFIR technique for wideband lowpass filters, and gen­
eral bandpass filters have been made. Also see Problem 4.25.

Figure 4.4-4 Extension of the IFIR technique for stretching factor M1 > 2.

4.4.2 Multistage Design of Decimation and Interpolation Filters

Suppose the lowpass filter H(z) in Fig. 4.1-7 has stopband edge near π∕M. 
If M is large, then H(z) is a narrow-band lowpass and can be implemented 
using the IFIR technique, to reduce computations. Suppose we take the 
stretch factor M1 to be a factor of M, that is, M = M1M2. Then, the 
system is as in Fig. 4.4-5(a). This can be rearranged as in Fig. 4.4-5(b) 
using a noble identity. Thus, we perform the decimation in two stages: first 
by M1 and then by M2. So, the IFIR approach naturally leads to the two- 
stage implementation. We can, in fact, repeat this process by factorizing M1 
and M2 further.

138 Chap. 4. Multirate system fundamentals



TABLE 4.4.1 Design example 4.4.1. Comparison of 
direct method with the IFIR method.

Quantity 
Compared

Conventional
Method

IFIR Method

G(z) I(z) Total

Filter order 233 131 6 268

Number of Mul. 117 66 4 70

Number of Add. 233 131 6 137

TABLE 4.4.2 Design example 4.4.2. Complexity comparison 
between direct design and multistage design.

Direct design 
H(z)

Multistage Design

G(z) I(z) Total

Filter order 2,028 90 139 2,389

MPUs ≈21 0.92 2.8 3.72

APUs ≈41 1.8 5.56 7.36

Mul per sec 
(8 kHz)

168,000 29,760

Add per sec 
(8 kHz)

328,000 58,880
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Figure 4.4-5 The two-stage decimator, developed from the IFIR decimation 
filter.
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Figure 4.4-6 Pertaining to Design example 4.4.2. (IFIR design of a 50-fold 
decimation filter.)



Design Example 4.4.2: Multistage Decimation Filter
Consider the 50-fold decimation of an 8 KHz signal as in Fig. 4.1-13. 

Assume the passband and stopband ripples for the filter H(z) are δ1 = 
0.01, δ2 = 0.001. If the decimation filter has band edges at 70 Hz and 
80 Hz, then the normalized transition bandwidth for the digital filter is 
∆f = 1/800. A direct equiripple design using the McClellan-Parks algorithm 
would require an order N = 2,028.

Now consider using the IFIR approach to design the same filter with 
M1 = 25. Figure 4.4-6(a) shows the multistage system. The desired filter 
response is as in Fig. 4.4-6(b). The response of G(z) is as in Fig. 4.4-6(c), 
with ∆f = 25 × (1/800). The specifications are: ωp = 0.4375π, ωS = 0.5π, 
δ1 = 0.005, δ2 = 0.001 as explained earlier, so that the order of G(z) is 90. 
The image suppressor I(z) has appearance as in Fig. 4.4-6(e). This has 
∆f = 17/800. The specifications are ωp = 0.0175π, ωS = 0.06π, δ1 = 0.005, 
and δ2 = 0.001. An equiripple filter of order Ni = 139 is sufficient to meet 
these specifications. Notice that I(z) has higher order than G(z). Fig. 4.4-7 
gives various frequency response plots for the resulting design.

Table 4.4.2 summarizes the details, comparing the conventional ap- 
proach to the IFIR approach. By using a polyphase structure [Fig. 4.3- 
4(a) with M = 50] and exploiting the linear-phase symmetry, we obtain 
the MPU and APU count shown in Table 4.4.2. For the multistage design, 
the APU count is obtained as follows: I(z) requires 139 additions. By us- 
ing the polyphase structure, we can reduce the complexity to 139/25 APU. 
Next, G(z) which has order 90 requires 90 additions. By using appropriate 
polyphase decomposition, we can peform this at 1∕50th of the input rate. 
So we have 90/50 = 1.8 APUs only. The MPU counts shown in the Table 
can be verified similarly.

The improvement obtainable using the multistage approach is therefore 
by a factor of almost six. The table also indicates the computations per 
second with 8 KHz sampling rate prior to decimation.

From the above discussions, we see that the order of G(z) in terms of 
the specifications δ1, δ2, ωp, and ωS can be written as

(4.4.2)

The image suppressor has order

(4.4.3)

The number of MPUs is approximately

(4.4.4)
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Figure 4.4-7 Design example 4.4.2. Magnitude response plots for various filters. 
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The factor '2' appears in the denominator because we can save a factor of 
two due to linear-phase symmetry. For fixed M, the tradeoff is, therefore, 
clear. As M1 increases, the first term decreases whereas the second term 
increases. Among all integer factors of M, there is an optimal factor M1 
which minimizes (4.4.4).

For interpolation filters, the multistage idea still works. Figure 4.4- 
8 demonstrates the required manipulations with an example. We now see 
that interpolation by 25 follows [rather than precedes, as in Fig. 4.4-6(a)] 
interpolation by 2.

Figure 4.4-8 Multistage design of interpolation filters.

4.5 SOME APPLICATIONS OF MULTIRATE SYSTEMS
We now review a number of applications of multirate filters and filter banks. 
More applications are outlined in Sec. 4.6.4.

4.5.1 Digital Audio Systems
In the digital audio industry, it is a common requirement to change the 
sampling rates of bandlimited sequences [Digital audio, 1985]. This arises 
for example when an analog music waveform xa(t) is to be digitized [Bloom, 
1985]. Assuming that the significant information is in the band 0 ≤ ∣Ω∣∕2π ≤ 
22kHz, a minimum sampling rate of 44kHz is suggested [Fig. 4.5-1(a)]. It is, 
however, necessary to perform analog filtering before sampling to eliminate 
aliasing of out-of-band noise. Now the requirements on the analog filter 
Ha(jΩ) [Fig. 4.5-1(b)] are strigent: it should have a fairly flat passband [so 
that Xa(jΩ) is not distorted] and a narrow transition band. Optimal filters 
for this purpose (such as elliptic filters which are optimal in the minimax 
sense) have a very nonlinear phase response around the bandedge, that is, 
around 22kHz. [See Design Example 3.3.2.] In high quality music this is 
considered to be objectionable.

A common strategy to solve this problem is to oversample xa(t) by a 
factor of two (and often four). The filter Ha(jΩ) now has a much wider 
transition band (Fig. 4.5-1(c)), so that the phase-response nonlinearity is 
acceptably low. In fact it is possible to use an analog filter with approxi­
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mateIy linear phase in the passband (such as the Bessel filter, [p. 129, An- 
toniou, 1979]). Such filters are sufficient to provide the required stopband 
attenuation to avoid aliasing.

The sequence x1(n) obtained by the above oversampling method is then 
lowpass filtered (Fig. 4.5-1(d)) by a digital filter H(z) and then decimated 
by the same factor of two, to obtain the final digital signal x(n). The crucial 
point is that since H(z) is digital, it can be designed to have linear phase 
while at the same time providing the desired degree of sharpness.

Figure 4.5-1 (a) Spectrum of xa(t); (b) Antialiasing filter response for sampling
at 44 kHz; (c) Antialiasing filter response for sampling at 88 kHz; (d) Improved 
scheme for A/D stage of a digital audio system.

A similar problem arises after the D/A conversion stage, where the 
digital music signal y(n) should be converted to an analog signal by lowpass 
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filtering. To eliminate the images of Y(ejω) in the region outside 22kHz, a 
sharp cutoff (hence nonlinear phase) analog lowpass filter is required. This 
problem is avoided by using an expander and a digital interpolation filter. 
After this D/A conversion is performed, and is followed by analog filtering. 
The interpolation filter H(z) is once again a linear-phase FIR lowpass filter, 
and introduces no phase distortion.

The obvious price paid in these systems is the increased internal rate of 
computation. However, by using the polyphase framework (Sec. 4.3) the ef­
ficiency of decimation and interpolation filters can be significantly improved.
Fractional Sampling Rate Alterations

In digital audio, there are several applications which require fractional 
sampling rate alterations. This is because at least three sampling rates 
coexist. Thus for most studio work the sampling rate is 48 kHz, whereas for 
CD mastering (both digital tape and compact discs) the rate is 44.1 kHz. 
For broadcasting of digital audio, a sampling rate of 32 kHz is expected to 
become the standard. To convert from studio frequency to CD mastering 
standards, one would, therefore, use the arrangement of Fig. 4.1-10(b) with 
L = 441 and M = 480. Such large values of L normally imply that H(z) has 
very high order. A multistage design (Sec. 4.4) is more convenient (as well 
as computationally efficient) in such cases.

Further applications of multirate filter banks in digital audio can be 
found in Sec. 4.6.4.

4.5.2 Subband Coding of Speech and Image Signals
In practice one often encounters signals with energy dominantly concentrated 
in a particular region of frequency. An extreme example was considered 
earlier where all the energy is in 0 ≤ ∣ω∣ < 2π∕3. In that case it was possible 
to compress the signal simply by decimating it by a factor of 3/2, or less.

It is more common, however, to encounter signals that are not band 
limited, but still have dominant frequency bands. An example is shown in 
Fig. 4.5-2(a). The information in ∣ω∣ > π∕2 is not small enough to be 
discarded. And we cannot decimate x(n) without causing aliasing either. It 
does seem unfortunate that a small (but not negligible) fraction of energy 
in the high frequency region should prevent us from obtaining any kind of 
signal compression at all.

But there is a way to get around this difficulty: we can split the signal 
into two frequency bands by using an analysis bank with responses as in Fig.
4.5-2(b).  The subband signal x1(n) has less energy than x0(n) and so can 
be encoded with fewer bits than x0(n). As an example, let x(n) be a 10kHz 
signal (10,000 samples/sec) normally requiring 16 bits per sample so that 
the data rate is 160 kilo bits/sec. Let us assume that the subband signals 
x0(n) and x1(n) can be represented with 16 bits and 8 bits per sample, 
respectively. Because these signals are also decimated by two, the data rate 
now works out to be 80 + 40 = 120 kilo bits/sec, which is a compression 
by 4/3. This is the basic principle of subband coding: split the signal into 
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two or more subbands, decimate each subband signal, and allocate bits for 
samples in each subband depending on the energy content. This strategy is 
clearly a generalization of the simple decimation process (which works only 
for strictly bandlimited signals). In Appendix C the theoretical basis for the 
bit allocation strategy is studied, by making certain simplifying assumptions 
on the statistics of the input x(n). In speech coding practice the number of 
subbands, filter bandwidths and bit allocations are chosen to further exploit 
the perceptual properties of human hearing.

Figure 4.5-2 Splitting a signal into subband signals x0(n) and x1(n).

Figure 4.5-3 The analysis/synthesis system for subband coding. (Also called 
the two band QMF bank; see text.)

The reconstruction of the full band signal is done using the expanders 
and synthesis filters as in Fig. 4.5-3. The expanders restore the original 
sampling rate, and the filters Fk(z) eliminate the images. Further general­
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izations follow immediately: the signal can be split into M subbands with 
each subband signal decimated by M and independently quantized. The 
complete analysis synthesis system in Fig. 4.5-3 is called the quadrature 
mirror filter (QMF) bank, and is the topic of Chap. 5 to 8.

For details on subband coding, see Crochiere, et al. [1976], Crochiere 
[1977 and 1981], and Woods [1991]. The coding in each subband is typically 
more sophisticated than just quantization. For example, techniques such 
as DPCM and ADPCM are commonly used [Jayant and Noll, 1984]. The 
specific properties of speech signals and their relation to human perception 
are carefully exploited in the coding process; the appropriate number of 
subbands and the coding accuracy in each subband are judged based on 
the articulation index. The quality of subband coders is usually judged 
by what is called the mean opinion score (MOS). This score is obtained 
by performing listening tests with the help of a wide variety of unbiased 
listeners, and asking them to assign a score for the quality of the reproduced 
signal x(n) [in comparison to x(n)]. The maximum score is normalized to 
5 by convention. Subband-coded speech with an average bit rate of 16 kilo 
bits/sec can typically achieve a MOS of 3.1, whereas at 32 kilo bits/sec a 
score of 4.3 has been achieved [Chap. 11, Jayant and Noll, 1984]. Note 
that, if x(n) is obtained by 8 kHz sampling (typical for speech), then 16 kilo 
bits/sec corresponds to 2 bits per sample, and 32 kilo bits/sec corresponds 
to 4 bits per sample. These are much lower than the typical precisions used 
in digital filtering (e.g., in the implementation of the subband filters). Thus, 
any new technique which further reduces the bit rate by a small amount (such 
as one bit per sample) could still qualify as a "significant contribution".

Image compression. Two dimensional multirate filter banks for im- 
age processing were first introduced by Vetterli [1984]. Subband coding 
has been applied for image compression by several authors [Safranek, et al.,
1988] , [Woods and O’Neil, 1986], [Smith and Eddins, 1990]. (See Sec. 12.0 
for further references.) Coded images with only 0.48 bits per pixel (the 
original uncoded picture being a 8 bits per pixel image), have been found 
to give “acceptable” quality. Again, this statement does not give complete 
information, without comparing the detailed picture qualities before and af- 
ter coding. Further details can be found in Woods [1991], and references 
therein. Multirate filter banks have been used in image processing applica­
tions in various other forms, for example, multiresolution systems, and the 
Laplacian pyramid (Sec. 5.8).

Music signals. Subband coding has also been applied for compression 
of digitized music, e.g., the discrete compact cassete (DCC) [Veldhuis, et al.,
1989] , [pp. 3597-3620, ICASSP, 1991], [Fettweis, et al., 1990]. A judgement 
on quality of the 'compressed' music depends on the nature of the waveform, 
as well as the threshold of acceptability imposed by the listener. It has been 
shown that a great deal of compression can be achieved in many cases.

General remarks on subband coding. Several comments are now 
in order: first, in order for subband coding to work, it is necessary to have
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some knowledge about the energy distribution of X(ejω). Such knowledge is 
usually obtainable by means of adaptive estimation of energy in various sub- 
bands [Jayant and Noll, 1984]. The bit allocation strategy depends crucially 
upon this energy information (Sec. C.2.1, Appendix C). Second, the band 
splitting and decimation operation inevitably results in aliasing because the 
filters Hk(z) are not ideal. The filters Fk(z) should be chosen carefully in 
such a way that aliasing is actually canceled. These details are the topic of 
Chap. 5.

4.5.3 Analog Voice Privacy Systems
These systems are intended to communicate speech over standard analog 
telephone links, while at the same time ensuring voice privacy. The main 
idea is to split a signal x(n) into M subband signals xk(n) and then divide 
each subband signal into segments in the time domain. The time segments 
as well as the subbands are then permuted and recombined to generate an 
encrypted signal y(n), which can then be transmitted (after D/A conversion). 
Unless an eavesdropper is aware of the details of the permutation (i.e., unless 
he has the 'key'), he will be unable to eavesdrop. The aims of the designer of 
such a privacy system are: the encrypted message should be unintelligible, 
decryption without a key should be very difficult, and the decrypted signal 
should be of good quality retaining naturalness and voice characteristics. 
Some of these goals have been accomplished [Cox, et al., 1987].

At the receiver end, y(n) is again split into subbands, and the time seg- 
ments of the subbands unshuffled to get xk(n) which can then be interpolated 
and recombined through the synthesis filters.

4.5.4 Transmultiplexers
In digital telephone networks, it is sometimes necessary to convert between 
two formats called the time-division multiplexed (TDM) format and the 
frequency-division multiplexed (FDM) format.

To describe the TDM format consider Fig. 4.5-4(a) where three signals 
are passed through 3-fold expanders and added through a delay chain. It 
can be shown that y(n) is an interleaved version of the three signals, that is, 
it has the form
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This is the TDM version of the three signals. We can recover the three signals 
from y(n) by using the time-domain demultiplexer shown in Fig. 4.5-4(b). 
Note that X0(z), X1(z) and X2(z) are polyphase components of Y(z).

To explain the FDM operation, consider Fig. 4.5-5 where transforms 
of three signals x0(n), x1(n), and x2(n) are shown. The FDM signal y(n) is 
a single composite signal, whose transform Y(ejω) is obtained by “pasting” 
the transforms of the individual signals next to each other. Note that each 
individual spectrum has to be compressed by 3 to make enough room for all 
three signals in the range 0 ≤ ω < 2π. The FDM operation can be performed



using the circuit shown in the figure. Each individual signal is first passed 
through an expander to obtain a 3-fold compression of the transform. The 
interpolation filter Fk(z) (assumed ideal for this discussion) retains one out 
of the three images which appear in Xk(ej3ω). The shaded portions in Fig.
4.5-5  (d), (e) and (f) are the retained images from each signal. The filter 
responses (which pass the shaded regions of the respective signals) are shifted 
with respect to each other so that the retained images from Xk(ej3ω) do not 
overlap with the retained images from Xm(ej3ω), m ≠ k. If we add the 
outputs of the three filters, the result is the FDM signal Y(ejω).

Figure 4.5-4 (a) Time domain multiplexing and (b) time domain demultiplex-
ing, represented using multirate building blocks.

Since the shaded areas in the figure are not symmetric with respect to 
ω = 0, the filters have complex coefficients, and y(n) is complex (even if 
the individual signals might be real). If xk(n) are real, we can avoid this 
by judicious choice of responses ∣Fk(ejω)∣ so that there is symmetry with 
respect to ω = 0. Each filter then has one passband in the region 0 ≤ ω < π 
and one in the conjugate region π ≤ ω < 2π.

Figure 4.5-6 shows the complete transmultiplexer. The components 
xk(n) of the TDM version can be recovered by separating the consecutive 
regions of Y(ejω) (which are the M message signals) with the help of an 
analysis bank and then decimating the outputs. Now, if the synthesis filters 
Fk(z) are non ideal, the adjacent spectra in Fig. 4.5-5(g) will actually tend 
to overlap. Similarly if the analysis filters Hk(z) are non ideal then the 
outputs of Hk(z) have contributions from Xk(ejω) as well as Xℓ(ejω), ℓ ≠ k. 
So in general each of the reconstructed signals xk(n) has contribution from 
the desired signal xk(n) as well as the 'cross-talk' terms xℓ(n), ℓ ≠ k. An 
obvious approach to reduce the extent of cross talk is to design Hk(z) and 
Fk(z) to be very sharp cutoff filters, that is, practically non overlapping 
frequency responses. To obtain acceptable cross talk reduction this requires 
filters of very high order (e.g., exceeding 2,000; see [Bellanger, 1982]).

A novel approach to transmultiplexing was proposed by Vetterli [1986b]. 
In this approach, cross-talk is permitted in TDM→FDM converter and then 
canceled by the FDM→TDM converter stage. It can be shown that the cross- 
talk terms can be completely eliminated by careful choice of the relation
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Figure 4.5-5 Operation of a frequency-division multiplexer circuit. 

150 Chap. 4. Multirate system fundamentals



between the analysis and synthesis filters. In Sec. 5.9 we will derive the 
conditions for this and show that the set of M original signals xk(n) can 
be recovered by the TDM→FDM→TDM system with no distortion. Since 
cross talk is permitted (and then canceled), the filters Hk(z) and Fk(z) are 
more economical than in conventional designs which tend to suppress cross 
talk altogether.

Figure 4.5-6 The complete transmultiplexer structure.

4.5.5 Multirate adaptive filters

The subject of adaptive filtering Has been treated well in many texts, for 
example, Widrow and Stearns [1985], and Haykin [1991]. We can not get 
into the details here without spending several pages. We merely wish to 
draw attention to the fact that the concepts of decimation, interpolation, 
and subband decomposition have been used to obtain 'improved' adaptive 
filters. The 'improvement' is typically in terms of reduced filter lengths, 
faster convergence, and/or lower implementation complexity. Some of the 
references in this context are: Gilloire [1987], Gilloire and Vetterli [1992], 
and [Sathe and Vaidyanathan, 1990,1991 and 1993]. The reference Shynk 
[1992] provides an excellent introduction and overview of this topic.

4.6 SPECIAL FILTERS AND FILTER BANKS

A number of multirate applications employ special types of systems such as 
half-band filters, Mth band filters, and power complementary filter-banks. 
We now review these systems, and indicate some applications.

4.6.1 M-th Band Filters or Nyquist(M) Filters

For an M-fold interpolation filter (Fig. 4.1-8 with L = M), the output y(n) 
has z-transform Y(z) = X(zM)H(z). Consider the polyphase decomposition
(4.3.7) for H(z). Suppose the 0th polyphase component E0(z) is a constant 
c, that is,

(4.6.1)
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Then

This means that y(Mn) = cx(n). In practice we can scale the filter such 
that c = 1. Thus, even though the interpolation filter inserts new samples, 
the existing samples themselves are communicated to the output without 
distortion.

A filter with the above property is said to be a Nyquist [or Nyquist(M)] 
filter [Mueller, 1973], or an Mth band filter [Mintzer, 1982]. We see that the 
impulse response h(n) satisfies

Figure 4.6-1 Mth band or Nyquist(M) filters. (a) Example of impulse response 
(M = 3), and (b) typical input to the filter if used as a 3-fold interpolation filter 
(see Fig. 4.1-8(a)).
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(4.6.2)

(4.6.3)

In other words, h(n) has periodic zero-crossings separated by M samples 
[except that h(0) = c]. Figure 4.6-1(a) demonstrates this for M = 3. In Fig. 
4.6-1(b) we show typical appearance of yE(n). If these two sequences are 
convolved, then the nonzero samples of yE(n) are unaffected (except for a 
scale factor c).

Generalized definition. We generalize the above definition so that 
any delayed version of an Mth band filter is also an Mth band filter. We 
will say that H(z) is a Mth band filter or Nyquist(M) filter, if any one of 
the M polyphase components, say Ek(z), has the form Ek(z) = cz-nk. Thus

(4.6.4a)
In terms of the impulse response, the above property is equivalent to

(4.6.4b)

Fig. 4.6-2 demonstrates this for M = 3,k = 2 and nk = 1. [If k = nk = 0, 
we obtain the special case (4.6.3).]



This means that the input samples x(n) are communicated, without distor- 
tion, to the output according to the rule

Figure 4.6-2 Example of a Mth band filter with M = 3, k = 2, and nk = 1.

Figure 4.6-3 For an Mth band filter H(z), the responses H(ej[ω-((2πk)/M)]) add up
to a constant.

Manifestation in frequency domain. If H(z) satisfies (4.6.1), we 
can show that
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The output of the above Mth band interpolation filter is

(4.6.5a)

(4.6.5b)

(4.6.6)

where W = e-j2π/M. The frequency response of H(zWk) is the shifted ver- 
sion Η(ej(ω-(2πk/Μ))) of H(ejω). So we conclude that all these M uniformly 
shifted versions of H(ejω) add up to a constant (see Fig. 4.6-3).

The definition of Nyquist filters can be extended to the continuous-time 
case as well. If the impulse response ha(t) is such that ha(τn) = 0 for any 
integer n ≠ 0, we say that ha(t) is Nyquist(τ). Here τ need not be an integer.
Half-Band Filters

A half-band filter H(z) is an Mth band filter with M = 2. For the 
simple case where k = nk = 0, we, therefore, have

(4.6.7a)



This shows that H(ej(π/2-θ)) and H(ej(π/2+θ)) add up to unity for all θ. In 
other words, we have a symmetry with respect to the half-band frequency 
π/2, justifying the name "half-band filters". Figure 4.6-4 demonstrates the 
effect of this symmetry for a lowpass filter: the peak passband and stopband 
errors δ1 and δ2 are equal, and the bandedges ωp and ωS are equally away 
from π∕2.

Zero-phase FIR half-band filters. Half-band (more generally Mth 
band) filters can be FIR or IIR. In the FIR case, it is possible to design them 
to have linear phase property, and this is the most commonly used case. In 
particular suppose a half-band filter is zero-phase so that h(n) = ch*(-n), 
with ∣c∣ = 1. Let the highest nonzero coefficient be h(K). Then, K is odd 
[except in the trivial case K = 0], in view of (4.6.7b). So K = 2J + 1 for 
some integer J. Thus, the length of the impulse response is restricted to be 
of the form 4 J + 2 + 1 (unless H(z) is a constant).

Figure 4.6-4 Frequency response of a zero-phase half band filter.
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In terms of the impulse response h(n) this means

(4.6.7b)

The condition (4.6.6) reduces to
(4.6.7c)

Here are some examples, with c = 1 and various choices of E1(z).

Notice from these examples that a half-band filter may or may not be causal; 
it may or may not have real coefficients or linear-phase.

If H(z) has real coefficients, then H(—ejω) = H(ej(π-ω)), and this 
becomes

(4.6.7d)



Design of Zero-Phase FIR Half-Band and M-th Band Filters
Techniques for the design of zero-phase FIR half-band and Mth band 

filters are discussed in Mintzer [1982] and Vaidyanathan and Nguyen [1987b]. 
Problem 4.30 takes the reader through all the detailed steps of an efficient 
method for the half-band case. The problem also shows how the response can 
be made to satisfy H(ejω) ≥ 0, which is required in perfect reconstruction 
filter-bank design (Sec. 5.3.6).

Window designs. The simplest way to design a good lowpass FIR 
Nyquist(M) filter with cutoff ωc = π∕M would be to use the windowing 
technique, that is, design h(n) as
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where v(n) is a suitable window, say the Kaiser window. Since sin(πn∕M) = 
0 for n = nonzero multiple of M, (4.6.3) is indeed satisfied. Design exam­
ple 3.2.1, which was presented in Chap. 3, already satisfies the Nyquist(4) 
property, since ωc = π∕4. As explained in Sec. 3.2.1, any desired stopband 
attenuation and transition bandwidth can be obtained by using an appropri­
ate Kaiser window. We know, however, that window methods do not result 
in filters that are optimal in any way (except rectangular windows; Problem 
3.5).

Eigenfilter designs. A technique to design Mth band filters which 
are optimal in the least squares sense is provided by the eigenfilter approach 
described in Sec. 3.2.3. Here the design problem is formulated in terms of 
the coefficients bn [Eq. (3.2.21)]. The Mth band condition can be satisfied 
by forcing

In the eigenfilter approach we minimize an objective function φ [Eq. (3.2.30)] 
which represents a linear combination of passband and stopband accuracies. 
The optimum filter vector b is equal to the eigenvector of the matrix R 
corresponding to its smallest eigenvalue λ0. Now if we want to impose the 
Mth band constraint, we can do so very easily by modifying the objective 
function as follows: define a new vector b by deleting the components bMn 
(n ≠ 0). For example with M = 3 we have

Having defined b like this, we replace the matrix R with a reduced matrix 
R, obtained by deleting from R all the rows and columns whose indices are 
multiples of M (except the 0th row and column).

We now compute b such that the quantity b†Rb is minimized under the 
constraint b†b = 1. (The matrix R continues to be positive definite.) The



solution b is the eigenvector of R corresponding to the smallest eigenvalue. 
This represents the optimal [in the sense of minimizing (3.2.30)] Mth band 
linear-phase filter.
Design Example 4.6.1: Nyquist(5) Eigenfilters

Figure 4.6-5 Design example 4.6.1. Design of 5th band (i.e., Nyquist(5))
lowpass filter. Order N = 38. (a) Frequency response magnitude, and (b) impulse 
response.

Figure 4.6-5(a) shows the magnitude response plot of a 5th band low- 
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pass eigenfilter of order 38 designed in this manner. The band edges are 
ωp = 0.15π and ωS = 0.25π. The impulse response is shown in Fig. 4.6-5(b). 
Design procedures which seek to obtain approximately equiripple (i.e., op­
timal in the minimax sense) FIR Mth band filters can also be found in the 
above references.

4.6.2 Complementary Transfer Functions
A. Strictly Complementary (SC) Funtions

A set of transfer functions [H0(z), H1(z), . . . , Hm-1(z)] is said to be 
strictly complementary (abbreviated SC) if they add up to a delay, that is,

Figure 4.6-6 Example of a strictly complementary (SC) pair.

For arbitrary M we can generate an example as follows: define
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(4.6.8)

If we split a signal x(n) into M subband signals using the SC analysis filters 
Hk(z), then we can just add the subband signals to get back the original 
signal x(n) with no distortion, except a delay.

When M = 2, we can design an SC pair easily as follows: let H0(z) 
be a Type 1 linear phase FIR filter. Then H0(ejω) = e-jωN/2 HR(ω), where 
HR(ω) is real. Here N/2 is an integer (since the order N is even for Type 
1). Define H1(z) = z-N/2 - H0(z). Then

Figure 4.6-6 shows a typical response HR(ω) which can be obtained using 
the McClellan-Parks algorithm. The response 1 - HR(ω) is also shown. 
Thus H0(z) and H1(z) are lowpass and highpass filters, and satisfy the SC 
property H0(z) + H1(z) = z-N/2 by construction.



where H(z) is an Mth band filter satisfying (4.6.3). Then (4.6.6) holds, 
which means that (4.6.8) is satisfied! If the filter H(z) is lowpass with ap- 
propriate passband width, then the set of M filters has response resembling 
Fig. 4.1-15(c).
B. Power Complementary (PC) Functions

A set of M transfer functions is said to be power-complementary (ab- 
breviated PC) if
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(4.6.9a)

where c > 0 is constant. This property is equivalent to ΣM-1k=0 Hk(z)Hk(z) — 
c for all z, by analytic continuation. [The notation Hk(z) was explained in 
Section 2.3.] Such a property is useful in analysis/synthesis systems [that 
is, in systems where Fig. 4.1-15(b) is cascaded to Fig. 4.1-15(a)]. If the 
synthesis filters are chosen as Fk(z) = Hk(z), then we have x(n) = cx(n) 
which implies perfect recovery of x(n). In practice, the noncausality of Hk(z) 
is avoided by insertion of a delay z-n0 so that x(n) = cx(n — n0).

Given an FIR H0(z) with ∣H0(ejω)∣ ≤ 1, it is easy to find an FIR filter 
H1(z) such that [H0(z), H1(z)] is PC. For this note that PC property is 
equivalent to

(4.6.9b)
In other words, H1(z) is a spectral factor of the quantity 1 - ∣H0(ejω)∣2. The 
coefficients of such a spectral factor can be calculated as described earlier in 
Sec. 3.2.5.
C. Allpass Complementary (AC) Functions

A set of transfer functions is said to be allpass-complementary (abbre­
viated AC) if

(4.6.10)

where A(z) is allpass (Sec. 3.4). If such a set is used in an analysis bank, 
and if the subband signals xk(n) are recombined by adding, the result x(n) 
satisfies ∣X(ejω)∣ = ∣X(ejω)∣. So the reconstructed signal is free from magni- 
tude distortion. Note that strictly complementary functions are also allpass 
complementary but not necessarily power complementary.
D. Doubly Complementary (DC) Functions

A set of transfer functions is said to be doubly complementary (DC) 
if it is allpass complementary as well as power complementary. There are 
several applications of this (including digital audio; see below).

From the results of Sec. 3.6 we obtain a simple technique to design dou­
bly complementary filters. Recall that many standard IIR filters (including



odd order Butterworth, Chebyshev and elliptic lowpass filters) can be writ- 
ten as in (3.6.4) where A0(z) and A1(z) are real-coefficient allpass. Recall 
also that H1(z) defined by (3.6.5) is power complementary to H0(z). Clearly 
H0(z) + H1(z) = A0(z) which is allpass, so that the pair [H0(z), H1(z)] is 
both AC and PC, that is, doubly complementry!
E. Euclidean CompIementary (EC) Functions

A pair of FIR transfer functions [H0(z), H1(z)] is said to be Euclidean 
complementary (abbreviated EC) if the polynomials H0(z) and H1(z) are 
relatively prime [that is, do not share a common factor of the form (β-αz-1) 
with 0 < ∣α∣ < ∞]. It is well known (Euclid’s theorem [see Sec. 2.3, Bose, 
1985]) that if H0(z) and H1(z) are relatively prime, there exist polynomials 
F0(z) and F1(z) such that
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(4.6.11)
This means that we can combine the outputs of H0(z) and H1(z) to repro- 
duce x(n) with no delay even when the filters H0(z), H1(z), F0(z), F1(z) are 
causal FIR!

Here is a simple example which helps to remove the initial surprise which 
accompanies this result: let H0(z) = 1 + z-1 and H1(z) = 1 — z-1. Then 
the choice F0(z) = F1(z) = 0.5 results in x(n) = x(n). Given the relatively 
prime pair [H0(z), H1(z)], there exists a unique pair [F0(z), F1(z)] (up to a 
scale factor) of lowest degree which can be solved using Euclid’s algorithm.

An example is shown in Figure 4.6-7. The magnitude response plots of 
the four filters satisfying (4.6.11) are shown in the figure. The filter orders 
are 39 for Hk(z) and 38 for Fk(z).

A warning is appropriate in this context. Suppose the relatively prime 
polynomials H0(z) and H1(z) are causal lowpass and highpass filters with 
∣H0(ejω)∣, ∣H1(ejω)∣ ≤ 1. Then the unique lowest degree pair [F0(z), F1(z)] 
turns out to be highpass and lowpass respectively! So with F0(z) and F1(z) 
normalized so that ∣F0(ejω)∣, ∣F1(ejω)∣ ≤ 1, the constant c in (4.6.11) can be 
very small. This means, quantization errors in the design and implementa­
tion of the filters can dominate c, rendering this scheme impractical.

More generally, a set of M FIR functions [H0(z), H1(z), . . . , HM-1(z)] 
is said to be EC if there is no factor (β — αz-1) with 0 < ∣α∣ < ∞ common 
to all of these. Under this condition, there exists a set of M FIR filters 
[F0(z), F1(z), . . . , FM-1(z)] such that ΣM-1k=0 Hk(z)Fk(z) = 1. In particular, 
if the filters Hk(z) are causal then so are Fk(z).

4.6.3 Relation Between Nyquist(M) Filters and Power Complementary 
Filters
There is a relation between Mth band filters and power-complementary fil- 
ters, which can be stated as follows: Consider a transfer function H(z) rep- 
resented in the M-component polyphase form (4.3.7). Define the new trans- 
fer function G(z) = H(z)H(z). Then the set [E0(z), E1(z), . . . , EM-1(z)] is 
power complementary if, and only if, G(z) is an Mth band filter.



Figure 4.6-7 Example of a Eucidean complementary (EC) pair [H0(z), H1(z)] 
and its synthesis counterpart [F0(z), F1(z)]. Note that F0(z) is highpass, and F1(z) 
lowpass!
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To prove this, define

(4.6.12)

for 0 ≤ n ≤ M — 1, where W = e-j2π/M. This set of M transfer functions 
can be represented in vector form as

(4.6.13)

where W is the M × M DFT matrix satisfying W†W = MI. If the set 
[E0(z), E1(z), . . . , EM-1(z)] is power complementary then E(z)E(z) = c so 
that
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(4.6.14)
This in turn means that the set Hk(z), 0 ≤ k ≤ M - 1 is power comple- 
mentary. In other words, if we define G(z)=H(z)H(z), then G(z) satisfies 
ΣM-1k=0 G(zW-k) = Mc, so that it is an Mth band filter.

Conversely, assuming that G(z) is an Mth band filter, we can prove 
that the set of polyphase components [E0(z), E1(z), . . . , EM-1(z)] is power 
complementary simply by inverting the matrices in (4.6.13) and carrying out 
a similar argument as above.

4.6.4 Applications of Special Transfer Functions
From the above discussions it is clear that Mth band filters and comple- 
mentary filters have applications in the exact reconstruction of a signal x(n) 
after it has been split into M subbands (provided the subband signals are 
not decimated; decimation would cause aliasing error, which is a major issue 
discussed in Chap. 5). A second application of Mth band filters is in the 
design of interpolation filters, as explained earlier. Some applications are 
also described in Mitra, et al. [1985] and Regalia and Mitra, [1987].
Doubly compIementary Filters in Digital Audio

The loudspeaker system in most audio equipment typically has differ- 
ent subspeakers for different frequency ranges such as the tweeter (high fre- 
quency) and woofer (low frequency). In a digital audio system it is desirable 
to split the audio signal y(n) (before D/A conversion) into the lowpass sig­
nal y0(n) and highpass signal y1(n) using an anlaysis bank [H0(z), H1(z)]. 
The analysis bank is more commonly called a crossover network in the au- 
dio industry [Bullock, III, 1986]. These subband signals can then be D/A



converted and fed into the speakers (Fig. 4.6-8). Assuming that the loud- 
speaker introduces negligible distortion (which in general is not true), the 
human ear eventually perceives an analog version of y0(n) + y1(n). In the 
transform domain, this is [H0(z) + H1(z)]Y(z). To avoid any distortion in 
the reconstruction, it is desirable to design H0(z) and H1(z) to be a strictly 
complementary pair. As elaborated earlier this can be done by using a Type 
1 FIR linear phase filter for H0(z), but this is more expensive than IIR filters.

With IIR filters it is possible to force the allpass complementarity. This 
means that [H0(z) + H1(z)]Y(z) = A(z)Y(z) where A(z) is allpass, so that 
the reconstructed signal represents Y(z) faithfully except for phase distor- 
tion. If necessary, phase distortion can be equalized using an allpass filter.

It is desirable to design H0(z) and H1(z) to be good lowpass and 
highpass filters so that the speakers are not damaged by out-of-band en- 
ergy. Notice, however, that if H0(z) is a good lowpass filter and if the pair 
[H0(z), H1(z)] is allpass complementary, this does not necessarily mean that 
H1(z) is a good highpass filter. This is because the responses H0(ejω) and 
H1(ejω) are in general complex. For example, it is possible at some frequency 
ω0 to have H0(ejω0) = ejπ/3 and H1(ejω0) = e-jπ/3 so that the sum is 
2 cos(π∕3) = 1 consistent with the AC requirement ∣H0(ejω) + H1 (ejω)∣ = 1.

For this reason a doubly complementary pair [H0(z), H1(z)] is most suit- 
able: the PC property ensures that H1(z) is a good highpass filter (if H0(z) 
is lowpass) and the AC property eliminates amplitude distortion. Such IIR 
filters can be implemented much more efficiently than FIR filters, as elab- 
orated earlier in Sec. 3.6. For systems with several subband speakers, an 
M-band AC filter bank can be used; see Renfors and Saramäki [1987] for 
design of such filters.

Figure 4.6-8 Splitting the digital audio signal into woofer and tweeter compo­
nents.

Digital/Analog Hybrid QMF Banks in Digital Audio
A second potential approach to split the audio signal for loudspeaker 

driving is shown in Fig. 4.6-9. Here, the digital audio signal y(n) is first 
split into lowpass and highpass versions by using digital analysis filters. Then 
D/A conversion is performed at the lower rate, on the decimated subband 
signals v0(n) and v1(n). The analog subband signals are then passed through 
analog synthesis filters Fa,0(s) and Fa,1(s) before feeding the speakers. The 
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aim here is to choose the filters such that aliasing is canceled and ampli- 
tude and phase distortion are reduced to the desired extent. The frequency 
response characteristics of the speakers should be taken into consideration 
in such a design. The advantage of this hybrid digital/analog QMF bank 
is that the D/A conversion is performed at half the sampling rate. At this 
point in time, no results are available on the design of such hybrid QMF 
banks, but the idea appears promising.

Figure 4.6-9 A digital/analog hybrid QMF bank with potential application in 
digital audio.

Figure 4.6-10 An analog/digital hybrid QMF bank.

Analog/Digital Hybrid QMF Banks in A/D Conversion
An immediate dual of the above idea is the use of analog analysis filters 

and digital synthesis filters. Such systems can have applications in A/D 
conversion, where a high sampling rate A/D converter can be designed by 
using M converters operating at M fold lower rate. Figure 4.6-10 depicts 
the basic idea where the analog signal xa(t) is split into subband signals by 
the analog filters Ha,0(s) and Ha,1(s). These signals are then sampled at 
half the intended rate fs, and converted into digital format. The digitized 
subband signals are then passed through expanders (to get back the desired 
sampling rate) and recombined through the synthesis filters F0(z) and F1(z) 
to obtain x(n). The aim here is to design the filters such that x(n) represents, 
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as closely as possible, the signal x(n) which would have been obtained by 
direct A/D conversion of xa(t) at the rate fs. Again, since the analog filters 
are not ideal, there is aliasing at the output of the analysis bank. The 
synthesis filters should be chosen to minimize the effect of aliasing, as well 
as amplitude and phase distortions.

High speed A/D conversion using filter banks is also discussed in Pe- 
traglia and Mitra [1990]. More applications of special transfer functions are 
scattered throughout this text in various forms.

4.6.5 Adjustable Multilevel Filters and Tunable Filters
A multilevel filter has typical response as shown in Fig. 4.6-11. Basically, 
the frequency axis is divided into a number of regions, and the response 
has some constant value in each region. There are transition bands between 
these regions so that the filter is realizable. The levels βk are real or com­
plex numbers. The multilevel response is a generalization of lowpass and 
bandpass responses.

Figure 4.6-11 A typical response of a multilevel filter. (© Adopted from 1990 
IEEE.)

Figure 4.6-12 (a) A typical splitting of the frequency axis into M divisions
and (b) a prototype lowpass response, which can be used to generate a multilevel 
response.

We will consider the example where the multilevel filter G(z) has M 
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regions with equal width 2π∕M, as shown in Fig. 4.6-12(a). † Suppose
H(z) is a Mth band zero-phase filter with response as shown in Fig. 4.6- 
12(b). It is clear that we can obtain the multilevel filter G(z) as 

because the response of H(zWk) is obtained by shifting H(ejω) to the right 
by 2πk∕M. We know that the M responses H(zWk) can be realized in terms 
of the polyphase components of H(z) as in Fig. 4.3-5(a). This means that 
the multilevel filter can be implemented as in Fig. 4.6-13. The levels βk 
appear in the structure as independent multipliers, and can be separately 
tuned. Similarly by changing H(z) [i.e., the polyphase components Eℓ(z)] 
we can adjust the sharpness of the level transitions without affecting the 
levels.

In a practical implementation of this idea, we have to be more careful. 
When the M responses are added as in (4.6.15), we have no difficulty in 
obtaining the in-band levels, but the transition bands may exhibit dips or 
bumps depending on the degree of overlap between adjacent responses [such 
as H(zWk) and H(zWk+1)]. As explained below, a very simple way to avoid 
these dips and bumps is to take H(z) to be an Mth band [i.e., Nyquist(M)] 
filter satisfying (4.6.6).

Figure 4.6-13 Polyphase implementation of an adjustable multilevel filter. Here 
βk represents the 'response level' in the kth band. (© Adopted from 1990 IEEE.)

If we assume that in the region of overlap of H(zWk) and H(zWk+1) the 
remaining terms of (4.6.6) are negligible, we have H(zWk) + H(zWk+1) ≈ 1.
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(4.6.15)

† By permitting adjacent levels to be equal if necessary, and taking M to 
be sufficiently large, we can in practice cover less restricted responses as in 
Fig. 4.6-11 also.



This is plotted in Fig. 4.6-14 in the neighbourhood of the transition from 
βk to βk+1 and is monotone (i.e., free from bumps and dips).

Summarizing, we can design multilevel filters very efficiently by the 
structure of Fig. 4.6-13 where Eℓ(z) are the polyphase components of a zero 
phase Mth band filter. The Mth band property ensures smooth transition 
from band to band.
Design Example 4.6.2: Multilevel Filters

Figure 4.6-15 shows the response of a 5th band lowpass filter (order 
58) designed using the Kaiser window approach, and two examples of mul­
tilevel responses derived from it. The values of the parameters βk are 
(0.4, 1.0, 0.7, 0.1, 0.9) and (1.0, 0.5, 0.0, 0.7, 0.7), respectively.

The reader will notice that in the above example, the multilevel filter 
does not have real coefficients even though the prototype H(z) does.
Tunable filters.

We can use the structure of Fig. 4.6-13 to obtain a lowpass filter whose 
cutoff frequency is tunable. Consider, for example, real coefficient filters so 
that the magnitude response is symmetric with respect to zero frequency. 
If we set β0 = 1, and βk = 0 otherwise, the 'cutoff' is π∕M. If we set 
β0 = β1 = βM-1 = 1 and βk = 0 otherwise, then the cutoff frequency is 
3π∕M. [Refer to Fig. 4.6-12(a).] By making M sufficiently large, we can 
thus tune the cutoff frequency in very fine (discrete) steps.
Why the Name "Polyphase" Decomposition?

This seems to be the best place to explain the reason for use of the 
term “polyphase” decomposition. Suppose we have a Mth band filter with 
response as in Fig. 4.6-12(b). We know that the impulse response eℓ(n) 
of the polyphase component Eℓ(z) is obtained by decimating h(n + ℓ) (Fig. 
4.3-1). This means that the polyphase component Eℓ(ejω) is an aliased 
version of ejωℓH(ejω), so that it has the appearance of an allpass function 
with magnitude 1/M (except around ω = ±π because of aliasing). This is 
demonstrated in Fig. 4.6-16. Now let us see how the summation
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This implies

(4.6.16)

Figure 4.6-14 Behavior of (4.6.16) in the neighborhood of transition.



Figure 4.6-15 Design example 4.6.2. Multilevel filters. (a) Prototype 5th band 
filter, and (b) two multilevel examples. (© Adopted from 1990 IEEE.) 

works in the passband region in Fig. 4.6-12(b). There are M terms, each 
with magnitude ≈ 1/M. These add up to nearly unity which shows that the
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M terms z-ℓEℓ(zM) are almost in phase. But for an Mth band filter, E0(z) 
is constant. This shows that the phase responses of z-ℓEℓ(zm) are nearly 
zero in the passband. In other words, Eℓ(ejω) tries to approximate ejωℓ/M. 
So the phase response φℓ(ω) of the ℓth polyphase component is trying to 
approximate ωl∕M, for each ℓ. This is the motivation for use of the term 
"polyphase" [Bellanger, et al., 1976].

Figure 4.6-16 Typical behaviors of ∣Eℓ(ejω)∣ when ∣H(ejω)∣ is as in Fig. 4.6- 
12(b).

4.7 MULTIGRID METHODS
The term “multigrid methods” represents a wide range of techniques used 
in iterative numerical computations. These are used to solve large sets of 
linear or nonlinear equations (thousands of unknowns) which in turn may be 
discretized versions of (partial) differential equations. Multigrid techniques 
improve the speed/accuracy of solutions, in some cases dramatically. This 
is a discipline with vast amount of literature, and the reader wishing to 
pursue the literature should begin with Briggs [1987], and Brandt [1977]. 
Our goal here is to describe the philosophy with simple examples (ordinary 
linear differential equations), and show the connection to multirate signal 
processing. The discussion in this section is intended to convey the idea 
with emphasis on concepts rather than rigor.

4.7.1 Discretizing a Continuous-Time Problem
Matrix equations arise either directly, or by discretization of continuous 
problems. To demonstrate, consider the second order differential equation
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(4.7.1)

to be solved in the time range 0 < t < 1, with boundary conditions ya(0) = 
ya(1) = 0. This is a linear constant-coefficient differential equation. Here 
ua(t) is the continuous-time input to the differential equation, and ya(t) is 
the output.

When attempting to solve this [i.e., find ya(t)] on a computer, we dis- 
cretize the problem. We first define a uniform "grid" G(Δ) of the domain 
0 ≤ t ≤ 1 (Fig. 4.7-1), and try to find (approximate value of) ya(t) on the



grid, that is, at points t = n∆, where n is an integer with 1 ≤ n ≤ N. If 
we define y(n) = ya(n∆), and u(n) = ua(n∆) and approximate the second 
derivative with the second difference, we obtain from (4.7.1)

(4.7.2)

Figure 4.7-1 A uniform grid defined on 0 ≤ t ≤ 1. The spacing Δ is called 
fineness.

The aim is to solve this for 1 ≤ n ≤ N, under the boundary conditions 
y(0) = y(N + 1) = 0. We can write the equations (4.7.2) in matrix form

(4.7.3)

where

(4.7.4)

and A is N × N. For example with N = 5,

(4.7.5)

Summarizing, we have converted our problem into a problem in linear al- 
gebra. The original problem (4.7.1) has been reformulated on a grid G(Δ), 
where the supercript Δ denotes the "fineness" of the grid. The solution y 
of the equation (4.7.3) is an approximation to the sampled version of the 
solution ya(t) of (4.7.1).

Notice that A is symmetric and Toeplitz (Appendix A). Furthermore, 
it is “banded.” For a banded matrix all elements sufficiently away from the 
main diagonal are zero. The banded nature is a consequence of discretizing 
a differential equation.
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4.7.2 Traditional Techniques to Solve Ay=u
Assume that A is nonsingular. There exist many techniques to find the ex- 
act solution y to (4.7.3) (subject only to finite precision errors), in a finite 
amount of time. This includes Gauss-elimination and its variations [Golub 
and Van Loan, 1989]. These have O(N3) complexity [i.e., the computational 
time is cN3 where c is independent of N]. If A has special structure (sym- 
metry, positive definiteness and so on, Appendix A) the methods can be 
made more efficient, but are still O(N3). If A is Toeplitz then there exist 
O(N2) techniques (see Blahut [1985] and references therein).
Iterative Techniques

In many applications, however, iterative techniques are used. Instead 
of finding the exact solution, these methods attempt to find an approximate 
solution yk, whose accuracy improves with iteration number k. These have 
some computational advantages when the matrix is banded, with the matrix 
size N much larger than the number of nonzero elements per row. Iterative 
techniques can also be applied to more general situations (such as nonlinear 
equations). Finally there are some applications where the matrix A grows 
in real time (such as in real time recursive estimation); iterative techniques 
can incorporate a mechanism to update the approximations efficiently.

A typical iteration has the form

(4.7.6)

where P is related to A (details depending on the particular iterative tech- 
nique), and q depends on A as well as u. Ideally this converges to the exact 
solution y for any initial estimate y0 as long as P is stable (i.e., has eigen- 
values strictly inside unit circle; Sec. 13.4.3).

For fixed A, the choice of P is not unique. To see how P is related to 
A, note that upon convergence (4.7.6) implies

(4.7.7)

that is, (I - P)y = q. So we can choose I - P = TA,q = Tu, for any 
nonsingular T. For our discussion the choice of T is irrelevant, as long as 
P is stable. We shall assume T = αI where α is a nonzero scalar. So 
P = I-αA.

The error vector and the residual vector. Suppose y is an ap­
proximation to the solution y. Then Ay = u ≠ u. Define

(4.7.8)

As the exact solution y is not known, we do not know the error e. On the 
contrary, the residual r can be computed from the approximate solution y.
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It is easily verified that the error and residual are related as Ae = r, so 
that, at the kth iteration we have the relation
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(4.7.9)
where ek and rk are the error and residual at the kth iteration, that is,

(4.7.10)
where uk = Ayk. The iteration (4.7.6) can be rewritten in terms of the 
residual rk as

(4.7.11)
Thus, the solution yk+1 is obtained by adding a correction term to yk, 
proportional to the residual rk.

More insight can be gained by subtracting (4.7.6) from (4.7.7) and 
rewriting in terms of ek. This gives

(4.7.12)
by using P = I - αA.

Thus, as long as P is stable, rk and ek eventually become zero. We see 
below that the speed of convergence has to do with the eigenvalues of P. 
Choice of α (which affects eigenvalues of P) is therefore crucial.

4.7.3 The Stalling Phenomenon
We see that the convergence of the residual is governed by

(4.7.13)
We can judge the rate of convergence by considering the behavior of the 
residual energy

(4.7.14)
Figure 4.7-2 shows a typical behavior of this quantity, which arises in many 
practical situations: initially the energy decreases rapidly, and then there is a 
phase of slower decrease, and then even slower, and so on. (The iteration gets 
into “slower and slower” modes.) At some stage the rate of decrease becomes 
very small. This phenomenon is called stalling. Under this condition, it takes 
several iterations (i.e., prohibitive amount of computations) to reduce the 
energy θk by a significant amount.

Figure 4.7-2 Reduction of 
residual energy as k increases.



An “obvious” way to overcome the stalling problem is suggested by 
(4.7.13). Since rk+L = PLrk, we can replace P with PL for some large inte- 
ger L and perform the iteration. The convergence is speeded up in proportion 
to L, that is, the slow modes will appear to be faster. The disadvantage is 
that the evaluation of PL itself requires O(LN3) computations, far in excess 
of Gaussian elimination!

In this situation, multigrid processing comes to our rescue. Broadly 
speaking, as soon as the iteration begins to stall, we reformulate a new 
problem by “decimating” the original problem into a problem of smaller 
dimension (as described below). The iterations for the problem proceed at 
a much faster rate. We then use an interpolation scheme on the result, to 
obtain a correction term for the original (larger) problem. Before describing 
the details, we study the reason for the stalling behavior (Fig. 4.7-2) more 
quantitatively.
Why Does Stalling Occur?

To explain stalling, first note that rk = Pkr0. Assume for simplicity 
that P is diagonalizable with a unitary matrix (Sec. A.6, Appendix A), that 
is, can be written as P = UΛU†, where (i) Λ is a diagonal matrix with 
diagonal elements λi equal to the eigenvalues of P, and (ii) U†U = I. We 
then have Pk = UΛkU† so that rk = UΛkU†r0. Denoting the elements of 
the column vector U†r0 as v0, . . . vN-1, we can write
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(4.7.15)

where ui are the columns of U. Since u†iuℓ = δ(i — ℓ), we get

(4.7.16)

To visualize the idea clearly, assume ∣λ0∣ < ∣λ1∣ < . . . < ∣ΛN-1∣. Referring 
now to Fig. 4.7-2, it is clear that the initial steep decrease of θk is due to 
∣v0∣2∣λ0∣2k (assuming this term is nonzero) and that stalling is created by the 
slowest-decaying term ∣vN-1|2|λΝ-1∣2k (assuming vN-1 ≠ 0). This slowest 
mode corresponds to the eigenvalue λN-1 with largest magnitude. As long 
as ∣λN-1| < 1, the residual rk (hence the error ek) eventually decreases to 
zero as k → ∞.

In Problem 4.31 we consider some additional details for the case where 
A is positive definite. We derive the condition on α for stability of P, and 
also the value of α that maximizes convergence rate.

4.7.4 Basic Idea of Multigrid Approach
In what follows, the residual rk and error ek upon staffing will be denoted 
as r(Δ) and e(Δ). Also, we use Α(Δ) in place of A. Thus (4.7.9) is equivalent 
to

(4.7.17a)



The superscript indicates that these quantities pertain to the grid G(Δ) of 
fineness Δ (Fig. 4.7-1). In problems where the equation (4.7.3) is obtained 
by discretization of differential equations, the iteration (4.7.6) often exhibits 
an extremely interesting behavior upon stalling, viz., the residual vector 
r(Δ) has a smooth appearance. In other words, if r(Δ)(η) denotes the nth 
component of r(Δ), then the plot of r(Δ)(n) as a function of n is 'smooth'. 
Figure 4.7-3 demonstrates the meaning of “smooth”. For comparison, we 
have also shown a “nonsmooth” or “oscillatory” function.

Figure 4.7-3 Demonstrating smooth and oscillating vectors.

Before explaining the reason for this behavior, let us explore the conse- 
quences. At the end of the kth iteration we know r(Δ). If we can solve for 
e(Δ) from (4.7.17a), we can obtain the exact solution y since
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This might appear to be as involved as the original problem (4.7.3), but the 
smooth nature of r(Δ) can be exploited now. Since the sequence r(Δ)(n) 
appears to have only low-frequency components, we can “decimate it”, say 
by a factor of 2, and consider the following equation

(4.7.17b)

In this equation r(2Δ) is a decimated version of the residual r(Δ), and has 
about half as many elements. The matrix Α(2Δ) is a “decimated version” of 
A, and is approximately N/2 × N/2. Essentially, it is obtainable by discretizing 
the original differential equation with a coarser grid, but we shall fill these 
mathematical details later.

Equation (4.7.17b) is the analog of (4.7.17a), but on a coarser grid. The 
basic idea is that we can now solve for the error e(2Δ) using this smaller sys- 
tem. We then perform an 'interpolation operation' to find an approximation 
to the error e(Δ) on the original fine grid. The solution yk on the fine grid 
can now be corrected by adding this estimate e(Δ) to it. This idea can of 
course be carried to deeper levels. Thus, if the iterative process for (4.7.17b) 
stalls, we can repeat the decimation process, and so on. We now turn to 
quantitative details of the various components of this idea.



Why Does the Residual Look "Smooth" Upon Stalling?
There is no law which says that this will always happen. However, 

with proper choice of α, this can usually be made to happen. First refer 
to the example where (4.7.1) was discretized, and consider the case where 
μ = 0. The differentiator d2y(t)∕dt2 was replaced by a second order difference 
operator c(z - 2 + z-1) = cz(1 - z-1)2, which is a zero-phase highpass filter. 
If we now look at the matrix A given in (4.7.5), we see that all rows have 
the form

(4.7.18)
except the 0th and last rows. (We assume that the matrix size N is large, 
so that these border effects can be ignored.) Moreover, each row is a shifted 
version of the preceding row. As a result, the product Av approximates 
a convolution of the sequence v(n) with the highpass filter (—z + 2 — z-1) 
(where v(n) is the nth element of v).

Now consider the iteration matrix P = I — αA. This has all the prop- 
erties of A except that it represents a convolution with the filter

(4.7.19)

For proper choice of α this filter has lowpass behavior. For example let 
α = 1/3, then H(z) = (z + 1 + z-1)∕3. This has response

(4.7.20)

which is plotted in Fig. 4.7-4(a). Thus the operation Pv resembles lowpass 
filtering of the sequence v(n). Summarizing, the effect of the iteration (4.7.13) 
is that of a lowpass filter. For large k therefore, this has a smoothing effect 
on the residual as mentioned above.

If we choose α = 1/2, then the filter has response H(ejω) = cosω [Fig. 
4.7-4(b)] which is not lowpass. In this case, the iteration does not result in 
smoothing.

Relation to eigenvector viewpoint. In Sec. 4.7.3 we saw that 
the iteration stalls when rk is close to an eigenvector corresponding to the 
eigenvalue λN-1 with largest magnitude. In the above discussion, however, 
we see that stalling typically occurs when rk has been smoothed out. The 
latter observation is a special case of the former, when P can be interpreted 
as a lowpass filtering operator.

Thus when P approximates a filter operator, vectors of the form 

(4.7.21) 
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are approximately eigenvectors, with eigenvalues H(ejω). (This is because 
ejωn, and more generally an, are eigenfunctions of discrete time LTI systems; 
see Sec. 2.1.2.) If H(ejω) is a lowpass response, then the eigenvalues with 
large magnitude correspond to low frequencies ω. This means that, after 
several iterations, only the low frequency components of the initial vector r0 
survive. So the residual vector rk appears to be smooth upon stalling.

Figure 4.7-4 Explaining the smoothing effect created by the iteration matrix. 
The response H(ejω) is shown. (a) α = 1/3 causes smoothing and (b) α = 1/2 
does not cause smoothing.

The fact that the response H(ejω) is real and symmetric in the above 
example implies that if we replace ω with -ω in (4.7.21), the eigenvalue 
does not change. This means that we can find a smooth eigenvector with 
real elements cos ωn.
Decimation of the Residual, and Interpolation of the Error

Decimation operation is needed to transfer the residual r(Δ) from the 
grid G(Δ) to the grid G(2Δ). Denote the nth component of r(2Δ) as r(2Δ)(n). 
The simplest decimation scheme is to take r(2Δ)(n) = r(Δ)(2n). A more so- 
phisticated scheme would be to define r(2Δ)(n) as the output of a decimation 
filter (Fig. 4.7-5). The most commonly used decimation filter in multigrid 
literature is GD(z) = (z + 2 + z-1)∕4. This is lowpass with frequency response 
GD(ejω) = cos2(ω∕2).

Similarly, when we transfer the error e(2Δ) to the finer grid to obtain an 
approximation of e(Δ), we use an interpolation filter. A common example is 
GI(z) = (z + 2 + z-1)∕2.

Matrix representation. To be consistent with the rest of the problem, 
it is convenient to express the decimation and interpolation filters in matrix 
form. We do this by taking the above examples for GD(z) and Gl(z). Figure 
4.7-6 shows the grids G(Δ) and G(2Δ) for N = 7. Assuming the boundary 
conditions

(4.7.22)
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we compute the decimated samples as

(4.7.23)

For example, we use a transformation of this type to obtain r(2Δ) from r(Δ). 
Similarly when we convert from the coarse to the dense grid (interpolation) 
we use the matrix transformation

We use this to obtain the approximation of e(Δ) from e(2Δ).
Finding the Matrix Α(2Δ) for the Coarse Grid

In the example of Fig. 4.7-6, the matrix Α(Δ) is 7 × 7, whereas Α(2Δ) 
would be 3 × 3. It remains to show how to find the elements of this smaller 
matrix. In multigrid literature, the following formula is used:

(4.7.25)

where MD and Ml are the decimator and interpolator matrices indicated 
above. The reason for the above choice of Α(2Δ) can be understood as fol- 
lows: suppose the error vector e(Δ) can be obtained exactly by interpolation 
of e(2Δ). That is suppose

(4.7.26)

Since r(2Δ) = ΜDr(Δ), the above equation implies

(4.7.27)
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Comparing with (4.7.17b) we see that the above choice of Α(2Δ) is well- 
motivated. Detailed numerical examples of the use of multigrid techniques 
can be found in Brandt [1977].

Figure 4.7-5 Transfer of information between two grids, with the help of deci- 
mation and interpolation filters.

Figure 4.7-6 Demonstration of dense grid and coarse grid (N = 7 and 3 
respectively).
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PROBLEMS

Sketch the quantities Y0(ejω) and Y1(ejω).
4.2. For the system in Fig. P+2, find an expression for y(n) in terms of x(n).

Simplify the expression as best as you can.
4.3. Consider a sequence x(n) with X(ejω) as shown in Fig. P4-3.

Let y(n) = x(2n). Show how we can recover x(n) from y(n) using filters and 
multirate building blocks.

4.4. Show that the decimator and expander are linear time varying systems.
4.5. Show that the two systems shown in Fig. P4-5(a) (where k is some integer) 

are equivalent (that is, y0(n) = y1(n)) when hk(n) = h0(n) cos(2πkn∕L).
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4.1. Consider the structures shown in Fig. P4-1, with input transforms and 
responses as indicated.

Figure P4-1

Figure P4-2

Figure P4-3



This is a structure where filtering followed by cosine modulation has the same 
effect as filtering with the cosine modulated impulse response. (This is not true 
in all situations; see next problem). Now consider the example where L = 5, 
and k = 1. Let X(ejω) and H0(ejω) be as sketched in Fig. P4-5(b).

Give sketches of Y(ejω), Y0(ejω) and U(ejω).
4.6. Show that the two systems shown in Fig. P4-6 are not equivalent, that is, y0(n) 

and y1(n) are not necessarily the same, even if hk(n) = h0(n) cos(2πkn∕L).

Figure P4-6

4.7. Consider the two sets of M numbers given by Wk, 0 ≤ k ≤ M — 1 and WkL, 
0 ≤ k ≤ M — 1 where W = e-j2π/M. Show that these sets are identical if and 
only if L and M are relatively prime.

4.8. For the two systems in Fig. 4.2-2 we can write down y1(n) and y2(n) in terms 
of x(n), M and L. For example

a) Similarly write an expression for y2(n).
b) Verify that these two expressions yield the same result (i.e., y1(n) = y2(n) 

for any sequence x(n)), if, and only if, L and M are relatively prime.
4.9. The jumping painter problem. Consider a circular arrangement of objects as 

shown in Fig. P4-9.
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Figure P4-5(a)

Figure P4-5(b)



Figure P4-9

There are N objects numbered as indicated. A painter is requested to paint 
these one at a time. To avoid a boring job, he decides to paint the objects in 
nonconsecutive order as: 0, M, 2M, . . . Now there are two possibilities:

a) either all the objects get painted,
b) or the painter returns to an object already painted, before all objects are 

covered. This means that he will never be able to paint a subset of objects.
Find a set of necessary and sufficient conditions so that the first possibility 
takes place.

4.10. Let x(n) be periodic with period N, that is, N is the smallest integer such that 
x(n) = x(n+ N) for all n. Let y(n) be the M-fold decimated version, that is, 
y(n) = x(Mn). Show that y(n) is periodic, that is, there exists L < ∞ such 
that y(n) = y(n + L) for all n. Assuming no further knowledge about the input, 
what is the smallest value of L in terms of M and N?

4.11. Consider a sequence x(n) with X(ejω) as shown in Fig. P4-11(a).

Figure P4-11(a)

Suppose we generate the sequences y(n) and s(n) from x(n) as in Fig. P+11(b)

Figure P4-11(b)
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where

Plot the quantities Y(ejω) and S(ejω).
4.12. In this problem, the term 'polyphase components' stands for the Type 1 com­

ponents with M = 2.
a) Let H(z) represent an FIR filter of length 10 with impulse response coeffi- 

cients h(n) = (1/2)n for 0 ≤ n ≤ 9 and zero otherwise. Find the polyphase 
components E0(z) and E1(z).

b) Let H(z) be IIR with h(n) = (1∕2)nU(n) + (1∕3)nU(n - 3). Find the 
polyphase components E0(z) and E1(z). Give simplified, closed form ex- 
pressions.

4.13. Let H(z) = (a + z-1)∕(1 + az-1). Write down expressions for the Type 1 
polyphase components (with M = 2). For real a, notice that H(z) is allpass. 
Are the polyphase components allpass as well?

4.14. Let H(z) = 1∕(1 — 2Rcosθz-1 + R2z-2), with R > 0 and θ real. This is 
a system with a pair of complex conjugate poles at Re±jθ. Find the Type 1 
polyphase components for M = 2.

4.15. Consider the fractional decimation circuit of Fig. 4.1-10(b) with L = 3, M = 4. 
Suppose H(z) is a linear phase FIR filter with length 60. Assume that x(n) 
has a sampling rate of 100 KHz. (a) If H{z') is implemented directly (i.e., no 
polyphase forms) what is the time available for each multiplier to perform one 
multiplication? (b) Suppose the structure is implemented in the best possible 
way (i.e., using polyphase form similar to Fig. 4.3-8). Then what is the time 
available for each multiplier to perform one multiplication? (c) Find the number 
of multiplications and additions per second in part (b).

4.16. Is the following statement true or false? Justify. "Let h(n) be the impulse 
response of an allpass filter. Let g(n)=h(2n). Suppose the filter G(z) [whose 
impulse response is g(n)] is allpass as well. Then h(n) must be an impulse (i.e., 
h(n) = cδ(n — n0) where n0 is some integer, and c is some constant)."

4.17. Consider the systems shown in Fig. P4-17

where G0(z) = ΣΝn=0 g(n)z-n and G1(z) = ΣNn=0 g(N - n)z-n. The impulse 
response of G1(z) is the mirror image of that of G0(z). Draw a structure for 
the system in Fig. P4-17(a), using only N + 1 multipliers. (Hint. Draw one 
set of multipliers, and two sets of delay chains running in opposite directions). 
Repeat for the system in Fig. P4-17(b).
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4.18. Consider the uniform DFT analysis bank [Fig. 4.3-5(a)] with M = 4. Assume 
E0(z) = 1+z-1, E1(z) = 1 + 2z-1, E2(z) = 2+z-2 and E3(z) = 0.5 + z-1. Find 
explicit expressions for Hk(z), 0 ≤ k ≤ 3, working out the numerical values of 
these filter coefficients.

4.19. Consider the structure shown in Fig. P4-19(a), where W is the 3 × 3 DFT 
matrix.

This is a three channel synthesis bank with three filters F0(z), F1(z) and F2(z). 
(For example F0(z) = Y(z)∕Y0(z) with y1(n) and y2(n) set to zero.)
a) Assuming R0(z) = 1 + z-1, R1(z) = 1 — z-2 and R2(z) = 2 + 3z-1, find 

expressions for the three synthesis filters F0(z), F1(z), F2(z).
b) Let the magnitude response of F1(z) be as shown in Fig. 4-19(b).

Figure P4-19(b)

Plot the responses ∣F0(ejω)∣ and ∣F2(ejω)∣.
4.20. For the structure of Fig. 4.3-12, prove that the synthesis filters are indeed given 

by (4.3.15).
4.21. Let H0(z) = 1 + 2z-1 + 4z-2 + 2z-3 + z-4 and let H1(z) = H0(-z). Draw 

an implementation for the pair [H0(z), H1(z)] in the form of a uniform DFT 
analysis bank, explicitly showing the polyphase components, the 2 × 2 IDFT 
box, and other relevant details.

4.22. Let H(z) — ΣNn=0 h(n)z-n with h(n) = h(N — n). Consider the polyphase 
decomposition (4.3.7). The symmetry of h(n) reflects into the coefficients of 
Eℓ(z) in some way. To be more specific, we can make the following statement: 
there exists an integer m0 (with 0 ≤ m0 ≤ M — 1) such that ek(n) is the 
image of em0-k(n) for 0 ≤ k ≤ m0, and ek(n) is the image of eM+m0-k(n) for 
m0 + 1 ≤ k ≤ M - 1.

a) Take an example of 7th order H(z), and verify the above statement for 
M = 3. What is m0? Repeat for M = 4.

b) Prove the above statement. How is m0 related to N and M?
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This problem shows that if h(n) is symmetric (as in linear phase filters), then 
we can implement pairs of polyphase components [such as Ek(z) and Em0-k(z)] 
using one set of multipliers. This gives rise to an additional saving (by two) on 
the number of MPUs in the implementation of a decimation filter.

4.23. Consider the design of real coefficient narrow band lowpass filters using the 
IFIR method. We know that the savings depends on the stretching factor 
M1 used. We assume that the image suppressor I(z) and model filter G(z) 
are designed using McClellan-Parks equiripple technique. For a given set of 
specifications δ1, δ2, ωp and ωS, we will design G(z) and I(z) to have peak 
passband ripples 0.5δ1 and stopband ripples δ2 (for reasons explained in text). 
Let Ng and Ni denote the orders of G(z) and I(z).

a) Write down the orders Ng and Ni in terms of δ1, δ2, ωp, ωS, and M1. Show 
that as M1 increases, Ng decreases whereas Ni increases. Evidently there 
is some 'best' M1 for a given set of specifications.

b) For ωp = 0.18π, ωS = 0.2π, δ1 = 0.01 and δ2 = 0.001, estimate the orders 
Ng and Ni for all permissible values of M1, and plot the multiplier count 
against M1. What is the value of M1 that minimizes the multiplier count?

4.24. Suppose we wish to design a linear phase FIR filter with specifications δ1 = δ2 = 
0.001, ωp = 0.015π and ωS = 0.02π. (a) For direct equiripple design, estimate 
the filter order, and number of multiplications and additions required. (b) If 
we use the IFIR approach with stretching factor of 25, what are the orders of 
equiripple G(z) and I(z)? What is the total number of multiplications and 
additions? What is the order of the overall filter? (c) Repeat part (b) with 
stretching factor = 45.

4.25. We know that the IFIR technique can be used to design narrow band filters in 
two stages, thereby improving the computational efficiency. Now suppose that 
we are interested in designing a real-coefficient wide band lowpass filter with 
magnitude response as in Fig. P4-25(a).

Evidently, we cannot stretch the response by an integer factor to obtain a 
model response G(ejω) as in the IFIR approach. Consider the modified lowpass 
specification shown in Fig. P+25(b).

a) Let H1(z) be a Type 1 Nth order linear phase filter (Table 2.4.1) meeting 
this specification. Define H2(z) = z-N/2 — H1(z) and H(z) = H2(-z). 
Sketch the magnitude responses of H2(ejω) and H(ejω). Note that H(z) 
is lowpass, and has same band edges as the desired wideband filter.
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Figure P4-25(b)

b) Suppose the specifications for H(z) are ωp = 0.85π, ωS = 0.9π, δ1 = 0.01, 
δ2 = 0.001. What is the total number of multipliers required if we design 
linear-phase equiripple H(z) directly?

c) Suppose we meet the specifications of part (b) by proceeding as in part 
(a) where H1(z) is designed using the IFIR approach (stretching factor 2). 
What are the specifications for H1(z)? What is the required number of 
multipliers for implementing the wideband filter H(z)? (Take the model 
filter and image suppressor to be equiripple.)

4.26. Suppose we wish to design a 25-fold lowpass linear-phase interpolation filter 
(i.e., L = 25). Let the input signal x(n) be bandlimited to ∣ω∣ < 0.95π. Assume 
that the ripple specifications are δ1 = 0.01, δ2 = 0.002. (a) Find reasonable 
band edges ωp and ωS for H(z). (b) What is the filter order if a direct design 
is used? (c) Suppose the filter is designed using a two stage approach. What are 
the orders of G(z) and I(z)? (d) What are the total number of multiplications 
and additions in the direct design and how do these compare with the two-stage 
design? (e) Assuming an input sampling rate of 8 KHz, what is the number of 
multiplications and additions per second in the two-stage design?

4.27. For a uniform DFT analysis bank, we know that the filters are related by 
Hk(z) = H0(zWk), 0 ≤ k ≤ M - 1, with W = e-j2π/M. Let M = 5 and define 
two new transfer functions G1(z) = H1(z) + H4(z) and G2(z) = H2(z) + H3(z). 
Let h0(n) denote the impulse response of H0(z), assumed to be real for all n.

a) Are hk(n), 1 ≤ k ≤ 4 real for all n?
b) Express the impulse responses g1(n) and g2(n) of G1(z) and G2(z) in terms of 

h0(n). Are g1(n) and g2(n) real for all n?
c) Let ∣H0(ejω)∣ be as shown in Fig. P4-27.

Plot the responses ∣G1(ejω)∣ and ∣G2(ejω)∣, for 0 ≤ ω ≤ 2π. Does ∣G2(ejω)∣ 
necessarily look 'good' in its passband?

4.28. Consider the analysis/synthesis system in Fig. P4-28.
a) Let the analysis filters be H0(z) = 1 + 3z-1 + 0.5z-2 + z-3 and H1(z) = 

H0(-z). Find causal stable IIR filters F0(z) and F1(z) such that x(n) 
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agrees with x(n) except for a possible delay and (nonzero) scale factor.
b) Let H0(z) = 1 + 2z-1 + 3z-2 + 2z-3 + z-4, and H1(z) = H0(-z). Find 

causal FIR filters F0(z) and F1(z) such that x(n) agrees with x(n) except 
for a possible delay and (nonzero) scale factor.

(Hint. This is perhaps tricky, but not tedious or difficult. It helps to use 
polyphase decomposition. Review of complementary filters might help.)

4.29. Let H0(z) = (1 + z-1)∕2. Find real-coefficient causal FIR H1(z) such that 
the pair H0(z), H1(z) is power complementary. Are these filters also allpass 
complementary? Euclidean complementary? Doubly complementary?

4.30. A trick for the design of zero-phase FIR equiripple half-band filters. Suppose 
G(z) = ΣΝn=0 g(n)z-n is a Type 2 linear phase filter (Sec. 2.4.2). This means 
that N is odd and g(n) is real, with g(n) = g(N — n). This also means that 
there is a zero at ω = π. We know we can write G(ejω) = e-jωN/2 GR(ω) where 
GR(ω) real. Suppose we have designed G(z) such that the response GR(ω) is 
as shown in Fig. P4-30.

This design can be done by defining the passband to be 0 ≤ ω ≤ θp and 
transition band to be θp ≤ ω ≤ π. There is no stopband. Such filters with 
one equiripple passband and no stopband can indeed be designed using the 
McClellan-Parks algorithm (Section 3.2.4). Now define the transfer function 
F(z) = [z-N + G(z2)]∕2. This is a Type 1 linear phase filter.
a) Show that F(ejω) = e-jωΝ FR(ω), where FR(ω) is real. Express FR(ω) in 

terms of GR(ω).
b) Plot the amplitude response FR(ω) in 0 ≤ ω ≤ π. Verify that it resembles 

Fig. 4.6-4. What are the values of δ, ωp, and ωS in terms of e and θp?
c) Let f(n) and g(n) denote the impulse responses of F(z) and G(z). Show
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that

(P4.30a)

This also verifies that F(z) is a half-band filter.
d) Suppose we define H(z) = zNF(z). Then H(z) is a zero-phase half-band 

filter. Its length is 2N +1, and since N is odd, we have 2N +1 = 4J + 2+1 
for some integer J. Clearly H(ejω) is real. Define H(z) = 0.5ε + H(z), i.e.,

(P4.30b)

Show that H(ejω) ≥ 0 for all ω.
This shows how we can design a zero-phase equiripple half-band filter H(z) 
(with H(ejω) ≥ 0) just by designing a Type 2 one-band filter G(z) of half the 
order, and making minor changes to its coefficients!

4.31. Let A be N × N Hermitian positive definite with eigenvalues 0 < λ0 < λ1 . . . < 
λΝ-1. Define P = I — αA, with α > 0.

a) Show that P is stable (i.e., eigenvalues strictly inside the unit circle) if and 
only if α < 2/λN-1.

b) In general P is not positive definite even though Hermitian. Show that the 
maximum eigenvalue-magnitude is minimized by the choice α = 2∕(λ0 + 
λΝ-1). This choice therefore gives the fastest decrease of αk after 'stalling' 
has set in (Fig. 4.7-2).

4.32. The matrix in (4.7.5) is a demonstration, for N = 5, of the N × N matrix A 
in (4.7.3). In this problem we consider this matrix and assume N is arbitrary. 
Let μ = 0 for simplicity.

a) Show that any vector of the form

is an eigenvector, with eigenvalue λk = 4sin2 kπ/2(n+1). Here k is an integer 
in the range 1 ≤ k ≤ N.

b) Thus the elements vk(n) of the vector vk can be written as vk(n) = 
sin (kπn/N+1). This sequence is "smooth" for small k and "oscillatory" for large 
k. To demonstrate this, let N = 4, and plot this sequence for 1 ≤ k ≤ 4. 
Also plot the eigenvalue λk, as a function of k for 1 ≤ k ≤ 4.

c) The above exercise demonstrates that the eigenvectors corresponding to 
large eigenvalues are more “oscillatory”. In other words, the matrix A 
acts like a highpass filtering operator (Sec. 4.7.4). Suppose we define
P = I — αA. The eigenvalues of this matrix are μk ≜ 1 — αλk, and the 
eigenvectors continue to be vk. Give example of a choice of α such that
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μ2k decreases as k increases in the range 1 ≤ k ≤ N. The matrix P would 
now resemble a lowpass filtering operator.

4.33. Recall the matrix A in (4.7.3), demonstrated in (4.7.5) for N = 5. In this 
problem, Α(Δ) stands for this matrix, with μ — 0 and N = 7. With MD 
and Ml as in (4.7.23) and (4.7.24), compute the elements of Α(2Δ) defined in
(4.7.25).
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PART 2 Multirate Filter Banks

Maximally Decimated 

Filter Banks

5.0 INTRODUCTION
The basic philosophy of subband coding was explained in Chap. 4. The 
analysis/synthesis system used for this purpose is the maximally decimated 
filter bank. Figure 5.1-1(a) shows the two channel version, popularly called 
the Quadrature Mirror Filter (QMF) bank. This system was introduced in 
the mid seventies [Croisier, et al., 1976], and has since then been studied by 
many other researchers, as we cite at the appropriate sections. The input 
signal x(n) is first filtered by two filters H0(z) and H1(z), typically lowpass 
and highpass as shown in part (b). Each signal xk(n) (subband signal) is 
therefore approximately bandlimited to a total width of π (in the frequency 
region 0 ≤ ω < 2∏). The subband signals are decimated by a factor of 2 to 
produce vk(n).

Each decimated signal vk(n) is then coded in such a way that the special 
properties of the subband (such as energy level, perceptive importance and 
so on) are exploited. At the receiver end, the received signals are decoded 
to produce (approximations of) the signals v0(n) and v1(n) which are then 
passed through two-fold expanders. The output signals y0(n) and y1(n) 
are then passed through the filters F0(z) and F1(z) (whose purpose we will 
explain) to produce the output signal x(n).

H0(z) and H1(z) are called analysis filters, and the pair [H0(z), H1(z)] 
the analysis bank. This pair followed by the two decimators is the decimated 
analysis bank. Similarly F0(z) and F1(z) are the synthesis (or reconstruction) 
filters, and the pair [F0(z), F1(z)] the synthesis bank. In this chapter we will 
see that the reconstructed signal x(n) differs from x(n) due to three reasons: 
aliasing, amplitude distortion, phase distortion, It will be shown that the
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filters can be designed in such a Way that some or all of these distortions are 
eliminated. These results will then be extended to the case of M channel 
filter banks.

There is a fourth reason why the reconstructed signal differs from x(n). 
This is due to the coding or quantization of the subband signals. The effect 
of this cannot be corrected, but can only be analyzed. This is done in 
Appendix C.

Figure 5.1-1 (a) The quadrature mirror filter bank and (b) typical magnitude
responses.

5.0.1 A Brief History

For the two channel case, it was shown in Croisier, et al. [1976] that aliasing 
can be completely eliminated by a simple choice of the synthesis filters. 
Design techniques were later developed by other authors to minimize the 
remaining distortions [Johnston, 1980], [Jain and Crochiere, 1984], [Fettweis, 
et al., 1985] and efficient structures developed [Galand and Nussbaumer, 
1984]. It was shown by Smith and Barnwell [1984] and Mintzer [1985] that 
all the three distortions mentioned above can be eliminated (i.e., perfect 
reconstruction achieved) in a two channel QMF bank with properly designed 
FIR filters, and further optimization techniques Were developed [Grenez, 
1988].

For the case of M channel filter banks, the conditions for alias cance- 
lation and perfect reconstruction are much more complicated. The pseudo 
QMF technique was introduced [Nussbaumer, 1981], as a means of obtaining 
approximate alias cancelation in this case, and has since been developed by a 
number of authors [Rothweiler, 1983], [Chu, 1985], [Masson and Picel, 1985], 
and [Cox, 1986]. The general theory of perfect reconstruction in the M chan­
nel case Was developed by a number of authors [Ramstad, 1984b], [Smith 
and Barnwell, 1985], [Vetterli, 1985], [Princen and Bradley, 1986], [Wack­
ershruther, 1986b], [Vaidyanathan, 1987a,b], [Nguyen and Vaidyanathan,
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1988], and [Viscito and Allebach, 1988a]. Vetterli and Vaidyanathan showed 
independently that the use of polyphase components leads to considerable 
simplification of the theory. A technique for the design of M channel per­
fect reconstruction systems was developed [Vaidyanathan, 1987a,b], based 
on polyphase matrices with the so-called paraunitary property. It has since 
been shown that the two channel perfect reconstruction system developed in 
Smith and Barnwell [1984] and Mintzer [1985] satisfy the paraunitary prop­
erty. (This same property also finds application in the theory of orthonormal 
Wavelet transforms, which we Will study in Chap. 11.)

A particular class of M-channel perfect reconstruction systems was sub­
sequently developed, with the property that all the analysis filters are derived 
starting from a prototype, by modulation. This has the advantage of econ­
omy during the design as Well as implementation phases. The theory Was 
developed by Malvar [1990b], Koilpillai and Vaidyanathan [1991 and 1992], 
and Ramstad [1991] independently. It turns out that these systems can 
be regarded as the generalization of the so-called lapped orthogonal trans­
forms independently devloped by Cassreau [1985] and studied in Malvar and 
Staelin [1989], and Malvar [1990a].

Further advancement in the theory and design of filter banks have been 
made by several authors, but these will not be covered in our limited ex­
posure here. This includes time domain design techniques, [Nayebi, et al., 
1990], nonuniform filter banks, and filter banks with noninteger decimation 
ratios [Hoang and Vaidyanathan, 1989], [Kovačević and Vetterli, 1991a], 
[Nayebi, et al., 1991a], and filter banks with minimum reconstruction delay 
[Nayebi, et al., 1991b]. Also see Padmanabhan and Martin [1992], Horng, 
Samueli, and Willson [1991], and Horng and Willson [1992]. In Problems 
5.25 and 5.32 we will consider some issues pertaining to nonuniform QMF 
banks.

5.0.2 Chapter Outline

In this chapter we present a detailed study of the QMF bank and its M chan ­
nel extensions. Section 5.1 analyzes the various errors (aliasing, amplitude 
and phase distortions) created by the two channel QMF bank, and develops 
conditions for alias cancelation. Section 5.2 describes an alias-free system in 
greater detail. Section 5.3 considers a special class of alias free systems called 
the power symmetric QMF banks. These systems have very low complexity, 
and yet provide freedom from aliasing and amplitude distortion.

In Sec. 5.4 to 5.6 we extend these ideas for the case of M channel filter 
banks, and develop the theory of perfect reconstruction based on polyphase 
matrices. Section 5.7 develops the general theory of alias-free systems. Tree- 
structured filter banks are considered in Sec. 5.8, and Sec. 5.9 develops the 
theory of transmultiplexers.

The study of filter banks Will be continued in the next few chapters. 
Paraunitary perfect reconstruction systems will be introduced in Chap. 6, 
along with several structures for implementing these systems. Some of the 
structures have the property that the perfect reconstruction property is re-
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tained in spite of coefficient quantization. Pseudo QMF banks and cosine 
modulated perfect reconstruction banks will be studied in Chap. 8.

5.1 ERRORS CREATED IN THE QMF BANK

The decimated signals vk(n) are encoded using one of many possible coding 
techniques [Jayant and Noll, 1984], and the resulting signals are actually 
transmitted. The receiver reconstructs an approximation v'k(n) of vk(n) 
from these encoded signals. The decoding error vk(n) — v'k(n) represents 
a nonlinear distortion (like quantization error). This is called the subband 
quantization error. It cannot be corrected, that is, there is no Way to exactly 
reconstruct vk(n) from v'k(n).

The subband quantization error Will be treated in greater detail in Ap- 
pendix C. In this chapter will ignore this error, that is, assume v'k(n) = vk(n). 
The QMF bank still suffers from three fundamental errors, viz., aliasing, am­
plitude distortion, and phase distortion to be described next.

5.1.1 Aliasing and Imaging

In practice, the analysis filters have nonzero transition bandwidth and stop- 
band gain. The signals xk(n) are, therefore, not bandlimited, and their dec­
imation results in aliasing. To study this effect further, consider Fig. 5.1-2 
where two situations are shown. In Fig. 5.1-2(a), the responses ∣H0(ejω)∣ 
and ∣H1(ejω)∣ do not overlap. Assuming that the stopband attenuations 
are sufficiently large, the effect of aliasing is not serious. In Fig. 5.1-2(b), 
however, the responses overlap, and each subband signal can in general have 
substantial energy for a bandwidth exceeding the ideal passband region. 
Decimation of these signals therefore results in aliasing regardless of how 
good the stopbands of the filters are.
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In principle it is true that the choice of filters as in Fig. 5.1-2(a) takes 
Care of this problem. However, non Overlapping responses imply severe at­
tenuation of the input signal around ω = π/2. Even though this can be 
compensenated, in principle, by appropriately boosting this frequency region 
[by proper design of F0(z) and F1(z)], it will result in severe amplification 
of noise (such as coding noise, channel noise and filter roundoff noise). A 
second solution Would be tO make the transition Widths of the responses very 
narrOW but this requires very expensive filters. The Overlapping response in 
Fig. 5.1-2(b) is therefore the more practical choice. Even though this results 
in aliasing, this effect can be canceled by careful choice of the synthesis filters 
as we will see.
Expression for the Reconstructed Signal

Using the results developed in Sec. 4.1.1 it is easy to find an expression 
for X(z). From Fig. 5.1-1(a) we have

(5.1.1)

The z-transforms of the decimated signals vk(n) are [from (4.1.13) with M = 
2]

Or, in matrix-vector notation,

(5.1.5)

(5.1.6)
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The second term above represents aliasing. The z-transform of Yk(z) is 
Vk(z2) so that

(5.1.3)

The reconstructed signal is

(5.1.4)

Substituting from (5.1.3) and rearranging, we finally obtain



The matrix H(z) is called the alias component (AC) matrix. The term 
which contains X(-z) originates because of the decimation. On the unit 
circle, X(-z) = X(ej(ω-π)) which is a right-shifted version of X(ejω) by an 
amount π. This term takes into account aliasing due to the decimators and 
imaging due to the expanders. We refer to this just as the alias term or alias 
component.
Alias Cancelation

From (5.1.5) it is clear that we can cancel aliasing by choosing the 
filters such that the quantity H0(-z)F0(z) + H1(-z)F1(z) is zero. Thus the 
following choice cancels aliasing:
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(5.1.7)

Given H0(z) and H1(z), it is thus possible to completely cancel aliasing 
by this choice of synthesis filters. If the analysis filters have large transition 
bandwidths and low stopband attenuations, this implies large aliasing errors, 
but yet these errors are canceled by the choice (5.1.7).

So, the basic philosophy in the QMF bank is that we permit aliasing in 
the analysis bank instead of trying to avoid it. We then choose the synthesis 
filters so that the alias component in the upper branch is canceled by that 
in the lower branch.

Pictorial viewpoint. It helps to visualize the mechanism of alias 
cancelation in terms of frequency response plots. For this refer to Fig. 5.1- 
3 which shows an arbitrary input spectrum X(ejω), the lowpass subband 
signal X0(ejω), and the decimated signal V0(ejω). The alias component 
0.5X0(-ejω/2) overlaps with 0.5X0(ejω/2). The signal Y0(ejω) has contri- 
butions from X(z) as well as X(-z). The contribution which arises from 
X(-z) (shaded region) is the alias component, and in general overlaps with 
the unshaded area.

In a similar way if we trace through the bottom channel, we can ob- 
tain qualitative plots of X1(ejω), V1(ejω) and Y1(ejω). The shaded areas in 
Y0(ejω) and Y1(ejω) represent aliasing (and imaging) effect(s), and domi- 
nantly occupy the highpass and lowpass regions, respectively. The filters 
F0(z) and F1(z), which are lowpass and highpass respectively, tend to elimi- 
nate these shaded portions. Because of the nonideal nature of these practical 
filters, the output of F0(z) still contains some residual shaded area (Fig. 5.1- 
3(h)), and so does the output of F1(z) (Fig. 5.1-3(i)). These two residual 
alias components can be made to cancel each other, and the choice (5.1.7) 
does precisely that.

The LPTV property. From Chap. 4 we know that the decimator and 
expander are linear and time varying (LTV) building blocks. So the QMF 
bank is a LTV system. Now (5.1.5) can be written as

(5.1.8)



Figure 5.1-3 Various internal signals, and alias cancelation mechanic
QMF bank. (© Adopted from 1990 IEEE.)
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Denoting the impulse responses of T(z) and A(z) as t(n) and a(n), we 
can rewrite the above as

Defining g0(k) = t(k) + (-1)ka(k) and g1(k) = t(k) - (-1)ka(k), we 
then have

(5.1.10)

which proves that x(n) is produced by passing x(n) through the systems 
G0(z) and G1(z) in parallel, and taking the output of G0(z) for even n and 
that of G1 (z) for odd n (Fig. 5.1-4). So the QMF bank is a linear periodically 
time varying (LPTV) system with period two. If aliasing is canceled (i.e., 
A(z) = 0), the system becomes LTI, and has transfer function T(z).

Figure 5.1-4 The QMF 
bank viewed as a LPTV sys- 
tem.

5.1.2 Amplitude and Phase Distortions
Suppose the choice (5.1.7) is made so that the QMF bank is free from alias- 
ing. We then have
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(5.1.9)

(5.1.11)
Thus even after aliasing is canceled, the signal x(n) suffers from a linear 
shift-invariant distortion T(z). Here

(5.1.12)

and is called the distortion transfer function, or “overall” transfer function 
of the alias-free system. Using (5.1.7) we get

(5.1.13)

Letting T(ejω) = ∣T(ejω)∣ejφ(ω), we have

(5.1.14)

Unless T(z) is allpass (i.e., ∣T(ejω)∣ = d ≠ 0 for all ω), we say that X(ejω) 
suffers from “amplitude distortion.” Similarly unless T(z) has linear phase



(that is, φ(ω) = a + bω for constant a,b), X(ejω) suffers from phase distor­
tion.

We will use the following abbreviations for convenience: ALD (aliasing 
distortion), AMD (amplitude distortion), PHD (phase distortion).

Periodicity of ∣T(ejω)∣. From (5.1.13) we see that T(z) has the form 
V(z) — V(-z). This means T(z) has only odd powers of z, that is, T(z) = 
z-1S(z2). So ∣T(ejω)∣ has period π rather than 2π. For the real coefficient 
case this implies that ∣T(ejω)∣ is symmetric with respect to π∕2.
The Perfect Reconstruction (PR) QMF Bank

If a QMF bank is free from aliasing, amplitude distortion, and phase 
distortion, it is said to have the perfect reconstruction (abbreviated PR) 
property. This is equivalent to the condition T(z) = cz-n0. For a PR QMF 
bank we have
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(5.1.15)

for all possible inputs x(n). In other words, x(n) is merely a scaled and 
delayed version of x(n). This, of course, ignores the coding/decoding error 
and filter roundoff noise.

5.2 A SIMPLE ALIAS-FREE QMF SYSTEM
In the earliest known QMF banks the analysis filters were related as

(5.2.1)

For the real coefficient case this means ∣H1(ejω)∣ = ∣H0(ej(π-ω))∣. This en- 
sures that H1(z) is a good highpass filter if H0(z) is a good lowpass filter. In 
fact ∣H1(ejω)∣ is a mirror image of ∣H0(ejω)∣ with respect to the quadrature 
frequency 2π∕4, justifying the name quadrature mirror filters.

With the choice (5.2.1) the alias cancelation constraint (5.1.7) becomes

(5.2.2)

Thus all the four filters are completely determined by a single filter H0(z). 
The designer has to concentrate on the design of only this filter. According to 
the earliest nomenclatures, the system with the four filters related as above 
was known as the 'QMF' bank. But as a matter of convenience, the term 
'QMF' has since been used to indicate generalized versions, for example, 
M-channel systems.

From (5.2.2) we see that F0(z) and F1(z) are lowpass and highpass 
respectively [consistent with the fact that F0(z) attenuates the 'highpass 
image' and F1(z) attenuates the 'lowpass image' created by the expanders]. 
With filters chosen as above, the distortion function is

(5.2.3)



5.2.1 Polyphase Representation
It is often beneficial, both conceptually and computationally, to represent 
the analysis and synthesis banks in terms of polyphase components (Section 
4.3). Thus let

(5.2.5)

The synthesis filters F0(z) and F1(z), which satisfy (5.2.2), can also be 
represented in terms of E0(z) and E1(z) as follows:

(5.2.6)

By using (5.2.5) and (5.2.6) we can draw the analysis and synthesis banks as 
in Fig. 5.2-l(a) and (b) respectively, and the complete QMF bank as in Fig. 
5.2-2(a). By using the noble identities (Fig. 4.2-3) we can redraw this as in 
Fig. 5.2-2(b). The polyphase components are now operating at the lowest 
possible rate, so that the number of multiplications and additions per unit 
time (MPUs and APUs) is minimized†.

Limitations Imposed by the Constraint H1(z) = H0(-z).
With the analysis filters related as H1(z) = H0(-z) and synthesis filters 

chosen to cancel aliasing (eqn. (5.1.7)), the distortion function has the form 
(5.2.3). This can be written in terms of the polyphase components as
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(5.2.4)

Since H1(z) = H0(-z), we have H1(z) = E0(z2) - z-1E1(z2), that is,

Figure 5.2-1 The analysis and synthesis banks in polyphase form.

(5.2.7)

† As in Chap. 4, a unit of time is the separation between adjacent samples 
of the input x(n).



This expression holds for any QMF bank (FIR or HR; linear-phase or non- 
linear phase) for which the filters are related by (5.2.1) and (5.2.2). From 
this expression we can draw a number of important conclusions.

Figure 5.2-2 (a) The complete QMF bank in polyphase form. (b) Rearrange-
ment using noble identities.

For example, let H0(z) be FIR so that E0(z), E1(z) and T(z) are FIR 
as well. From (5.2.7) we note that amplitude distortion can be eliminated in 
this case if and only if each of the FIR functions E0(z) and E1(z) is a delay, 
that is, E0(z) = c0z-n0 and E1(z) = c1z-n1. This means
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(5.2.8)

This conclusion holds whether or not H0(z) has linear phase.
Summarizing, if the analysis filters are related as H1(z) = H0(-z) and 

H0(z) is FIR, we can eliminate amplitude distortion only if H0(z) and H1(z) 
have the above form! That is, the filters cannot have sharp cutoff and good 
stopband attenuations. We cannot, therefore, obtain useful FIR perfect 
reconstruction systems under the constraint H1(z) = H0(-z).

If we choose E1(z) = 1∕E0(z), then (5.2.7) becomes a delay, thereby 
resulting in perfect reconstruction. But the filters become IIR.

5.2.2 Eliminating Phase Distortion with FIR Filters
A QMF bank in which the analysis and synthesis filters are FIR is said to 
be an FIR QMF bank. From Chap. 2 we know that FIR filters with exactly 
linear phase can be designed. If H0(z) has Iinear phase, then T(z) given by 
(5.2.3) also has linear phase, thereby eliminating phase distortion.

The residual amplitude distortion ∣T(ejω)∣ can now be analyzed with 
the help of (5.2.3). Let H0(z) = ΣNn=0 h0(n)z-n, with h0(n) real. The 
linear phase constraint requires h0(n) = ±h0(N — n). Since H0(z) has to be



lowpass, the only possibility is h0(n) = h0(N — n) (Section 2.4.2). With this 
choice
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(5.2.9)
where R(ω) is real for all ω. Substituting (5.2.9) into (5.2.3) and using the 
fact that ∣H(ejω)∣ is an even function, we get

(5.2.10)

Constraint on the order N. If N is even, then the above expression 
reduces to zero at ω = π∕2, resulting in severe amplitude distortion. So we 
have to chose N to be odd so that

(5.2.11)
(from (5.2.1))

Minimization of Residual Amplitude Distortion
From the previous section we know that if H0(z) is FIR, then the con- 

straint H1(z) = H0(-z) rules out perfect reconstruction, unless the filters 
have the simple form (5.2.8). Having eliminated aliasing and phase distor- 
tion, we can therefore only minimize amplitude distortion, that is, we can 
make (5.2.11) only approximately constant.

If H0(z) has good passband and stopband responses, then ∣T(ejω)∣ is 
almost constant in the passbands of H0(z) and H1(z). The main difficulty 
comes in the transition band region. The degree of overlap of H0(z) and 
H1(z) is very crucial in determining this distortion. To demonstrate this, 
Fig. 5.2-3 shows responses of three linear phase designs of H0(z). If the 
passband edge is too large as in curve 1 (i.e., H0(z) and H1(z) have too 
much overlap), ∣T(ejω)∣ exhibits a peaking effect around π∕2. If the passband 
edge is too small (curve 2), then ∣T(ejω)∣ exhibits a dip around π∕2. The 
third curve, where the passband edge is carefully chosen by trial and error, 
produces a much better response of ∣T(ejω)∣.

The aim, therefore, is to adjust the coefficients of H0(z) so that the 
filters satisfy the condition

(5.2.12)

approximately. Systematic computer-aided optimization techniques for this 
have been developed [Johnston, 1980], [Jain and Crochiere, 1984]. In John- 
ston's technique, an objective function is formulated which reflects two 
things: (a) the stopband attenuation of the filter H0(z), and (b) the ex- 
tent to which (5.2.12) is satisfied. For example the objective function could 
be

(5.2.13)



Figure 5.2-3 Amplitude distortion as a function of the degree of overlap between 
analysis filters. (© Adopted from 1990 IEEE.)
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(since these are performed after decimation). The synthesis bank has the 
same complexity.

For our design example, we have N = 31 so that the analysis bank can 
be implemented using 16 MPUs and 16 APUs. This is an efficient implemen­
tation exploiting two facts: (a) the presence of decimators and expanders, 
and (b) the relation H1(z) = H0(-z). Once these are exploited the sym- 
metry of h0(n) (due to linear phase) cannot, unfortunately, be exploited 
(Problem 5.3).

5.2.3 Eliminating Amplitude Distortion with IIR Filters
The question that arises now is this: is it possible to completely eliminate 
amplitude distortion, rather than just minimize it using a computer pro- 
gram? We address this now. In order to eliminate amplitude distortion,
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where

(5.2.14)
and 0 < α < 1. The coefficients h0(n) of H0(z) are then optimized in order 
to minimize φ. Since ∣T(ejω)∣ has symmetry with respect to π∕2, we can 
replace ∫π0 with 2 ∫π/20. The quantity ωS is typically chosen as π∕2 + e for 
some small ε > 0.

What controls the passband shape? If the optimized response is 
satisfactory, the quantities φ1 and φ2 will be very small, and (5.2.12) will 
hold approximately. This means that ∣H1(ejω)∣ (i.e., ∣H0(-ejω)∣) is close to 
unity in the stopband of H0(z). This is equivalent to saying that ∣H0(ejω)| is 
close to unity in its own passband. Summarizing, minimization of φ ensures 
that H0(z) has good stopband as well as passband responses.
Design Example 5.2.1: Johnston’s Filters

Filters with a wide range of specifications have been designed, and im- 
pulse response coefficients tabulated in Johnston [1980]. These tables can 
also be found in Crochiere and Rabiner [1983]. Fig. 5.2-4(a) shows the mag­
nitude response plots of the analysis filters for Johnston’s 32D filter. For this 
design the filter order N = 31, ωs = 0.586π, and the minimum stopband 
attenuation is 38 dB. The quantity ∣H0(ejω)∣2 + ∣H1(ejω)∣2 (which is twice 
the amplitude distortion), is shown in Fig. 5.2-4(b). On a dB scale, this is 
close to 0 dB for all ω, with peak distortion equal to ±0.025 dB.

Computational complexity. With N representing the order of H0(z), 
there are N + 1 coefficients h0(n). There are (N + 1)∕2 coefficients in each 
of E0(z) and E1(z). So from Fig. 5.2-2(b) we see that the analysis bank 
requires a total of N + 1 multiplications and additions, that is,



Figure 5.2-4 Design example 5.2.1 (Johnston’s method). (a) Magnitude re­
sponses of the analysis filters, and (b) amplitude distortion measure.

we have to force T(z) to be allpass. From (5.2.7) we see that this can be 
done by forcing E0(z) and E1(z) to be IIR and allpass [Vaidyanathan, et al, 
1987], [Ramstad, 1988]. This also results in filters with a more general form 
than (5.2.8). Phase distortion still remains, and is governed by the phase
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responses of E0(z) and E1(z). †
To pursue this idea further, let us write the polyphase components as

Since H1(z) = H0(-z), we have

(5.2.16)

(5.2.17)

The synthesis filters, which are given by (5.2.2), can be expressed as

The distortion function, which is allpass, is now given by

(5.2.18)

(5.2.19)

Figure 5.1-1(a) can now be redrawn as in Fig. 5.2-5, showing the complete 
QMF bank. This is free from aliasing and amplitude distortion, regardless 
of the details of the allpass functions a0(z) and a1(z)!

Figure 5.2-5 QMF bank with allpass polyphase components.

† The allpass constraint on Ek(z) is, however, not necessary. For example, 
if E0(z) = 0.5 + z-1 and E1(z) = 1∕(1 + 0.5z-1), then also T(z) is allpass, 
that is, amplitude distortion is eliminated. However, since H0(z) has band 
edge around π∕2 and since the coefficients Ei(z) are decimated versions of 
h0(n + i), it is not counter-intuitive that Ei(z) should be constrained to be 
allpass.
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(5.2.15)

where a0(z) and a1(z) are allpass, with ∣a0(ejω)∣ = ∣a1(ejω)∣ = 1. The anal- 
ysis filter H0(z) now takes the form



Can We Get Good Filter Responses with (5.2.16)?
The next question is, if we constrain the IIR analysis filter H0(z) to be of 

the form (5.2.16), is it still possible to have good attenuation characteristics? 
The answer is in the affirmative. For example, elliptic lowpass filters are of 
this form, if the bandedges and ripple sizes are chosen with appropriate 
symmetry (Fig. 5.2-6, to be explained next). With an elliptic filter so 
designed, we can easily identify the components a0(z) and a1(z) and then 
implement the structure of Fig. 5.2-5. It turns out that this technique is 
one of the most efficient ways (Sec. 5.3.5) to implement QMF banks free 
from aliasing and amplitude distortion. For example, we will see that if 
H0(z) is a fifth order elliptic filter, the entire analysis bank requires only one 
multiplication and three additions per input sample! In the next section we 
justify these claims, and also show how the filter H0(z) can be designed with 
the above constraint.

5.3 POWER SYMMETRIC QMF BANKS
We begin this section by summarizing the outcome of Sec. 5.2.3, concerning 
the IIR QMF bank. We assumed that the four filters are related as
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This ensures that aliasing is canceled, and the distortion function is T(z) = 
2z-1E0(z2)E1(z2), where Ei(z) are polyphase components of H0(z), that is, 
H0(z) = E0(z2) + z-1E1(z2). If H0(z) is IIR and the polyphase components 
Ei(z) are allpass, then T(z) becomes allpass. This, then, is a simple way to 
eliminate aliasing and amplitude distortion. The phase responses of E0(z) 
and E1(z) determine the remaining phase distortion.

♠ Main points of this section. In this section we first study the 
properties of filters H0(z) for which E0(z) and E1(z) are allpass (i.e., filters 
which have the form (5.2.16) where ∣a0(ejω)∣ = ∣a1(ejω)∣ = 1) and then show 
how to design them.

1. We first show that if H0(z) is of the form (5.2.16), then it satisfies two 
symmetry-properties viz., numerator symmetry, and power symmetry 
(to be defined).

2. Conversely, we will show that if a transfer function satisfies these sym­
metry properties, it can be expressed as in (5.2.16). A more precise 
statement is given in Theorem 5.3.1.

3. As a consequence of the preceding result we will show the following: 
Let H0(z) be an odd order elliptic lowpass filter with ripple sizes δ1, δ2 
and band edges ωp, ωs defined as usual [Figure 3.1-1(b)]. Suppose the 
response ∣H0(ejω)∣2 exhibits symmetry with respect to π∕2 as shown in 
Fig. 5.2-6. In other words, the ripple curve in the passband is a mirror 
image of the ripple curve in the stopband, with respect to the half-band 
frequency π∕2. Mathematically this means 1 - (1 — 2δ1)2 = δ2, that is,

(5.3.1a)



and also

(So if ωs and δ2 are specified then ωp and δ1 are determined, and the 
filter specifications are complete.) Under this symmetry condition, we 
can indeed express H0(z) as in (5.2.16), where a0(z) and a1(z) are unit- 
magnitude allpass filters. In other words the constraints (5.3.1) on the 
specifications ensure that the polyphase components of H0(z) are all- 
pass! We will present a modification of the standard elliptic filter design 
algorithm [Antoniou, 1979] to obtain the coefficients of a0(z) and a1(z), 
starting from the specifications ωs and δ2. ◊

The reader interested only in the design procedure can proceed directly 
to Sec. 5.3.4.

Figure 5.2-6 Square of the magnitude response function for a power symmetric 
filter.

5.3.1 Properties Induced by (5.2.16)
Power Symmetric Property

The quantities in (5.2.17) satisfy

(5.3.2)

So H1(z) is related to H0(z) in two ways: first by the constraint H1(z) =
H0(-z), and secondly by the power complementary property (5.3.3). Com- 
bining these we obtain the constraint
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(5.3.1b)

so that h(z)h(z) = 1. In terms of ω this means

(5.3.3)

(5.3.4)



Now, on the unit circle we have ∣H0(-ejω)∣ = ∣H0(ej(ω-π)|. For the real 
coefficient case this is the same as ∣H0(ej(π—ω))∣ so that (5.3.4) implies

(5.3.5)

for any real θ. This shows that the magnitude-squared function exhibits 
symmetry with respect to π∕2, as demonstrated in Fig. 5.2-6. For this 
reason, (5.3.4) is called the power symmetric property and H0(z) is said to 
be power symmetric, even though (5.3.5) holds only for the real coefficient 
case. Also the right hand side of (5.3.4) is often permitted to be different 
from unity. We can restate (5.3.4) in any one of the following equivalent 
ways:

1. H0(z)H0(z) is a half-band filter [i.e., it satisfies (4.6.7c)].
2. H0(z)H0(z)∣j↓2 = 0.5. Here the notation A(z)∣↓2 is as defined in Section

4.1.1. See, for example, (4.1.14).
3. H0(z) is power-symmetric.

Symmetry of Numerator of H0(z)
From Sec. 3.4 we know that the allpass functions can be expressed as

(5.3.6)

where ∣c0∣ = ∣c1∣ = 1, and ki ≥ order of di(z). [By convention di(z) is a 
polynomial in z-1.] Substituting into (5.2.16) we obtain

(5.3.7)

Thus, H0(z) = P0(z)∕d0(z2)d1(z2), that is, the denominator has only even 
powers of z-1. It is easy to verify that the numerator P0(z) is generalized 
Hermitian (Sec. 2.3). For the most common case where d0(z) and d1(z) have 
real coefficients and c0 = c1 = 1, this means that P0(z) is symmetric. More 
specifically, P0(z-1) = zN P0(z) where N = 2(k0 + k1) + 1. If p0(n) denotes 
the coefficients of P0(z), this property means p0(n) = p0(N — n).

Irreducibility. It can be shown (Problem 5.7) that there are no com- 
mon factors between P0(z) and the denominator d0(z2)d1(z2), under the rea- 
sonable assumptions that (a) d0(z) and d1(z) have all zeros inside the unit 
circle, and (b) d0(z) and d1(z) do not have common factors. In practical 
examples such as Butterworth and elliptic filters, these two assumptions are 
true. The second assumption is reasonable because, if (1-αz-1) is a common 
factor between d0(z) and d1(z) then the allpass factor (-α* + z-2)∕(1 - αz-2) 
can be extracted from the right hand side of (5.2.16), and does not contribute 
to the magnitude response ∣H0(ejω)∣.
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5.3.2 Power Symmetry and Numerator Symmetry Imply (5.2.16)
Assuming that (5.2.16) holds, we showed that H0(z) satisfies two symmetry 
properties. We now consider the converse, restricting our discussion to real 
coefficient filters. We show that if H0(z) is power symmetric and P0(z) 
symmetric, then H0(z) can be expressed as (a0(z2) + z-1a1(z2))∕2. The 
theorem below is a more precise statement of this. At this time, recall that 
H0(z) is said to be bounded real (BR) if it (a) has real coefficients, (b) is 
stable, and (c) satisfies ∣H0(ejω)∣ ≤ 1.

♠ Theorem 5.3.1. Let H0(z) = P0(z)∕D(z) be the irreducible repre- 
sentation of a BR function with symmetric (or antisymmetric) numerator of 
odd order N. If H0(z) satisfies the power symmetric condition (5.3.4) then 
the following are true:

1. H0(z) can be expressed as in (5.2.16) where a0(z) and a1(z) are stable, 
real-coefficient, unit-magnitude allpass functions.

2. Moreover the order of H0(z) is N = 2(k0 + k1) + 1 where ki is the order
of ai(z). So there are no cancelations in (5.2.16). ◊
Some practical examples. As a special case, suppose H0(z) is an odd 

order elliptic lowpass filter satisfying (5.3.1a) and (5.3.1b). Then, the con- 
ditions of the theorem are satisfied. Notice, however, that power symmetric 
filters are not restricted to be elliptic. For example, odd order Butterworth 
filters can be designed to satisfy (5.3.4). Chebyshev filters, on the other 
hand, are not suitable because they are inherently nonsymmetric (the pass- 
band is equiripple and stopband monotone, or vice versa).

Proof of Theorem 5.3.1. Substituting H0(z) = P0(z)∕D(z) into the 
power symmetric condition (5.3.4) and rearranging, we obtain
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Since P0(z)∕D(z) is irreducible, there is no common factor of the form 
(1 — βz-1), β ≠ 0 between P0(z) and D(z). Also since P0(z) = zN P0(z) 
(by symmetry of P0(z)), there are no such common factors between P0(z) 
and D(z) either. As a result, there are no common factors between the 
numerator and denominator of the left hand side of the above equation. 
The denominators on the two sides should therefore be equal except for 
a scale factor. Equating, in particular, the factors of these denominators 
which have zeros inside the unit circle, we obtain D(-z) = cD(z). Assuming 
that D(z) is normalized such that its constant coefficient is unity, we have 
D(z) = D(-z). From this we also see that D(z) has only even powers of 
z-1, that is D(z) = d(z2).

Let H1(z) ≜ H0(-z). Then



The power symmetric condition, (5.3.4) means that the function H1(z) is 
power complementary to H0(z). Since P0(z) is a odd order symmetric (an- 
tisymmetric) polynomial, P0(-z) is, therefore, antisymmetric (symmetric). 
Summarizing, H0(z) and H1(z) are a set of stable, real coefficient power 
complementary functions with symmetric and antisymmetric numerators. 
Moreover they have the same denominator. We can therefore apply Theo- 
rem 3.6.1 to conclude

where A0(z) and A1(z) are stable unit-magnitude allpass, with orders n0 and 
n1 such that N = n0 + n1. Notice now that since H1(z) = H0(-z) we can 
always write the pair as in (5.2.5). Since the 2 ×2 matrix in (5.3.8) is nonsin- 
gular, we conclude by comparing (5.2.5) with (5.3.8) that E0(z2) = A0(z)∕2 
and z-1E1(z2) = A1(z)∕2. This proves that the polyphase components E0(z) 
and E1(z) are allpass with magnitude 0.5. Thus H0(z) can be expressed as 
in (5.2.16), where a0(z) and a1(z) are stable unit-magnitude allpass. Since 
N = n0 + n1 we have N = 2(k0 + k1) + 1. ▽ ▽ ▽

Even-order filters. The above result is restricted to odd order filters. 
Recall from Sec. 3.6 that if H0(z) is an even order elliptic lowpass filter, 
then the allpass decomposition can still be done but the allpass filters now 
have complex coefficients [even though H0(z) has real coefficients]. Since the 
polyphase components evidently have real coefficients, these allpass filters 
cannot, therefore, be the polyphase components. In the even order case it 
is possible to use a modified HR QMF bank which overcomes this difficulty 
(Problem 5.6).

5.3.3 Poles of Power Symmetric Elliptic Filters

Let G(z) be a lowpass (or highpass) power symmetric elliptic filter. Then 
all its poles are located on the imaginary axis. Thus the poles have the form 
jβk (with —1 < βk < 1 due to stability). The rest of this section is devoted 
to proving this, and can be skipped without loss of continuity.

Proof of the above claim. From Sec. 3.3.3 we know that for an Nth 
order elliptic filter G(z) we can write

(5.3.9)

where R(z) is a rational function of the form

(5.3.10)
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(5.3.8)



with ℓ = 1 for odd N and ℓ = 0 for even N. Here m is such that N = 2m + ℓ. 
The frequencies θk are the reflection zeros (i.e., points where ∣G(ejω)∣ attains 
the maximum of unity) and ωk the transmission zeros [Fig. 5.3-1(a)]. From
(5.3.10) we have the relation

Figure 5.3-1 For a power symmetric elliptic lowpass filter G(z), the relation 
ωk + θk = π holds.
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(5.3.11)

The power-symmetric property means

(5.3.12)

Evidently the right hand side of (5.3.12) has reflection zeros at π — ωk and 
transmission zeros at π - θk. These, therefore, should agree with θk and ωk 
respectively, that is, π-θk = ωk as demonstrated in Fig. 5.3-1. Substituting 
this into (5.3.10) we can show R(-z) = 1∕R(z), that is,

(5.3.13)



Now by substituting (5.3.9) into the right hand side of (5.3.12) we get

(5.3.14)

using (5.3.13). By comparing (5.3.9) and (5.3.14) we conclude ε2 = 1. For a 
power symmetric elliptic filter G(z) we thus have

(5.3.15)

where R(z) is as in (5.3.10), with ωk + θk = π. If p is a pole then 1 + 
R(p)R(p-1) = 0. In view of (5.3.11) and (5.3.13) this implies

(5.3.16)

From Fig. 5.3-1 we see that ωk > π∕2 and θk < π∕2 for all k. So the poles of 
the rational function R(z)∕R(-z) are restricted to the open left-half of the 
z-plane. Moreover, R(z)∕R(-z) has unit magnitude on the imaginary axis so 
that by maximum modulus theorem (Sec. 3.4.1) we have ∣R(z)∕R(-z)∣ < 1 
for Re z > 0. By replacing z with -z and repeating this argument we find 
that ∣R(-z)∕R(z)∣ < 1 for Re z < 0. Summarizing, we have

(5.3.17)

which proves that all the poles of G(z) are indeed on the imaginary axis of 
the z plane. ▽ ▽ ▽

5.3.4 Design of Power Symmetric Filters
By Theorem 5.3.1, elliptic lowpass filters whose specifications satisfy (5.3.1) 
have the form (5.2.16). For example, with N = 5, we have n0 = 2, n1 = 3, 
that is, k0 = k1 = 1 so that a fifth order power symmetric elliptic filter can 
be expressed as

(5.3.18)

where 0 < α0,α1 < 1. Similarly a third order power symmetric elliptic filter 
can be expressed as

(5.3.19)
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where Ο < α < 1. [Since the zeros of an elliptic filter are on the unit circle, 
we have (1/3) < α as well.] The constants c0 and c1 in (5.3.6) which are 
obviously real in this case, are taken to be unity so that H0(1) = 1 as 
required.
Design Procedure (Butterworth and Elliptic Cases)

Our discussions are made easier in terms of analog filters, reviewed in 
Sec. 3.3. If we design a Butterworth filter with 3 dB point Ωc = 1 and obtain 
H0(z) using the bilinear transformation (3.3.1), then H0(z) automatically 
satisfies the power symmetric property (Problem 5.8).

We now consider the elliptic case. The design specifications are δ1, δ2, 
Ωp and ΩS. The parameter
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(5.3.20)
governs the filter sharpness. The analog domain equivalent of the condition 
ωp + ωS = π is, in view of the bilinear transform,

(5.3.21)

Since the ripples are constrained as in (5.3.1a), we have only two degrees of 
freedom, viz., δ2 and r. Given these specifications, if we compute δ1 using 
(5.3.1a) and then use standard techniques to design the analog elliptic filter, 
the estimated filter order may not turn out to be an integer. If it is rounded 
to the nearest (or next higher) odd integer N, the resulting filter does not 
in general satisfy the desired ripple constraint.

It is, however, possible to modify the standard elliptic filter algorithm 
such that the condition (5.3.1a) is exactly satisfied after the order has been 
rounded up. In this process the value of δ2 is readjusted (reduced), such 
that N is exactly an integer under the constraint (5.3.1a). Table 5.3.1 shows 
the design-algorithm for this, obtained by modifying the procedure given by 
Antoniou [1979]. The resulting analog elliptic filter has the desired r, and 
usually has smaller ripple size δ2 than specified. In any case it satisfies the 
power symmetric condition (5.3.1a) exactly. If this is transformed into a 
digital filter by use of the bilinear transform, the resulting H0(z) satisfies 
(5.2.16). In particular the denominator has only even powers of z-1, and 
the poles are all on the imaginary axis of the z-plane.

Identifying the two allpass filters. Since the above algorithm gives 
H0(z) in factored form, the poles are already known, so the method described 
in Sec. 3.6 can be used to identify a0(z) and a1(z). In the elliptic filter 
case, the pole interlace property can be used to simplify this identification 
(recall Fig. 3.6-5 and associated comments). Fig. 5.3-2 demonstrates this for 
N = 7. Once the poles of a0(z2) and z-1a1(z2) are identified, the polynomials 
d0(z2) and d1(z2) in (5.3.6) are known. By setting c0 = c1 = 1 and taking 
ki = order of di(z), we can identify ai(z). These are summarized in Table 
5.3.1.

A second way to identify the allpass filters is as follows. We have 
H0(z) = P0(z)∕d(z2), with the coefficients of P0(z) and d(z) known from



TABLE 5.3.1 Design of power symmetric elliptic filters

We summarize the procedure to design an odd order, lowpass, power- 
symmetric elliptic filter H0(z). Let the filter order be N = 2m + 1.
Specifications.

The given specifications are ωS and δ2, i.e., the stopband edge and peak 
stopband ripple, as in Fig. 3.1-1(b). The minimum stopband attenuation is 
then AS = -20 log10 δ2. The passband edge ωp and peak passband ripple δ1 
are determined according to the halfband symmetry conditions

Readjusting ripple size.
Since N is obtained by rounding-up the right hand side above, the 

resulting peak ripple δ2 is smaller than specified. To recompute this ripple 
first recompute D from
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Also recall Amax = -20log10(1 - 2δ1).
Order estimation.

Define the quantities r = tan(0.5ωp)∕ tan(0.5ωS), r = √1 — r2, q0 = 
0.5(1 - √r)∕(1 + √r),

Estimate the order N to be the smallest odd integer such that

Then find readjusted δ2 from D = (1 -δ22)2∕δ42, and δ1 from 4δ1(1-δ1) = δ22. 
Values of AS and Amax are also readjusted accordingly.
Computing the filter coefficients.

Let

and w = (1 + r)∕√r. For 1 ≤ k ≤ m (where m = (N - 1)∕2) compute



Table 5.3.1 continued . . .

in the order mentioned. Usually, it is sufficient to retain five or six terms 
of the infinite summations above. The quantities αk computed above are 
distinct and satisfy 0 < αk < 1. Renumber them so that

Define the polynomials

Let k0 and k1 denote the orders of d0(z) and d1(z). Define the allpass func- 
tions

Then the lowpass power symmetric elliptic filter is H0(z) = 0.5[a0(z2) + 
z-1a1(z2)]. Its order is N = 2(k0 + k1) + 1.

the above design. From (5.2.16) we have H0(z) + H0(-z) = a0(z2), i.e., 
a0(z2) = [P0(z) + P0(-z)]∕d(z2). After reducing this rational function to its 
irreducible form, we can identify d0(z). Thus, a0(z) given by z-k0d0(z)∕d0(z) 
is found. Similarly, a1(z) can be identified from [P0(z) — P0(-z)]∕d(z2).

Design Example 5.3.1: Power Symmetric Elliptic Filter
Suppose we wish to design a power symmetric elliptic filter H0(z) with 

stop band edge ωS = 0.608π and stopband attenuation AS = 35dB. This 
AS corresponds to δ2 ≈ 0.0178. From ωS we determine ωp = π — ωS. The 
quantities Ωp and ΩS can now be identified using (3.3.15). From these we 
obtain r = Ωp∕ΩS ≈ 0.5. If we compute δ1 using (5.3.1a), then the required 
filter order N for this combination of δ1, δ2 and r is N = 4.7, which is not 
an integer. If this is readjusted to N = 5, the ripples will not satisfy (5.3.1a) 
any more.

By using the values of δ2 and r in the algorithm of Table 5.3.1, we can
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obtain the readjusted ripple size δ2 = 0.0132 (i.e., AS = 37.58dB). If this is 
used in (5.3.1a), we get δ1 = 4.36 × 10-5. These values of δ1 and δ2, together 
with the specified r (i.e., r = 0.5) imply a filter order N = 5, which is exactly 
an integer. This filter, therefore is power symmetric.
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Figure 5.3-2 Grouping of poles into those of a0(z2) and z-1a1(z2). Here N = 7.

The poles of this power symmetric elliptic filter are at the locations

(5.3.22)

where α0 = 0.226634 and α1 = 0.703653. See Fig. 5.3-3. So we associate 
the poles z = ±j√α0 with a0(z2), and the poles z = 0 and z = ±j√α1 with 
z-1a1(z2). Thus the elliptic filter H0(z) has the form (5.3.18), with α0 and 
α1 as above. Fig. 5.3-4(a) shows the magnitude response of H0(z).

Phase distortion. The distortion function T(z) is given by

This is allpass with nonlinear phase response (i.e., nonconstant group delay). 
[The phase response is linear only if a0(z) and a1(z) are pure delays, which 
is uninteresting]. Figure 5.3-4(b) shows a plot of the group delay of T(z) 
for the above example. This exhibits a variation from 3 samples to about 
16 samples. Whether this is acceptable or not depends on the application



in hand, and several subjective considerations come into play. For example, 
some amount of phase distortion is acceptable in speech processing, but not 
in image processing [Lim, 1990].

Figure 5.3-3 Identifying poles of a0(z2) and z-1a1(z2) in Design example 5.3.1.

A Direct Optimization Approach (Non-Elliptic Design)
The fact that the poles of elliptic power symmetric filters are located 

on the imaginary axis implies that the denominators d0(z) and d1(z) of the 
allpass functions in (5.2.16) are of the form

Such an optimization is generally fast because in practice we have very few 
parameters. A fifth order filter of the form (5.3.18) has only two parameters 
to optimize! Note that even though the passband error is not included in 
the objective function, it automatically turns out to be small because of the 
power symmetric condition ensured by (5.2.16).
Design example 5.3.1. Power symmetric elliptic filter (continuation).

Fig. 5.3-4(c) shows the plot of ∣H0(ejω)∣ designed by optimizing the 
function φ. Again the filter order is taken to be N = 5, i.e., the power 
symmetric filter is as in (5.3.18). In this example ωS = 0.6π (the lower
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(5.3.23)

with 0 < αj,i < 1. This gives us the hint that if we wish to optimize the 
coefficients of a0(z) and a1(z) directly (rather than by designing an elliptic 
filter), then we can restrict d0(z) and d1(z) to be of this form. For example, 
we can optimize the parameters αj,i in (5.3.23) in order to minimize the 
stopband energy

(5.3.24)



Figure 5.3-4 Design example 5.3.1. (a) Magnitude of elliptic power symmetric 
filter (b) its group delay response, and (c) magnitude of minimum energy power 
symmetric filter.
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limit of the integral in (5.3.24)). The first peak ripple in the stopband is 
AS ≈ 38 dB. With (5.3.24) used as the objective function, the attenuation 
at ωS is not equal to AS, but typically less. In our example, the lowest 
frequency with attenuation equal to AS is 0.614π. The optimized system 
has α0 = 0.2121846, and α1 = 0.689796. The optimized filter response is not 
equiripple, since this is not a minimax design. The peak ripple decreases as 
ω increases. This is desirable in some applications.

Table 5.3.2 gives the values of α0 and α1 in (5.3.18) which minimize
(5.3.24),  for various choices of ωS appearing in (5.3.24). These are fifth order 
filters (N = 5), and cover a wide range of requirements. The table also shows 
the attenuation AS at the location of the first peak-ripple in the stopband. 
The table serves as a quick design aid for IIR power symmetric filters which 
can be used to design alias-free QMF banks with freedom from amplitude 
distortion. For other combinations of N, ωS and AS, the reader can obtain 
designs by direct optimization of (5.3.24), or by using the algorithm of Table 
5.3.1.

TABLE 5.3.2 Optimal IIR power 
symmetric filters with N=5

ωS α0 α1 AS

0.550π 0.2790 0.7652 28.6
0.575π 0.2401 0.7231 33.2
0.600π 0.2122 0.6898 37.6
0.625π 0.1910 0.6626 41.7
0.650π 0.1744 0.6399 46.5
0.675π 0.1611 0.6206 50.0
0.700π 0.1502 0.6042 54.5

5.3.5 Low Complexity of the IIR Power Symmetric QMF Bank
We know that the allpass filters aj(z) have denominators of the form (5.3.23). 
So aj(z) is a product of kj first order sections of the form

(5.3.25)

with 0 < αj,i < 1. Each of these sections can be implemented with one 
multiplier, two adders and two delays as shown in Fig. 3.4-4. So aj(z) 
can be implemented by cascading kj such sections, requiring a total of kj
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multipliers, 2kj adders, and 2kj delays. In fact, it is possible to share a delay 
between adjacent sections, as demonstrated in Fig. 5.3-5.

The total complexity to implement a0(z) and a1(z) is equal to k0 + k1 = 
0.5(N — 1) multiplications and (N — 1) additions. The outputs of ai(z) are 
added and subtracted, which costs two more adders. These multipliers and 
adders operate at the lower rate (see Fig. 5.2-5) so that the analysis bank 
requires

Figure 5.3-5 A cascade of two sections of the form (5.3.25). Each section is 
implemented as in Fig. 3.4-4, but a delay has been shared so that only three 
delays are required.

Robustness to Quantization
In any practical implementation, the multiplier coefficients are quan- 

tized (Chap. 9). In general this can result in the loss of some or all of the 
desirable properties (e.g., alias-cancelation, freedom from amplitude distor- 
tion, etc.). It is easy to verify that the allpass based structure of Fig. 5.2-5 is 
free from aliasing, as long as ai(z) in the analysis bank is quantized the same 
way as ai(z) in the synthesis bank. [This is because the alias cancelation 
condition (5.1.7) continues to hold.]

Furthermore, suppose the allpass filters are implemented such that they 
remain allpass inspite of multiplier quantization. This is easily ensured since 
ai(z) is a product of first order allpass functions which can be implemented 
as in Fig. 5.3-5 with real multiplier coefficients αj,i. Under this condition, 
the distortion function (5.2.19) continues to be allpass. Summarizing, the 
structure can be made free from aliasing as well as amplitude distortion, in 
spite of multiplier quantization.

5.3.6 FIR PR System with Power Symmetric Filters
We will now present an FIR perfect reconstruction system by modification 
of the above ideas. This system was introduced independently by Smith and 
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(5.3.26)
The complexity of the synthesis bank is the same.

In our design example N = 5, so that the analysis bank requires one 
MPU and three APUs. For this cost, the analysis filters provide 37.6 dB 
stopband attenuation, and the QMF bank is entirely free from aliasing and 
amplitude distortion. This system, therefore, is very efficient indeed!
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Barnwell [1984] and Mintzer [1985]. Let the synthesis filters be chosen in 
the usual way to cancel aliasing [i.e., as in (5.1.7)]. We have

(5.3.27)

as shown in Section 5.1.2. For perfect reconstruction, we require this to be 
a delay. Note that we have not made the assumption H1(z) = H0(-z) here. 
In particular, therefore, the alias-free system need not satisfy (5.2.2).

Assume now that H0(z) is power symmetric, that is, (5.3.4) holds. By 
comparing this with (5.3.27), we see that if the filter H1(z) is chosen as

(5.3.28)

for some odd N, then (5.3.27) reduces to X(z) = 0.5z-N X(z), that is, we 
have a perfect reconstruction system! In order for this system to be practical, 
H0(z) has to be FIR. (Otherwise H1(z) would be unstable for stable H0(z)). 
By using (5.3.28) in (5.1.7) we see that the synthesis filters are given by

(5.3.29)

The above choices of filters can be rewritten in the time domain as

Assuming that H0(z) is causal, we see that the remaining filters are causal 
as long as N ≥ order of H0(z).

We can summarize these results as follows. Let

(5.3.30)

(5.3.31)

be power symmetric [i.e., satisfies (5.3.4)]. Then the choice of the remaining 
three filters according to (5.3.30) results in a perfect reconstruction system 
satisfying x(n) = 0.5x(n — N).

Other properties. It is easily verified that the filters chosen as above 
satisfy these properties: (a) ∣Fk(ejω)∣ = ∣Hk(ejω)∣, that is, the synthesis 
filters have the same magnitude responses as the analysis filters, and (b) 
∣H1(ejω)∣ = ∣H0(-ejω)∣. In the real coefficient case, the second property 
means that if H0(z) is lowpass then H1(z) is highpass, with same ripple 
sizes. Note that the relation H1(z) = H0(-z) is in general not satisfied by 
this system.
Design Procedure

Only the filter H0(z) remains to be designed. The power symmetric 
property means that the zero-phase filter H(z) = H0(z)H0(z) is a half-band



filter. Note that H(ejω) has to be nonnegative. The design steps for the real 
coefficient case (h0(n) real) are as follows:

1. First design a zero-phase FIR half band filter G(z) = Σnn=-Ng(n)z-n 
of order 2N (e.g., by using the McClellan-Parks algorithm). The half- 
band property can be achieved by constraining the bandedges to be such 
that ωp + ωS = π, and the peak ripples in the passband and stopband 
to be identical as shown in Fig. 5.3-6(a).

2. Then define H(z) = G(z) + δ, where δ is the peak stopband ripple of 
G(ejω). This ensures that H(ejω) ≥ 0, as seen from Fig. 5.3-6(a).

3. Finally compute a spectral factor H0(z) of the filter H(z). In principle, 
this can be done by computing the zeros of H(z) and assigning an 
appropriate subset to H0(z) (Sec. 3.2.5). However there exist more 
efficient techniques which do not require the computation of zeros. One 
of these, due to Mian and Nainer [1982], is described in Appendix D. 
Once H0(z) has been computed, the remaining three filters are obtained 
using (5.3.30).

Comments.
1. Order is odd. As shown in Sec. 4.6.1, the order of G(z) in the above 

design is of the form 4J + 2 so that the order of H0(z) is 2J + 1, that 
is, odd. Since the integer N in (5.3.28) is also required to be odd, we 
can take N to be same as the order of H0(z). This also ensures that the 
filters defined as in (5.3.30) are causal.

2. Choosing the specifications. Let ωS and AS be the stopband edge and 
minimum stopband attenuation specified for H0(z). Then the filter G(z) 
has the same stopband edge ωS, and stopband attenuation ≈ 2AS + 
6.02 dB (why?). The passband specifications of G(z) are automatically 
determined by the half-band constraint as follows: (a) peak passband 
ripple is identical to peak stopband ripple, and (b) ωp + ωS = π.

3. Efficient design of G(z). The half-band filter G(z) can also be designed 
using a more efficient trick, which was outlined in Problem 4.30 (using 
slightly different notations for the filters).

4. Phase of H0(z). As explained in Sec. 3.2.5, the spectral factor H0(z) is 
not unique because of the many ways in which the zeros of H(z) can 
be grouped into those of H0(z) and H0(z). The efficient technique de- 
scribed in Appendix D gives a minimum-phase spectral factor (i.e., the 
zeros are on and inside the unit circle). If one desires to have a spectral 
factor with nearly linear phase response, it can be done by other group- 
ings of the zeros [Smith and Barnwell, 1984]. However, H0(z) cannot 
have exactly linear phase, unless it has the form az-K + bz-L. This is 
because, if H0(z) has linear phase, then so does H1(z) defined according 
to (5.3.28). But H0(z) and H1(z) are also power complementary, and 
cannot therefore have more than two nonzero coefficients (as proved 
later in Sec. 7.1).
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Figure 5.3-6 (a) Construction of a half-band filter H(z) with H(ejω) ≥ 0. (b)
Design example 5.3.2. Magnitude responses of the analysis filters of the perfect 
reconstruction system.

Design Example 5.3.2. FIR Power Symmetric Filter Bank
Suppose H0(z) is required to be a real-coefficient, equiripple, power 

symmetric FIR lowpass filter with specifications: ωS = 0.6π and AS = 32 
dB. This means that the half-band filter G(z) has stopband attenuation 70 
dB (and stopband edge 0.6π). The required order of G(z) (hence H(z)) 
turns out to be 38. So the power symmetric analysis filter H0(z) has order 
N = 19. The coefficients of the spectral factor H0(z) are found using the 
technique due to Mian and Nainer [1982], described in Appendix D. Table
5.3.3 shows the coefficients h0(n). The magnitude responses of the analysis 
filters are shown in Fig. 5.3-6(b).

Computational complexity. If implemented independently, each 
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analysis filter would require (N + 1) multiplications and N additions. How- 
ever, since the impulse responses are related as in (5.3.30), we can imple- 
ment the analysis bank as shown in Fig. 5.3-7, requiring a total of (N + 1) 
multiplications and 2N additions. The total complexity of the direct form 
implementation is therefore (N + 1) MPUs and 2N APUs for the analysis 
bank (and the same for the synthesis bank).

TABLE 5.3.3 Filter coefficients in
Design example 5.3.2

n h0(n)

0 0.1605476 e+00
1 0.4156381 e+00
2 0.4591917 e+00
3 0.1487153 e+00
4 -0.1642893 e+00
5 -0.1245206 e+00
6 0.8252419 e-01
7 0.8875733 e-01
8 -0.5080163 e-01
9 -0.6084593 e-01

10 0.3518087 e-01
11 0.3989182 e-01
12 -0.2561513 e-01
13 -0.2440664 e-01
14 0.1860065 e-01
15 0.1354778 e-01
16 -0.1308061 e-01
17 -0.7449561 e-02
18 0.1293440 e-01
19 -0.4995356 e-02

Instead of using the structure of Fig. 5.3-7 which exploits the relation 
between H1(z) and H0(z), we can also implement H0(z) and H1(z) individ­
ually in polyphase form. We then require only (N + 1) MPUs and N APUs 
for the entire analysis bank.

The above MPU and APU counts are higher than the cost for Johnston’s 
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designs (0.5(N + 1) MPUs and 0.5(N + 1) APUs for the analysis bank). 
The increased complexity above is partly due to the fact that we have not 
simultaneously exploited the relation (5.3.30) and the decimation operations.

In Sec. 6.4 we will present a lattice structure for the QMF bank which 
overcomes this, and has the smallest possible complexity (same number of 
MPUs and APUs as Johnston’s filters). This lattice has the additional ad- 
vantage that the perfect reconstruction property is preserved in spite of 
multiplier quantization. Such a feature is not offered by the direct form 
structure (Fig. 5.3-7); for example, quantization of h0(n) results in the loss 
of power symmetric property (hence loss of perfect reconstruction).

Figure 5.3-7 An (N + 1)-multiplier implementation of the real-coefficient anal- 
ysis bank satisfying h1(n) = (-1)nh0(N — n).

5.4 M-CHANNEL FILTER BANKS

For the two channel QMF bank, we considered a specific case where the 
analysis filters are related as H1(z) = H0(-z), and studied it in detail. It 
is important to analyze the more general case [where restrictions such as 
H1(z) = H0(-z) are not imposed a priori], so that we can understand the 
general conditions for alias cancelation and perfect reconstruction.

However, in attempting to study the general theory of alias cancelation 
and perfect reconstruction, it turns out to be more efficient to deal directly 
with the M-channel maximally decimated filter bank shown in Fig. 5.4-
1. We, therefore, study this system in the next few sections. The special 
properties which arise for the two channel case (M = 2) will be pointed out 
at appropriate places, along with several examples.

In Fig. 5.4-1 the signal x(n) is split into M subband signals xk(n) by the 
M analysis filters Hk(z). Fig. 4.1-15(c) in Chap. 4 shows typical frequency 
responses of the analysis filters. Each signal xk(n) is then decimated by M to 
obtain vk(n). The decimated signals are eventually passed through M-fold 
expanders, and recombined via the synthesis filters Fk(z) to produce x(n). 
For convenience, and to be consistent with the literature, we sometimes 
refer to this system as the (M-channel) QMF bank, even though the name 
“QMF” is not justified any more. Many applications of this system were
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outlined in Chap. 4. More can be found in Chap. 10 and 11, where this 
system is used as a unifying tool for a number of diverse topics such as 
block filtering, nonuniform sampling, periodically time varying systems, and 
wavelet transform theory.

Figure 5.4-1 The M-channel (or M-band) maximally decimated filter bank. 
Also called M-channel QMF bank.

In this section we introduce the fundamentals of alias cancelation and 
perfect reconstruction. These results will be used in other chapters fre- 
quently. For notational convenience we define the vectors

Notice that the analysis bank is a one-input M-output system with trans- 
fer matrix h(z); the synthesis bank is an M-input one-output system with 
transfer matrix fT(z). The delay chain vector will be used in polyphase repre- 
sentations; this was already encountered in Chap. 4 [e.g., see Fig. 4.1-16(a)].

5.4.1 Expression for the Reconstructed Signal

We first obtain an expression for X(z) in terms of X(z), by ignoring the 
presence of coding and quantization errors. Each subband signal is given by

(5.4.2)
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so that the decimated signals vk(n) have z-transform (Sec. 4.1.1)

(5.4.3)

For ℓ ≠ 0, this represents a shifted version of the spectrum X(ejω). So the 
reconstructed spectrum X(ejω) is a linear combination of X(ejω) and its 
M — 1 uniformly shifted versions.

5.4.2 Errors Created by the Filter Bank System
In a manner analogous to the two-channel QMF bank, the reconstructed 
signal x(n) differs from x(n) due to several reasons such as aliasing, imaging, 
amplitude distortion, and phase distortion as explained next.
Aliasing and Imaging

The presence of shifted versions X(zWℓ),ℓ > 0 is due to the decimation 
and interpolation operations. We say that X(zWℓ) is the ℓth aliasing term,
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where W = WM = e-j2n/M. The outputs of the expanders are therefore 
given by

(5.4.4)

so that the reconstructed signal is

(5.4.5)

We can rewrite this in the more convenient form

(5.4.6)

where

(5.4.7)

The quantity X(zWℓ) can be written for z = ejω as

(5.4.8)



and Aℓ(z) is the gain for this aliasing term. It is clear that aliasing can be 
eliminated for every possible input x(n), if, and only if,

(5.4.9)

We now demonstrate alias cancelation ideas graphically for M = 3. We 
have two alias cancelation conditions to satisfy, namely

(5.4.10)

Figure 5.4-2(a)-(c) show the magnitude responses of the three analysis fil­
ters, along with their shifted versions. It is assumed that ∣Hk(ejω)∣ is sym­
metric with respect to zero-frequency, which is consistent with the common 
situation where the filter coefficients are real.

The signal which enters the filter F0(z) contains the terms

(5.4.12)

The purpose of the filter F0(z), broadly speaking, is to eliminate the terms 
involving X(zW) and X(zW2). This is done if F0(z) attenuates the replicas 
H0(zW) and H0(zW2), and retains only H0(z). For this reason, the response 
∣F0(ejω)∣ resembles ∣H0(ejω)∣, as shown in Fig. 5.4-2(d). The responses of 
F1(z) and F2(z), based on same reasoning, are also indicated in the same 
figure.

Thus, the output of F0(z) is a lowpass filtered version of x(n), plus some 
alias terms. Similarly, the output of F1(z) is a bandpass filtered version of 
x(n) plus alias terms. The relation between these outputs and the so-called 
multiresolution components will be discussed in Section 5.8.

Note that if the filters were ideal, with responses given by 

then there is perfect reconstruction, that is, x(n) = x(n). Since the filters 
Fk(z) are not ideal in practice, they do not completely eliminate the shifted 
replicas Hk(zW) and Hk(zW2). For instance, the three terms in (5.4.10) are 
not individually equal to zero. The residual alias terms are demonstrated in 
Fig. 5.4-2(e)-(g). The responses of H0(zW)F0(z) and H1(zW)F1(z) have an 
overlap, and so do the responses of H1(zW)F1(z) and H2(zW)F2(z). The 
basic idea behind alias cancelation is to choose the synthesis filters such that 
these overlapping terms cancel out.
Amplitude and Phase Distortions

Unless aliasing is canceled, the M-channel QMF bank is a periodically 
time varying system (LPTV) with period Μ. (This was shown in Section
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5.1.1, by taking M = 2; also see Sec. 10.1.2.) If the aliasing terms are 
somehow eliminated by forcing Aℓ(z) = 0 for ℓ > 0, we have

Figure 5.4-2 (a), (b), (c) Magnitude respones of analysis filters and various
shifted versions. (d) Magnitude responses of synthesis filters. (e), (f), (g) Residual 
alias terms with ℓ = 1, indicating overlap between adjacent-channel alias terms 
which can be canceled with each other.
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Here T(z) is the distortion function (or overall transfer function)

(5.4.14)

Thus, when aliasing is canceled, the QMF bank is an LTI system with trans- 
fer function T(z). If ∣T(ejω)∣ is not a constant (i.e., T(z) not allpass) we say 
that there is amplitude distortion, and if T(z) has nonlinear phase we say 
that there is phase distortion.

Perfect reconstruction (PR) systems. If Hk(z) and Fk(z) are such 
that (a) aliasing is completely canceled and (b) T(z) is a pure delay (i.e., 
T(z) = cz-n0,c ≠ 0), then the system is free from aliasing, amplitude dis- 
tortion and phase distortion. Such a system satisfies x(n) = cx(n - n0), and 
is called a perfect reconstruction system.

5.4.3 The Alias Component (AC) Matrix

We can rewrite (5.4.7) in matrix-vector form as

To cancel aliasing, we have to force all elements on the left side to zero 
(except the top element). So, the conditions for alias cancelation can be 
written as 

where

(5.4.17)

The M × M matrix H(z) is called the Alias Component (AC) matrix.
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(5.4.15)

(5.4.16)



By combining (5.4.6) with (5.4.15) we can express

(5.4.18)

where

(5.4.19)

It is clear that, given a set of analysis filters Hk(z), we can in principle cancel 
aliasing by solving for the synthesis filters from (5.4.16) as

(5.4.20)

This works as long as [det H(z)] is not identically zero. We can go a step 
further and obtain perfect reconstruction, simply by requiring that t(z) be 
of the form

(5.4.21)

Practical Difficulties with the AC Matrix Inversion
If we attempt to solve the alias cancelation or perfect reconstuction 

problem by use of (5.4.20), then we would have to invert H(z). This is in 
principle possible, unless the determinant of H(z) is identically zero for all 
z. However the resulting filters Fk(z) may not be practical. To elaborate 
this point, let us write (5.4.20) explicitly as (Appendix A)

(5.4.22)

Notice from here that Fk(z) could be IIR even if each analysis filter Hk(z) is 
FIR. The zeros of the quantity [det H(z)] are related to the analysis filters 
Hk(z) in a very complicated manner, and it is difficult to ensure that they 
are inside the unit circle [which is necessary for stability of Fk(z)].

If we are willing to give up perfect reconstruction, and be satisfied with 
alias cancelation, then we can replace (5.4.22) with

(5.4.23)

so that the distortion function after alias cancelation is

(5.4.24) 
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for some c ≠ 0. The synthesis filters Fk(z) are now FIR (whenever the analy- 
sis filters are FIR). But the entries of the matrix [Adj H(z)] are determinants 
of (M-1)×(M-1) submatrices of H(z) and can represent FIR filters of very 
large order even if Hk(z) have moderate order. Another difficulty with this 
approach is that if [det H(z)] has zeros on the unit circle, say at z = ejω0, 
then ∣T(ejω0)∣ = 0, that is, there is severe amplitude distortion around ω0.

In the next section we will outline a different technique for perfect re- 
construction, in which all the above difficulties 'go away'. This is based on 
the polyphase representation.

Singularity of H(ejω) versus Amplitude Distortion

Consider a QMF bank in which the filters have been chosen to cancel 
aliasing completely. This means that (5.4.16) holds with t(z) as in (5.4.17). 
If T(z) has a zero at z = ejω0, then t(ejω0) = 0 so that

(5.4.25)

Unless all synthesis filters Fk(z) have a zero at ω0, this implies that H(ejω0) 
is singular. Summarizing, the situation T(ejω0) = 0 in a alias-free system 
implies singularity of the AC matrix at the frequency ω0. We can restate 
this as follows: if the AC matrix is nonsingular for all ω, then the alias-free 
system cannot satisfy T(ejω0) = 0 for any ω0 (unless Fk(ejω0) = 0 for all k, 
which does not happen in a good design).

In Section 5.2 we designed a class of two channel alias-free systems 
satisfying the constraint H1(z) = H0(-z). In these systems the analysis 
filters had linear phase. The filter order was required to be odd, in order to 
avoid the situation T(ejπ/2) = 0. In Problem 5.19 we request the reader to 
verify the connection between that issue and the singularity of H(ejπ/2).

5.5 POLYPHASE REPRESENTATION

In Sec. 4.3 we studied the polyphase representation, and found it to be very 
useful, both theoretically and in engineering practice. This representation 
finds application in filter bank theory as well [Vetterli, 1986], [Swaminathan 
and Vaidyanathan, 1986], [Vaidyanathan, 1987a,b].

We know from Sec. 4.3 that any transfer function Hk(z) can be ex- 
pressed in the form

(5.5.1)
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We can rewrite this as

that is, as
(5.5.2a)

and h(z) and e(z) are as in (5.4.1). Fig. 5.5-1 shows this idea pictorially. 
The matrix E(z) is the M × M Type 1 polyphase component matrix (or 
polyphase matrix) for the analysis bank.

We can express the set of synthesis filters also in an identical manner. 
Thus

(5.5.4)

Using matrix notations we have

In terms of e(z) and the synthesis-bank vector fT(z), this becomes

(5.5.5b)
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(5.5.2b)
where

(5.5.3)

(5.5.5a)



where

(5.5.6)

The matrix R(z) is the Type 2 polyphase matrix for the synthesis bank. Fig.
5.5-2  shows this representation. In Sec. 5.6.3 we provide many examples.

Figure 5.5-1 Type 1 polyphase representation of an analysis bank. E(z) is 
called the polyphase component matrix for the analysis bank.

Figure 5.5-2 Type 2 polyphase representation of a synthesis bank. R(z) is the 
polyphase component matrix for the synthesis bank.

Using these two representations in the filter bank of Fig. 5.4-1, we 
obtain the equivalent representation shown in Fig. 5.5-3(a), which we refer 
to as the polyphase representation of the M-channel QMF bank.

By using noble identities (Fig. 4.2.3), we can redraw this in the equiv­
alent form shown in Fig. 5.5-3(b). This simplified structure can even be 
used in practical implementations, and has the advantage that the filter 
coefficients (coefficients of E(z) and R(z)) are operating at the lower rate.
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Finally, we can combine the matrices and redraw the system as in Fig. 
5.5-3(c), where the M × M matrix P(z) is defined as

(5.5.7)

As we will see, these equivalent circuits are extremely useful for analytical 
study as well as in the design and efficient implementation of QMF banks.

Figure 5.5-3 (a) Polyphase representation of an M-channel maximally deci-
mated filter bank. (b) Rearragement using noble identitites. (c) Further simplifi­
cation, where P(z) = R(z)E(z).

Causality
Unless mentioned otherwise, the analysis filters Hk(z) will be assumed 

to be causal so that E(z) is causal. The synthesis filters Fk(z), which are 
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normally chosen to satisfy certain conditions (such as alias cancelation, per- 
fect reconstruction and so on) can be made causal by insertion of appropriate 
delays.
Relation Between Polyphase Matrix and AC Matrix

The study of filter banks can be done using either the alias component 
matrix H(z) [Eq. (5.4.15)] or the polyphase matrix E(z). The later approach 
has the advantage that E(z) is a physical matrix which makes appearance in 
the polyphase implementation [Figs. 5.5-3(a),(b)]. However, all theoretical 
conclusions obtained from use of one of these matrices can also be obtained 
from the other.

We shall prove that the AC matrix H(z) and the polyphase component 
matrix E(z) of any M-channel analysis bank are related as

(5.5.10)

using h(z) = E(zM)e(z). From the definition of e(z) we find

(5.5.11)

By using this in (5.5.10) (and remembering W = WT), we obtain (5.5.8).

5.6 PERFECT RECONSTRUCTION (PR) SYSTEMS

Recall that a perfect reconstruction (PR) system satisfies x(n) = cx(n - n0). 
This means that aliasing has been canceled, and that T(z) has been forced to 
be a delay. Such systems can indeed be designed. We will show that FIR PR 
systems can be built for arbitrary Μ. Moreover, these can be designed such 
that Hk(z) provides as much attenuation as the user specifies. If designed 
properly, the implementation cost of such a system is quite competitive with 
the cost of well-known approximate reconstruction systems (Chap. 8).
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(5.5.8)

where
(5.5.9)

and W is the M × M DFT matrix.
To see this, note that the definitions of H(z) and h(z) give us



5.6.1 The Delay Chain Perfect Reconstruction System
We begin with a very simple FIR perfect reconstuction system, and use it 
to build more useful systems. Consider Fig. 5.6-1(a) which is a two-channel 
system (M = 2) with analysis and synthesis filters

(5.6.1)

Figure 5.6-1 (a) The delay chain perfect reconstruction QMF bank, and (b) its
operation explained in the time domain.

By substituting in (5.4.5) we obtain X(z) = z-1X(z). The distortion 
function simplifies to T(z) = z-1 so that this is a PR system indeed. It 
is instructive to see how the system works in the time domain. This is 
demonstrated in Fig. 5.6-1(b). The output of the upper decimator permits 
the even numbered samples x(0), x(2), x(4) . . . , whereas the lower decimator 
permits odd numbered samples x(-1), x(1), x(3), . . . The expanders insert 
zero-valued samples as shown. The signals in these two branches are beau- 
tifully interlaced by the synthesis bank as indicated by the oblique arrows. 
So the reconstructed signal is precisely x(n) except for one unit of delay.

Figure 5.6-2 shows the M-channel generalization of this. This is a filter- 
bank with analysis and synthesis filters

(5.6.3)
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(5.6.2)

By substituting into (5.4.5), one can verify that this is a perfect reconstruc­
tion system, with



So the overall system is an LTI system [with transfer function T(z) = 
z-(M-1)] even though there are multirate building blocks in it.

Viewed in the time domain, we see that the kth channel passes the subset 
of input samples x(nM — k). In other words, the analysis bank merely splits 
the input x(n) into M subsequences

Figure 5.6-3 A generalization of Fig. 5.6-2. This is a perfect recronstruction 
system if and only if M and J are relatively prime. Again, M is the number of 
channels.

A further generalization is shown in Fig. 5.6-3. This is obtained by 
replacing each delay in Fig. 5.6-2 with z-J where J is some integer. This 
is a perfect reconstruction system if and only if the integers M and J are 
relatively prime (Problem 5.15).
5.6.2 More General Perfect Reconstruction Systems
The above PR system has allpass analysis filters, which are not useful in 
practice. Our aim is to use this simple system to develop more useful and
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(5.6.4)
These subsequences are then interlaced by the synthesis bank, in order to 
resynthesize x(n).

Figure 5.6-2 The delay chain perfect reconstruction system. Here x(n) = 
x(n — M + 1). Number of channels = Μ.



practical PR systems. For this imagine that we insert two matrices E(z) 
and R(z) in this system to obtain Fig. 5.5-3(b). It is clear that if

we still have perfect reconstruction but now T(z) = cz-(Mm0+M-1). More 
generally it can be shown that, the system has perfect reconstruction if and 
only if the product R(z)E(z) has the form

for some integer r with 0 ≤ r ≤ M — 1, some integer m0, and some constant 
c ≠ 0. Under this condition the reconstructed signal is x(n) = cx(n — n0), 
where n0 = Mm0 + r + M - 1. This result is a consequence of a general 
result which we will prove later in Sec. 5.7.2. It holds whether the system 
is FIR or IIR.
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(5.6.5)

then the output x(n) is unchanged. Next, suppose we move E(z) and R(z) 
(using noble identities) to obtain Fig. 5.5-3(a). This system continues to be 
equivalent to Fig. 5.6-2, so that an observer who measures x(n) [in response 
to x(n)] does not even notice our manipulations! In particular, Fig. 5.5- 
3(a) continues to have the perfect reconstruction property, except that the 
analysis filters can now be nontrivial.

We can now do our thinking backwards: suppose we are given a set 
of analysis filters Hk(z), 0 ≤ k ≤ M — 1. This completely determines E(z) 
(Sec. 5.5). Assuming that E(z) can be inverted, we can then obtain a PR 
system by choosing R(z) to be E-1(z) and then computing the synthesis 
filter coefficients from (5.5.5).

Matrix inversion again? The first thought that crosses the mind 
now is that this will bring home the same difficulties (including instability) 
we encountered in the inversion of the AC matrix H(z) (Sec. 5.4.3). As 
we will substantiate in Chap. 6, this alarm is unwarranted. We can avoid 
direct inversion of E(z) in many ways; one of these is to constrain it to be 
paraunitary (Sec. 6.1). Notice also that, unlike the AC matrix, E(z) is 
a physical matrix which will be used in implementation as well as in filter 
design.
Necessary and Sufficient Conditions for Perfect Reconstruction

The condition (5.6.5) is sufficient for perfect reconstruction, whether 
the system is FIR or IIR. It is clear that if we replace this with

(5.6.6)

(5.6.7)



As a special case consider the two channel QMF bank. The matrices 
E(z),R(z) and P(z) are now 2 × 2. This system has perfect reconstruction 
if and only if P(z) has the form

(5.6.8)

Every QMF bank satisfying (5.6.7) for some r can be obtained by start- 
ing from a QMF bank satisfying (5.6.5) and inserting a delay z-r in front 
of each synthesis filter. (This will be shown in Sec. 5.7.2.) As a result c, r, 
and m0 are not fundamental quantities. We sometimes use the term 'perfect 
reconstruction' to imply the simpler condition (5.6.5).

Condition on determinant. The reader can verify (Problem 5.16) 
that under the condition (5.6.7) we have
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(5.6.9)

for some c0 ≠ 0 and some integer k0. So any perfect reconstruction system 
(FIR or IIR) has to satisfy this determinant condition.
FIR Perfect Reconstruction Systems

Perfect reconstruction QMF banks with FIR filters Hk(z) and Fk(z) are 
of great interest in practice. For these systems the elements of E(z) and R(z) 
are FIR. The FIR nature of E(z) and R(z) implies that their determinants 
are FIR. If the product of these FIR functions has to be a delay [see (5.6.9)], 
then we must have

(5.6.10)

Thus every FIR perfect reconstruction system must satisfy the above condi- 
tion; and [det R(z)] must have similar form.

Characterization using paraunitary and unimodular systems. 
In Chap. 6 we will study a particular family of causal FIR matrices called pa- 
raunitary matrices, which satisfy the condition (5.6.10) with K = McMillan 
degree of E(z). In Chap. 13 we will encounter another family of causal FIR 
matrices called unimodular matrices, which, by definition, satisfy (5.6.10) 
with K = 0. It is shown in Vaidyanathan [1990b] that any causal FIR ma- 
trix satisfying (5.6.10) is a product of a paraunitary matrix and a unimodular 
matrix, motivating us to study these two classes of matrices in the chapters 
mentioned above.

5.6.3 Examples of Perfect Reconstruction Systems
Using the above principles we now generate a number of examples which 
demonstrate the idea of perfect reconstruction.



Example 5.6.1
Consider the two channel system in Fig. 5.6-4(a). By comparing with 
Fig. 5.6-1 we see that E(z) = T and R(z) = cT-1 so that the perfect 
reconstruction condition is satisfied, and x(n) = cx(n — 1). We can find 
the analysis and synthesis filters using (5.5.2) and (5.5.5), that is,

(5.6.11)

Take an example with c = 2 and

(5.6.12)

This is shown in Fig. 5.6-4(b), and can be redrawn in the form of the 
usual QMF bank as in Fig. 5.6-4(c). So the filters are

This PR system is less trivial than Fig. 5.6-1(a) because the filters H0(z) 
and H1(z) are lowpass and highpass (rather than just allpass). We can 
generate endless examples like this. For example let

(5.6.14)

We then have with c = 1,

(5.6.15)

In this case x(n) = x(n - 1). Notice that the condition H1(z) = H0(-z) 
is not satisfied by this perfect reconstruction example.

(5.6.16)

which is FIR. Notice that the determinant of this matrix is a delay, as 
required by (5.6.10). We choose R(z) to satisfy (5.6.6), that is,

(5.6.17)
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(5.6.13)

Example 5.6.2.
Let



so that the perfect reconstruction condition holds. Choosing c = 4 and 
m0 = 1, this becomes

(5.6.18)

The only purpose of m0 has been to avoid the positive powers of z (non 
causal terms). The analysis and synthesis filters corresponding to the 
above E(z) and R(z) are

Figure 5.6-4 (a) Example of a perfect reconstruction system, (b) a specific
choice of T and (c) redrawing in conventional form.
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Example 5.6.3: The Uniform-DFT Filter Bank
A simple FIR perfect reconstruction system can be constructed by re­
ferring to Example 4.1.1 (the DFT filter bank) in Chap. 4. In that 
example, the analysis bank is as in Fig 4.1-16(a), so that the filters are 
related as

Higher Order FIR Perfect Reconstruction Systems
Even though (5.6.10) can be trivially satisfied by taking E(z) to be a 

constant nonsingular matrix (as we did in the above example), it is of greater 
practical interest to employ E(z) having higher degree, so that the filters 
Hk(z) have higher order. In this way ∣Hk(ejω)∣ can have higher stopband 
attenuation and sharper cutoff rate.

One way to obtain FIR E(z) of higher degree while at the same time 
satisfying (5.6.10) is shown in Fig. 5.6-6. Here Rm are constant M × M 
nonsingular matrices. Clearly

where

(5.6.23)

(5.6.24)
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(5.6.20)

where
(5.6.21)

Notice that the filters have length M, which is equal to the number 
of channels. The frequency responses Hk(ejω) are shifted versions of 
the lowpass response H0(ejω), as shown in Fig. 4.1-16. In this ex- 
ample, we clearly have E(z) = W*, so that we can obtain a perfect 
reconstruction system by taking R(z) = W. Under this condition 
R(z)E(z) = WW* = MI so that the reconstructed signal satisfies the 
perfect reconstruction property x(n) = Mx(n — M + 1). It can be shown 
that the synthesis filters are related as

(5.6.22)

and that F0(z) = H0(z). So each synthesis filter has precisely the same 
magnitude response as the corresponding analysis filter. Fig. 5.6-5 shows 
the complete analysis/synthesis system.

Recall from Fig. 4.1-16 that each analysis filter has about 13 dB at- 
tenuation, and adjacent responses have substantial overlap. This shows 
that there is substantial amount of aliasing error at the output of each 
decimator. However, the filters Fk(z) and Hk(z) are related in such a 
delicate manner that the aliasing has canceled off.



Evidently [det E(z)] = αz-J, α ≠ 0. We can choose R(z) = z-JE-1(z) so 
that it is causal. We then have

(5.6.25)

where

(5.6.26)

Figure 5.6-7 shows the synthesis bank obtained in this manner. The filters 
Hk(z) and Fk(z) can be found using (5.5.2) and (5.5.5).

Figure 5.6-6 Analysis bank in which E(z) is a cascade of nonsingular matrices 
Rm separated by delays. Clearly [det E(z)] = delay.
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Figure 5.6-5 An FIR perfect reconstruction system with E(z) = W* and 
R(z) = W, where W = DFT matrix. Here x(n) = Mx(n — M + 1).



Figure 5.6-7 The synthesis-bank corresponding to Fig. 5.6-6, which would 
result in a perfect reconstruction system.

Example 5.6.4
Consider a special case with J = 1, and the matrices R0 and R1 chosen 
(rather arbitrarily) as

(5.6.27)

Since R0 is triangular, its determinant is the product of its diagonal 
elements, and is nonzero. So R0 is nonsingular, and

(5.6.28)

Also R1-1 is the transpose of R0-1. The matrix E(z) is

(5.6.29)

The analysis filters obtained using (5.5.2) are given by
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(5.6.30)



The synthesis filters for perfect reconstruction are obtained by taking

(5.6.32)

This example demonstrates that we can construct FIR perfect recon- 
struction systems of arbitrarily high order, by structuring E(z) and R(z) as 
in Figs. 5.6-6 and 5.6-7. Since the matrices Rm in Fig. 5.6-6 can be chosen 
arbitrarily (subject only to nonsingularity requirement), we can optimize the 
elements of Rm to obtain good filter responses ∣Hk(ejω)∣. The resulting sys­
tem is guaranteed to have perfect reconstruction. Practical design examples 
of this nature can be found in Chap. 6 to 8.

Example 5.6.5
Let H0(z) and H1(z) be related as H1(z) = H0(-z) so that the analysis 
bank has the form (5.2.5). We then have

(5.6.33)

Using (5.6.6) with c = 2 and m0 = 0 results in

(5.6.34)

The analysis and synthesis banks can now be drawn as in Fig. 5.6-8. So 
in this case the PR system is obtained merely by using, on the synthesis 
bank side, the reciprocals of the polyphase components of H0(z). The 
synthesis filters are

(5.6.35)

and are stable as long as the zeros of Ei(z) are strictly inside the unit 
circle. In this case [i.e., with H1(z) = H0(-z)] there is no way to obtain
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(5.6.31)

By using (5.5.5) we obtain



perfect reconstruction if all the filters are required to be FIR (unless the 
filters have trivial responses). This is consistent with the observation 
made in Sec. 5.2, where we studied this case in detail. As a numerical 
example, let E0(z) = E1(z) = 2 + z-1. Then

(5.6.36)

In the above example, the requirement that the zeros of Ei(z) be inside 
the unit circle, is severe. It puts severe constraints on the frequency response 
of H0(z). So this is not a very practical system.

Figure 5.6-8 Another example of a PR QMF bank. The synthesis bank is IIR 
if analysis bank is FIR.

5.7 ALIAS-FREE FILTER BANKS
Alias cancelation is evidently a less stringent requirement than perfect re- 
construction. Even though it is possible to achieve perfect reconstruction as 
explained in the previous section, it is important to study the most general 
conditions under which aliasing is canceled. We first demonstrate some use­
ful M-channel alias-free QMF banks. We then study the general theory for 
alias cancelation.

5.7.1 Examples of Alias-Free Systems
Starting from the conceptually simple perfect reconstruction system of Fig.
5.6-2,  we now obtain some examples of alias-free systems.

Example 5.7.1
Consider Fig. 5.7-1(a) in which we have M transfer functions Sk(z) 
'sandwiched' between the decimators and expanders. Evidently X(z) is 
a linear combination of X(z) and the alias components X(zWℓ). What 
is the set of necessary and sufficient conditions on Sk(z) so that aliasing 
terms are canceled?
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To see this, simply move S(z) all the way to the right using the appro- 
priate noble identity (Fig. 4.2-3). The result [Fig. 5.7-1(b)] is identical 
to the perfect reconstruction structure of Fig. 5.6-2, in cascade with 
S(zM). Under this condition we have

Figure 5.7-1 (a) Pertaining to Example 5.7.1 and (b) simplification when
Sk(z) = S(z) for all k.

So the system is alias free, and has distortion T(z) = z(M-1)S(zM). It 
turns out that (5.7.1) is also a necessary condition for alias cancelation. 
To see this, we first express X(z) in terms of X(z) :

(5.7.3)
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First, we claim that aliasing is absent if

(5.7.1)

(5.7.2)



This is free from the alias components X(zWℓ),ℓ > 0 [for all possible 
inputs x(n)] if, and only if,

(5.7.4)

(5.7.5)

(5.7.6)

where × denotes a possibly nonzero entry. Since WW† = MI, this 
implies

for some S(z), from which (5.7.1) follows. This result can be used to 
generate some useful alias-free systems, as demonstrated next.

Example 5.7.2.
Suppose each transfer function Sk(z) in Fig. 5.7-1(a) is factorized into 
Sk(z) = Ek(z)Rk(z) (Fig. 5.7-2(a)). By use of the noble identities we 
can move Ek(z) all the way to the left and Rk(z) all the way to the right 
(Fig. 5.7-2(b)). If we now insert a nonsingular matrix T and its inverse 
as shown, the input-output behavior of the system is still unchanged. In 
particular if the product
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(5.7.7)

is the same (= S(z)) for all k, then the system is free from aliasing, and 
X(z) is given by (5.7.2), regardless of the choice of T!

For example, imagine that T = W*. Then the analysis bank is the 
familiar uniform-DFT bank. In this case, Ek(z) and Rk(z) are, respec- 
tively, the Type 1 and Type 2 polyphase components of the prototype 
filters H0(z) and F0(z). The filters are related by uniform shifts (pre- 
cisely as in (5.6.20) and (5.6.22)). This little exercise shows that we 
can eliminate aliasing in a uniform-DFT filter bank by enforcing the 
condition that Rk(z)Ek(z) be the same for all k, that is,

One way to do so would be to take Rk(z) = 1∕Ek(z), which also yields 
perfect reconstruction. This choice, however, makes Rk(z) (and hence
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Figure 5.7-2 Step by step development of a fairly general alias-free sys- 
tem. All three systems have the same input/output behavior. Here Sk(z) = 
Ek(z)Rk(z).



For large M, (5.7.8) implies that the synthesis filters have much higher 
order than the analysis filters. For M = 2, (5.7.8) means

The ideas introduced above can also be used to compensate for channel 
distortion in QMF systems, as well as to design M-channel IIR systems free 
from amplitude distortion. We will skip these details (many of which are 
covered in Problems 5.21-5.23), and return to the general problem.

5.7.2 The Most General Alias-Free System
What is the most general set of necessary and sufficient conditions so that 
aliasing is canceled? One way to answer this question is to refer to (5.4.16), 
where H(z) is the alias component matrix (determined completely by the 
analysis bank) and f(z) is the synthesis filter bank. The filter bank is alias 
free if and only if the product H(z)f(z) has the form (5.4.17).

We now obtain an equivalent set of necessary and sufficient conditions 
based on the polyphase matrices E(z) and R(z) [Vaidyanathan and Mitra, 
1988]. We will show that the filter bank is alias free if and only if P(z), 
defined as the product R(z)E(z), is a pseudocirculant matrix (defined below). 
Under alias free condition, additional properties of the distortion function 
T(z) can be expressed entirely in terms of this matrix very conveniently.
Pseudocirculant Matrices

First, a matrix is said to be circulant if every row is obtained using a 
right-shift (by one position) of the previous row with the added requirement 
that the righmost element which 'spills over' in the process be 'circulated 
back' to become the leftmost element. Here is an example:

(5.7.10)
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the synthesis filters) unstable unless Ek(z) has all zeros inside the unit 
circle. A second way to enforce the above condition would be to take

(5.7.8)

Then

(5.7.9)

This is consistent with the special cases we saw in Section 5.2. For 
example see Fig. 5.2-2 where the synthesis bank has E1(z) in the top 
branch and E0(z) in the bottom branch. Also in Fig. 5.2-5, the synthesis 
bank has a1(z) in the top branch and a0(z) in the bottom branch.



Actually it is more approprite to call this a right-circulant, because the defi- 
nition involves right shifts. In a similar way one can define left circulants. In 
this book, 'circulant' stands for 'right circulant', unless mentioned otherwise.

A pseudocirculant matrix is essentially a circulant matrix with the ad- 
ditional feature that the elements below the main diagonal are multiplied 
with z-1. An example is:

(pseudocirculant matrix). (5.7.11a)

In other words, the element that spills over during the right shift is circulated 
after multiplying with z-1. In the time domain, the above matrix has the 
form

(pseudocirculant matrix). (5.7.11b)

Evidently, all the rows of a M × M pesudocirculant matrix P(z) are 
determined by the 0th row which is

For a pseudocirculant, the kth column is obtainable from the (k+1)st column 
as follows: (a) shift the (k+1)st column upwards by one element, (b) circulate 
the element that spills over so that it becomes the bottom most element, and 
(c) multiply the circulated element with z-1. The result is equal to the kth 
column. [The reader can verify this for (5.7.11a).] This can in fact be taken 
as an equivalent definition for pseudocirculants.

The occurence of pseudocirculant matrices in the context of multi- 
rate filter banks was noticed by Marshall [1982]. It was studied later in 
Vaidyanathan and Mitra [1988]. These matrices have also been found to 
arise in the context of block digital filtering [Barnes and Shinnaka, 1980]; 
Sec. 10.1 provides a more complete discussion. The following result was 
proved in Vaidyanathan and Mitra [1988].

♠ Theorem 5.7.1. Necessary and sufficient condition for alias 
cancelation. The M-channel maximally decimated filter bank (Fig. 5.4- 
1) is free from aliasing if and only if the M × M matrix P(z) (defined as 
the product R(z)E(z)) is pseudocirculant. Under this condition X(z) = 
T(z)X(z), and the distortion function T(z) can be expressed as
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(5.7.12)

(5.7.13)

where Pm(z) are the elements of the 0th row of P(z).



Proof. Consider Fig. 5.7-3 which is the familiar equivalent circuit for 
the QMF bank in terms of P(z). We will express X(z) in terms of X(z) 
and the elements Ps,ℓ(z) of P(z). First, using standard decimation formulas 
(Sec. 4.1.1) we have

The reconstructed signal is
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(5.7.14)

with W = e-j2π/M. The outputs of P(z) are given by

(5.7.15)

Figure 5.7-3 The equivalent circuit for the maximally decimated filter bank.

(5.7.16)

This can be rearranged as



The terms of the form X(zWk),k ≠ 0 represent aliasing. The above expres- 
sion is free from these aliasing terms [for all input signals x(n)] if and only 
if

This can be written using matrix notation as

(5.7.19)

where W is the M × M DFT matrix, and × indicates a possibly nonzero 
entry. Using the fact that WW† = MI, we can rewrite this as

(5.7.20)

since the 0th column of W has all entries equal to unity. Thus the QMF 
bank is alias-free if and only Vℓ(z) defined in (5.7.18) is the same for all ℓ.

Figure 5.7-4 Comparing the Type 2 polyphase implementations of V0(z) and 
V1(z).
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(5.7.18)

This implies
(5.7.21)



In Figs. 5.7-4(a) and (b) we demonstrate polyphase structures for V0(z) 
and V1(z). The structure for V1(z) can be rearranged as shown in Fig. 5.7- 
4(c). Because of the requirement V0(z) = V1(z), the polyphase components 
in Figs. 5.7-4(a) and (c) should be the same. This shows that the 0th column 
of P(z) is an upwards-shifted version of the 1st column, with the top most 
element recirculated with a z-1 attached to it. Similarly we can verify that 
the ℓth column is obtained from the (ℓ + 1)st column in this manner. This 
proves that P(z) is pseudocirculant.

Having canceled aliasing, (5.7.18) holds so that X(z) = T(z)X(z) with 
T(z) obtained from (5.7.17) as

Since the elements Ps,ℓ(z) are completely determined by the 0th row elements 
P0,ℓ(z), we can rearrange this (Problem 5.29) into the form (5.7.13). This 
completes the proof. ▽ ▽ ▽

The Special Case of Perfect Reconstruction (PR) Systems
A PR system is an alias free system with T(z) = delay. The alias-free 

nature implies that P(z) is pseudocirculant. With the 0th row of P(z) as in 
(5.7.12), T(z) has the form (5.7.13). This is a delay only if Pm(z) = 0 for 
all but one value of m in the range 0 ≤ m ≤ M — 1. And this nonzero Pm(z) 
must have the form cz-m0. Summarizing, an alias free system has perfect 
reconstruction if and only if the pseudocirculant P(z) has 0th row equal to

In other words P(z) (i.e., R(z)E(z)) has the form

(5.7.23a)

(5.7.23b)

for some r in 0 ≤ r ≤ M - 1. This was stated earlier in (5.6.7) without proof. 
Under this condition (5.7.13) reduces to

Some Practical Special Cases of Alias Free Systems
1. Consider the special case when P(z) is diagonal. This means that the 

structure is as in Fig. 5.7-1(a). The pseudocirculant condition on P(z) 
now means that all diagonal elements are identical, so that

(5.7.24)
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(5.7.22)

(5.7.23c)



This result agrees with the alias-cancelation condition obtained earlier 
in Example 5.7.1. In this case T(z) reduces to

(5.7.25)

2. A generalization of the above is the case where P(z) has one nonzero 
entry per row. In this case, the pseudocirculant property means

(5.7.26)

The presence of r merely introduces additional delay. We can obtain 
this from the first special case simply by replacing each synthesis filter 
Fk(z) with z-rFk(z). Thus every PR system satisfying (5.7.26) can be 
obtained from a PR system satisfying (5.7.24) simply by replacing each 
synthesis filter Fk(z) with z-rFk(z). In this sense, the form (5.7.26) is 
only “trivially” more general than (5.7.24).
If S(z) is a delay, then (5.7.26) reduces to the form (5.7.23b) imply- 

ing perfect reconstruction. Practically all the alias-free systems we consider 
belong to simple special cases of the form (5.7.26), that is, P(z) is a pseu- 
docirculant with one nonzero entry per row.

Further results on amplitude and phase distortion in alias-free systems 
can be found in Sec. 10.1. In particular, it will be shown that T(z) is allpass 
(i.e., there is no amplitude distortion) if and only if the pseudocirculant P(z) 
satisfies a property called paraunitariness.

5.8 TREE STRUCTURED FILTER BANKS
Consider the structure shown in Fig. 5.8-1(a). Here a signal is split into two 
subbands, and after decimation, each subband is again split into two and 
decimated. The subbands are then recombined, two at a time, by use of two- 
channel synthesis banks. This system is said to be a maximally decimated 
(binary) tree structured filter bank. The complete system can be redrawn in 
the equivalent nontree form of Fig. 5.4-1, with M = 4. The resulting filters 
Hm(z) and Fm(z) (0 ≤ m ≤ M — 1) can be expressed in terms of the filters 
Hi(k)(z) and Fi(k)(z) (Problem 5.24).

Fig. 5.8-1(b) shows an example of the magnitude responses of the four 
analysis filters Hm(z) for the two level tree. In this example, the tree filters 
H0(k)(z) have the power symmetric response shown earlier in Fig. 5.3-4(a), 
and H1(k)(z) = H0(k)(-z). Note that the four analysis filters are not equirip­
ple, even though H0(k)(z) and H1(k)(z) are.

254 Chap. 5. Maximally decimated filter banks

where 0 ≤ r ≤ M — 1. The 0th row of P(z) has all zeros except Pr(z) = 
S(z), so that (5.7.13) yields

(5.7.27)



Suppose the filters H0(k)(z), H1(k)(z), F0(k)(z) and F1(k)(z) are such that 
the two-channel QMF bank with these filters is alias-free. Then the complete 
system is also alias-free. Similarly, if the two channel system has perfect 
reconstruction, then so does the complete system. (Problems 5.24 and 5.25). 
These results can also be extended to more than two levels of splitting. The 
results also extend to trees other than binary (e.g., split a signal into two 
subbands, then split one subband into three and the other into four, etc.).

Figure 5.8-1 (a) A two-level maximally decimated tree structured filter bank,
and (b) example of magnitude responses.

Assume that all the two-channel systems in Fig. 5.8-1(a) have perfect 
reconstruction. Suppose, however, that the upper two-channel QMF bank 
and the lower two-channel QMF bank at the second level do not have the 
same set of analysis and synthesis filters. Then it may be necessary to 
introduce appropriate scale factors and delays at proper places so that the
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complete system still has perfect reconstruction (why?).
Tree structured filter banks are used in a number of applications both 

in one and two-dimensional signal processing. We now mention two of these, 
which were originally intended for image processing. The presentation here 
is brief.
Multiresolution Analysis Algorithm

Consider the variation of the analysis bank shown in Fig. 5.8-2(a). This 
is equivalent to the system shown in Fig. 5.8-2(b). This is a four-channel 
system with unequal decimation ratios. (It is still a maximally decimated 
system.) Each [G(z), H(z)] is typically a lowpass/highpass pair, as in a two 
channel QMF bank.

Figure 5.8-3(a) shows the synthesis bank that goes with this system, 
and Fig. 5.8-3(b) shows the non-tree equivalent structure. Assume that 
Gs(z), Hs(z) are chosen so that the two channel QMF bank with filters

256 Chap. 5. Maximally decimated filter banks

Figure 5.8-2 (a) A 3-level binary tree structured QMF bank, and (b) the
equivalent four-channel system.



G(z), H(z), Gs(z) and Hs(z) has perfect reconstruction, with unit-gain and 
no delay. We then have x(n) = x(n).

Figure 5.8-3 (a) The synthesis bank corresponding to Fig. 5.8-2, and (b)
equivalent four-channel system.

Figure 5.8-4 shows typical frequency responses of the analysis and syn- 
thesis filters (assuming that G(z) and H(z) form a lowpass and highpass 
pair, with cutoff around π∕2.) The signals vk(n) which are outputs of Fk(z), 
are called multiresolution components. For example the signal v3(n) rep- 
resents a lowpass version (or a 'coarse' approximation) of x(n), subject to 
aliasing and other errors. (Note that vk(n) has the same 'sampling rate' 
as x(n).) The signal v2(n) adds some high frequency (bandpass) details, so 
that v3(n) + v2(n) is a finer approximation of x(n). The signal v0(n) adds 
the finest ultimate (high-frequency) detail, so that x(n) = x(n) (by perfect 
reconstruction property). An obvious generalization of the tree structure
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uses different filter pairs at different levels of the tree.

There are several ways in which this structure can be used to obtain 
image compression. For example, one can choose to retain only v3(n) or one 
can add a quantized version of v2(n) to v3(n). More generally we can attach 
decreasing weights (bits) to the finer and finer detail signals vk(n). This 
technique is the ingredient of Mallat's multiresolution algorithm for image 
compression [Mallat, 1989a,b]. The above observation can also be used to 
transmit finer and finer versions of video data (e.g., in teleconferencing).

The above algorithm is extremely appealing even from an intuitive and 
philosophical view point: any kind of 'learning' or 'understanding' in life 
always occurs at various levels of resolutions, which get finer and finer as we 
improve our skills. Think of the way we mature in any of these: ' baseball, 
music, scientific skills, writing skills ...
The Laplacian Pyramid

This is a well-known scheme for image coding [Burt and Adelson, 1983], 
and is demonstrated in Fig. 5.8-5. Here G(z) is an FIR lowpass filter. The 
notation G(z) is defined as usual, so that G(ejω) = G*(ejω). Thus x0(n) 
is a coarse lowpass approximation of the input x(n). This approximation 
introduces no phase distortion [since G(z)G(z) has zero phase]. We can 
subtract x0(n) from x(n) to recover the high frequency details, denoted 
d0(n).

This process is now repeated on the decimated signal x1(n). The analysis 
bank, therefore, produces the highpass signals d0(n), . . . dL-1 (n), and the 
lowpass signal xL-1(n). (In the figure L = 2.) These signals can then be 
recombined using a synthesis bank as demonstrated in the figure, to recover 
x(n).

Notice that the perfect reconstruction property is trivially satisfied, re- 
gardless of the design of G(z). This is not surprising because the difference 
signals (highpass signals) dk(n) are not maximally decimated. For example, 
d0(n) is not decimated at all. This results in increased data rate (nearly 
by a factor of two). In order for the scheme to be beneficial, this must be 
compensated by the compression obtainable by the quantization of the sig-
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Figure 5.8-4 Typical appearances of magnitude responses of filters in the 3-level 
tree.



nals dk(n) and xL-1(n). Traditional QMF banks (such as Fig. 5.8-2) are, on 
the other hand, maximally decimated, and do not have this problem (but 
require special design procedures).

5.9 TRANSMULTIPLEXERS
An introduction to transmultiplexers was given in Section 4.5.4, which the 
reader should review at this time. Figs. 4.5-4 and 4.5-5 demonstrate the 
time domain and frequency domain multiplexing operations, and Fig. 4.5-6 
shows the complete TDM → FDM → TDM converter (transmultiplexer), 
also reproduced in Fig. 5.9-1.

Fig. 5.9-2 demonstrates how the signal V1(ejω) is generated starting 
from X1(ejω). If all the signals xk(n) are bandlimited to ∣ω∣ < σk with 
σk < π, there is no overlap between adjacent signals in the FDM format, 
that is, there exists a guard band between ajdacent frequency bins, as demon- 
strated in Fig. 5.9-3. In this case the FDM signals can be separated by filter- 
ing operations (followed by M-fold decimation to stretch the signal back to 
the full band -π ≤ ω ≤ π). The presence of guard bands ensures that there 
is no cross talk between adjacent signals, even though the filters have nonzero
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Figure 5.8-5 Burt and Adelson’s algorithm. (a) analysis, and (b) synthesis.



Figure 5.9-2 Generation of the signal v1(n) by use of interpolation and filtering.
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Figure 5.9-1 The transmultiplexer circuit, drawn in terms of filter bank nota- 
tions.



transition band. A larger guard band implies larger permissible transition 
band (hence lower cost) for the filters Hk(z), which attempt to recover the 
signals xk(n) from the FDM version. However, the existence of guard bands 
also means that the full channel bandwidth is not utilized in the transmission 
process.

The following observation was made in Vetterli [1986]: even if there 
are no guard bands (thereby permitting cross talk), we can subsequenty 
eliminate the cross talk in a manner analogous to alias cancelation in QMF 
banks. This idea makes judicious use of the relation between the mathemat­
ics of QMF banks and transmultiplexers as we will elaborate. We remind 
the reader that the term 'QMF', which is used for convenience, really stands 
for 'maximally decimated analysis synthesis systems'.

Figure 5.9-3 Stacking up the M signals Vk(ejω) in the frequency domain, to 
obtain the FDM version y(n).

5.9.1 Input-Output Relations for Transmultiplexers

We show that it is possible to achieve perfect cross talk elimination as well 
as perfect recovery of each TDM component xk(n) with finite-cost (in fact 
FIR) filters Hk(z) and Fk(z). In analogy with the QMF bank, we continue 
to use terms such as “analysis” and “synthesis” filters, and “filter banks” 
as indicated in Fig. 5.9-1. Notice the conceptual duality between the QMF 
bank and the transmultiplexer. In the former, we first “analyze” and then 
"synthesize"; this is in reverse order as compared to the transmultiplexer. 
(The QMF bank can also be conceptually looked upon as a FDM → TDM 
→ FDM convertor.) We will see that the problem of designing filters for 
'perfect reconstruction transmultiplexers' is same as the design of perfect 
reconstruction (PR) QMF banks.

The relation between xk(n) and xm(n) can be schematically represented 
as in Fig. 5.9-4. By using the polyphase identity (Fig. 4.3-13) we see that 
each branch in this figure is in reality an LTI system. We can therefore 
express
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(5.9.1)



where Skm(z) is the 0th polyphase component of Hk(z)Fm(z). By defining

So the transmultiplexer is an LTI system with transfer matrix S(z). The 
system is free from cross talk if and only if S(z) is diagonal. (This is the 
same as the requirement that the 0th polyphase component of Hk(z)Fm(z) 
be zero unless k = m.) Under this condition, each reconstructed TDM signal 
xk(n) is related to the original signal xk(n) according to

(5.9.5)

for some nonzero ck and integer nk. The TDM signals are then recovered 
without error, that is, xk(n) = ckxk(n — nk).

Figure 5.9-4 Equivalent circuit for generation of xk(n).

5.9.2 Study Based on Polyphase Matrices
The use of polyphase decomposition adds further insight into the operation 
of the transmultiplexer [Koilpillai et al., 1991]. As in Sec. 5.5, we can redraw 
the analysis and synthesis banks in terms of the polyphase matrices E(z) and
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(5.9.2)

we can express (5.9.1) more compactly as

(5.9.3)

(5.9.4)

The transfer functions Skk(z) represent the distortions that remain after 
cross talk elimination. If Skk(z) is allpass for all k, there is no amplitude 
distortion; if Skk(z) has linear phase, there is no phase distortion. Finally, 
a perfect reconstruction (PR) transmultiplexer is one for which



R(z). The resulting equivalent transmultiplexer circuit is shown in Fig. 5.9- 
5(a), which simplifies to Fig. 5.9-5(b) after invoking the noble identities. † 
This structure can be further simplified into the equivalent form shown in 
Fig. 5.9-5(c), by using the equivalence of Fig. 4.3-14. It is, therefore, clear 
that the transfer matrix S(z) can be expressed as

(5.9.6)
where

(5.9.7)

Figure 5.9-5 (a) Equivalent structures for the transmultiplexer in terms of
polyphase matrices, (b) rearrangement using noble identitites, and (c) simplifica­
tion using the equivalence of Fig. 4.3-14.

† Note that if we set E(z) = I as a special case, then y(n) becomes the 
TDM (rather than FDM) signal!
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(5.9.8)

(5.9.9)

for appropriate integer m0.
Relation to perfect reconstruction (PR) QMF banks. From the 

previous section we know that the product R(z)E(z) of a PR QMF bank 
satisfies (5.7.23b) for some integer r in 0 ≤ r ≤ M - 1. If the QMF bank is 
such that r = 1, then this condition is same as (5.9.9). On the other hand, if 
r ≠ 1, then we can insert appropriate amount of delay in front of the filters 
Fk(z) to force r = 1.

The amount of delay to be introduced can be judged as follows: for 
arbitrary r the PR QMF bank has overall transfer function (5.7.23c). This 
has the form cz-ℓM for integer ℓ if and only if r = 1. So the amount of 
delay to be inserted is such that T(z) takes this form. For example, suppose 
the PR QMF bank has T(z) = cz-2z-im. If we insert the delay z-(M-2) in 
front of each Fk(z), then T(z) becomes cz-(i+1)M. So insertion of this delay 
results in a PR QMF bank with r = 1. Its analysis and synthesis filters can 
then be used in the transmultiplexer to obtain perfect reconstruction!

Summary of perfect-reconstruction condition. This important 
conclusion can be summarized as follows: Let Hk(z) and Fk(z) be the anal- 
ysis and synthesis filters of a perfect reconstruction QMF bank, with overall 
transfer function T(z) = cz-L for some c ≠ 0 and integer L. Then the trans- 
multiplexer with analysis filters Hk(z) and synthesis filters z-J Fk(z) has per- 
fect reconstruction property for some integer J in the range 0 ≤ J ≤ M — 1. 
The appropriate value of J is such that L + J is a multiple of Μ. (That 
is, J is such that a QMF bank with filters Hk(z) and z-J Fk(z) would have 
T(z) = cz-ℓm for some integer ℓ.)
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So the set of reconstructed signals x(n) is related to x(n) by the transfer 
matrix (5.9.6). From this expression we can explore the conditions for cross 
talk elimination and perfect reconstruction.

Perfect Reconstruction
A sufficient condition for perfect reconstruction is obtained by setting 

S(z) = cz-n0I. Now

Substituting for Γ(z), this becomes



Cross Talk Free Transmultiplexers
The next natural question is this: suppose we are not interested in 

perfect reconstruction, but only in perfect cross talk elimination, and min- 
imization of other distortions. (This will cut the cost of filters to some 
extent.) Can we obtain such a system starting from a QMF bank? Since 
X(z) = S(z)X(z), the transmultiplexer is cross talk free if S(z) is diagonal.

We now show that this can be accomplished by starting from a suit- 
able alias-free QMF bank. The most common alias-free QMF bank satisfies 
(5.7.26), where P(z) = R(z)E(z). We will assume r = 1, as this can be 
ensured by inserting the right amount of delay z-J in front of Fk(z). So we 
have

(5.9.10)

where Γ(z) is as in (5.9.7). The QMF bank satisfying (5.9.10) has distortion 
function (5.7.27), with r = 1. That is,

(5.9.11)

In other words, T(z) is a function of zM, i.e., z appears only in the form zM. 
Now the condition (5.9.10) implies

The quantity on the left is the transfer matrix S(z) of the transmultiplexer 
with same analysis and synthesis filters as the QMF bank. So (5.9.13) is 
equivalent to

Summary of cross talk cancelation condition. This result can 
be summarized as follows: Let Hk(z) and Fk(z) be the analysis and syn- 
thesis filters in a QMF bank satisfying (5.9.10). This QMF bank is there- 
fore alias-free with distortion function T(z) = z-MS(zM). If we now design 
a transmultiplexer with analysis filters Hk(z) and synthesis filters Fk(z),
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(5.9.12)

which in turn implies

(5.9.13)

(5.9.14)
Since this is a diagonal matrix, cross talk has been eliminated, and the 
reconstructed signals satisfy

(5.9.15)



then it is free from cross talk. Moreover, the reconstructed signals satisfy 
Xk(z) = z-1S(z)Xk(z).

The cross talk free transmultiplexer in general suffers from amplitude 
and phase distortions since S(z) in (5.9.15) is an arbitrary transfer function. 
This same S(z) appears in (5.9.11) which represents the distortions in the 
alias-free QMF bank. If S(z) is allpass, then both systems are free from 
amplitude distortion. If S(z) has linear phase, then both systems are free 
from phase distortion.

Notice that the distortion functions Skk(z) in the transmultiplexer are 
not required to be same for all k. This freedom is not exploited above, because 
Skk(z) = z-1S(z) for all k.

5.10 SUMMARY AND TABLES
In this chapter we studied the quadrature mirror filter bank. Both two- 
channel and M channel cases were considered.

For the two channel case we also presented design techniques for alias- 
free QMF banks; in the FIR case we showed how to eliminate phase distor- 
tion and minimize amplitude distortion. For the IIR case we showed that 
if the analysis filters are constrained to be power symmetric, we can design 
alias-free QMF banks free from amplitude distortion. The very low compu- 
tational complexity of this IIR system was also demonstrated. With FIR 
filters, the same power symmetric condition was then used to obtain perfect 
reconstruction.

For the M channel case we developed the theory of alias cancelation and 
perfect reconstruction, and demonstrated the ideas with several examples. 
These results were extended to the study of transmultiplexers. We also 
considered tree structured filter banks.

Tables 5.10.1-5.10.4 summarize the main results of this chapter. Table
5.10.5 presents a summary of important matrix quantities, and the relations 
between them. In the next few chapters, we will present design techniques 
for M channel QMF banks.
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TABLE 5.10.1 Two-channel QMF bank at a glance

1. Basic facts (Section 5.1)
Reconstructed signal: X(z) = T(z)X(z) + A(z)X(-z). 

T(z) = Distortion function = ½[H0(z)F0(z) + H1(z)F1(z)]. 
A(z) = Abasing gain = ½[H0(-z)F0(z) + H1(-z)F1(z)].

Suff. cond. for alias cancelation: F0(z) = H1(-z), F1(z) = —H0(-z).
After aliasing is canceled X(z) = T(z)X(z).

T(z) not allpass ⇒ amplitude distortion (AMD) 
T(z) not linear-phase ⇒ phase distortion (PHD).

FIR QMF bank: H0(z), H1(z), F0(z), F1(z) are FIR. 
Linear-phase QMF bank: H0(z), H1(z) have linear phase.

2. A simple choice of filters for alias cancelation (Section 5.2)
Choose H1(z) = H0(-z), F0(z) = H0(z), F1(z) = -H1(z). Then

a) This is alias-free with T(z) = ½[H20(z) — H20(-z)].
b) Let H0(z) = E0(z2) + z-1E1(z2), then T(z) = 2z-1E0(z2)E1(z2).
c) This expression for T(z) (a consequence of the constraint H1(z) = 

H0(-z)) shows that perfect reconstruction is obtained if and only 
if E1(z) = az-b∕E0(z), imposing severe restrictions on analysis 
filters. For example, in the FIR case H0(z) has to be a sum of two 
delays.
A polyphase implementation:

FIR case (see Table 5.10.2 for IIR case).
a) If H0(z) is linear-phase FIR with order N, then T(z) has linear 

phase, and the system has only AMD. N must be odd, or else 
T(ejπ/2) = 0. Perfect reconstruction is not possible unless E0(z) 
and E1(z) are delays, which would make H0(z) trivial.

b) If N denotes the order (odd) of H0(z), the analysis bank requires 
0.5(N + 1) MPUs and 0.5(N + 1) APUs (using polyphase form). 
This is true whether H0(z) has linear phase or not.
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TABLE 5.10.2 IIR allpass based QMF banks

In what follows, the analysis and synthesis filters are related as H1(z) = 
H0(-z), F0(z) = H0(z), F1(z) = -H1(z), so that aliasing is canceled.

1. Power symmetric filters.
a) H0(z) is said to be power symmetric if H0(z)H0(z) is a half-band 

filter, i.e., H0(z)H0(z) + H0(-z)H0(-z) = β for some nonzero 
constant β.

b) Under some mild conditions (Theorem 5.3.1), an IIR power sym­
metric filter can be written as H0(z) = 0.5[a0(z2) + z-1a1(z2)], 
where a0(z), a1(z) are real-coefficient allpass. Then the QMF bank 
can be implemented as shown below.

The distortion function is T(z) = ½z-1a0(z2)a1(z2) = allpass, so 
that the QMF bank is free from AMD. Only PHD is still present, 
since abasing has already been canceled.

2. Power symmetric elliptic filters (Table 5.3.1 has design algo-
rithm).

a) Major fact. If H0(z) is elliptic lowpass with ripples related as δ22 = 
4δ1(1 — δ1) and band edges related as ωp + ωS = π, then it is power 
symmetric.

b) Low complexity. If in addition the order N is odd, it can be ex- 
pressed as H0(z) = [a0(z2) + z-1a1(z2)]∕2, and the QMF bank im- 
plemented as above. Here a0(z), a1(z) are real-coefficient allpass. 
The analysis bank requires only 0.25(N — 1) MPUs and 0.5(N + 1) 
APUs.

c) Pole locations. Power symmetric elliptic filters have all poles on the 
imaginary axis. So the denominator has the form D(z) = d(z2).
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TABLE 5.10.3 FIR power symmetric QMF banks

Basic result. (Section 5.3.6). Let H0(z) = ΣNn=0 h0(n)z-n be power sym­
metric, that is, H0(z)H0(z) is a half-band filter, that is,

H0(z)H0(z) + H0(-z)H0(-z) = β

for some nonzero constant β. Then N is automatically odd (assuming that 
h0(0) ≠ 0 and h0(N) ≠ 0). Let the filters H1(z),F0(z) and F1(z) be chosen 
as

H1(z) = -z-NH0(-z), F0(z) = z-NH0(z), F1(z) = z-NH1(z).

Then the two channel QMF bank has perfect reconstruction. All the filters 
are FIR and have same order N. Efficient lattice structures for this system 
will be presented in Section 6.4.

Design procedure. It only remains to design H0(z). This can be done 
by first designing a zero-phase FIR half-band filter H(z) with H(ejω) ≥ 0 
and taking H0(z) to be a spectral factor. See Section 5.3.6 for more details.
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TABLE 5.10.4 Facts about M-channel QMF banks

Fig. 5.4-1 represents an M channel QMF bank. The reconstructed 
signal X(z) is given by X(z) = T(z)X(z) + ΣM-1ℓ=1 Aℓ(z)X(zWl). This is 
a linear and time varying system. The terms X(zWℓ), ℓ > 0 are the alias 
terms. The system is free from aliasing if Aℓ(z) = 0 for ℓ > 0. Under 
such condition, the QMF bank becomes a linear time invariant (LTI) system 
with transfer function T(z) = ΣM-1k=0 Hk(z)Fk(z)∕M, called the distortion 
function.

Any M-channel QMF bank can be redrawn in terms of the polyphase 
component matrices E(z) and R(z) (Fig. 5.5-3(a),(b)). This in turn can be 
redrawn in terms of a M × M matrix P(z) = R(z)E(z) (Fig. 5.5-3(c)).

1. The QMF bank is alias-free if and only if P(z) is a pseudocirculant 
(demonstrated in (5.7.11) for M = 3.)

2. Under this alias-free condition, the QMF bank is an LTI system with 
transfer function T(z) = z-(M-1) ΣM-1k=0 z-k Pk(zM)

3. An alias-free system is free from amplitude distortion (i.e., T(z) is stable 
allpass) if and only if P(z) is a lossless matrix. (To be proved later in 
Section 10.1.)

4. An alias-free system has perfect reconstruction if T(z) is a delay, i.e., 
T(z) = cz-n0. This happens if and only if the pseudocirculant P(z) has 
the special form (5.7.23b). The most common special case has r = 0 so 
that R(z)E(z) = cz-m0I, i.e.,
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Given a perfect reconstrucion (PR) QMF bank satisfying (5.7.23b) for 
some r in the range 0 ≤ r ≤ M — 1, we can obtain a PR QMF bank 
with a different value of r just by replacing the synthesis filters Fk(z) 
with z-mFk(z) for appropriate integer m.

5. An FIR QMF bank is one for which Hk(z) as well as Fk(z) are FIR. If 
such a system has PR property then

6. Special case where P(z) is diagonal. A multirate system of the form 
shown in Fig. 5.7-1(a) is alias-free if and only if Sk(z) is same for all k. 
Letting Sk(z) = S(z) we then have T(z) = z-(M-1)S(zM).



TABLE 5.10.5 Matrix notations in filter bank theory
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PROBLEMS

5.1. Suppose the analysis filters in a two-channel QMF bank (Fig. 5.1-1(a)) are 
given by

Find a set of stable synthesis filters that result in perfect reconstruction.
5.2. In Sec. 5.2 we considered QMF banks in which the filters are related as in

(5.2.1) and (5.2.2). We saw that with H0(z) chosen to have real coefficients 
and linear phase, the distortion function is given by (5.2.10). If N is even this 
implies T(ejπ/2) = 0 so that the filter order N has to be odd. Now consider 
the modified QMF bank shown below where the filters could be FIR or HR 
[Galand and Nussbaumer, 1984],

Figure P5-2

Express X(z) in terms of X(z). With H1(z) = H0(-z), show that the choice 
F0(z) = H0(z) and F1(z) = H1(z) cancels aliasing. With this choice write 
down the distortion T(z) in terms of H0(z).

a) Now let H0(z) be a real coefficient linear phase FIR lowpass filter of order 
N. Simplify T(z) and show that there is no phase distortion. Also show 
that N has to be even, in order to avoid the condition T(ejπ/2) = 0.

b) For the system in part (a) with N even, what is the number of MPUs 
required to implement the analysis bank? (Try to exploit as many of 
the following facts as you can: (i) the relation H1(z) = H0(-z), (ii) the 
linear phase property, and (iii) the presence of decimators). How does this 
compare with the numbers we obtained for the case of Fig. 5.1-1(a) with 
odd N?

5.3. Consider Fig. 5.2-2(b). Here the analysis filters are related as H1(z) = H0(-z). 
Assuming that H0(z) is a real coefficient Nth order filter (N odd), we know 
that the analysis bank requires 0.5(N + 1) MPUs. This implementation uses 
two facts, namely that the coefficients of H1(z) are related to those of H0(z), 
and that we decimate the filter outputs. Curiously enough, we have not used 
the fact that H0(z) has linear phase, i.e., h0(n) = h0(N — n). At first sight 
it appears that there should be some way to reduce complexity further by 
exploiting this relation. This, however, is not true.

a) Prove that linear-phase of H0(z) implies that E0(z) is the Hermitian image 
of E1(z).

b) In view of Problem 4.17, it appears therefore that we can share the mul­
tipliers between E0(z) and E1(z). This, however, is not true. To see this, 
consider the decimated outputs v0(n) and v1(n) (Fig. 5.1-1). Show that 
if the product x(i)h0(j) is computed in the process of evaluating v0(n), 
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this same product is never computed in the evaluation of v1(m) for any 
choice of n, m (unless the input sequence x(n) is restricted to have special 
values). (Note. Another way to look at this is as follows. The analysis 
bank requires the implementation of the two systems E0(z) + E1(z) and 
E0(z) — E1(z). Each of these resembles Fig. P4-17(b), and can therefore 
be implemented with (N + 1)∕2 multipliers each. If each of these systems 
is implemented this way, we cannot share the multipliers in E0(z) + E1(z) 
with those in E0(z) — E1(z). This is because the multiplier α cannot be 
shared between (x + y)α and (x — y)α.)

c) What is the story if N is even? Can we exploit linear phase property of 
H0(z) to implement the analysis bank with only about 0.25(N+1) MPUs? 
Explain.

5.4. For the case of an odd order power symmetric BR transfer function we pre- 
sented a result which showed that it can be expressed as in (5.2.16) so that the 
polyphase components are allpass (Theorem 5.3.1). For the even order case, 
the situation is somewhat different. Suppose for example that H0(z) is an IIR 
elliptic lowpass filter with even order N > 0. It can be shown [Vaidyanathan, 
et al., 1987] that this can be expressed as

(P5.4a)

where A(z) is a unit-magnitude allpass function of order N/2 with complex 
coefficients, and A*(z) is obtained by conjugating the coefficients of A(z). (You 
can accept this as a fact for this Problem). Suppose now that H0(z) is, in 
addition, power symmetric. Define the new real coefficient transfer function

(P5.4b)

a) Show that H0(z)H0(z) + H1(z)H1(z) = 1.
b) Show that H1(z) = cH0(-z) where c = ±1.
c) Let E0(z) and E1(z) be the polyphase components of H0(z), i.e., H0(z) = 

E0(z2) + z-1E1(z2). Show that z-iEi(z2) = CiA(z)+c*iA*(z) for some ci.
d) Hence show that Ei(z) cannot be allpass (Hint. Use Problem 3.21.)

The application of this problem in QMF banks is considered in Problem 5.6.
5.5. Let H0(z) be as in Problem 5.4.

a) Show that A*(z) = ±jA(-z).
b) Show that A(z) has the form

(P5.5)

where c = e±jπ/4 and —1 < βk < 1.
5.6. Consider the system shown in Fig. P5-2 again. Suppose that the analysis 

filters are related as H1(z) = H0(-z) and let the synthesis filters be chosen
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as in Problem 5.2 to eliminate aliasing. Assume, however, that H0(z) is an 
elliptic power symmetric filter with even order N > 0. We know from Problem 
5.4 that the polyphase components are not allpass.

a) Find the distortion function T(z) and show that amplitude distortion has 
actually been eliminated.

b) Draw the complete QMF bank in terms of A(z). In your scheme, what 
is the number of MPUs required to implement the analysis bank? (Note. 
When the multipliers are complex, you must carefully count the number 
of real MPUs).

5.7. Let H0(z) be as in (5.2.16) where a0(z) and a1(z) are allpass filters as in (5.3.6). 
We can then write H0(z) = P0(z)∕d0(z2)d1 (z2) where P0(z) is a polynomial 
in z-1. Assume that (i) d0(z) and d1(z) have all poles inside the unit circle, 
and (ii) d0(z) and d1(z) have no common factors of order ≥ 1. Show that there 
are no common factors (of order ≥ 1) between P0(z) and the denominator 
d0(z2)d1(z2).

5.8. Let H0(z) be a digital filter obtained from an analog Butterworth filter Ha(s) 
(Sec. 3.3.2), using the bilinear transform (3.3.1). Suppose the Butterworth 
filter has 3dB point Ωc = 1. Show then that H0(z) is power symmetric.

5.9. Consider a QMF bank with analysis filters related by H1(z) = H0(-z) so that 
(5.2.5) holds. H0(z) and H1(z) could be FIR or IIR, but assume that they are 
stable.

a) Assume that the polyphase components E0(z) and E1(z) have all zeros 
outside the unit circle (the poles, of course, are inside). Find a set of 
stable synthesis filters so that aliasing as well as amplitude distortion are 
eliminated.

b) Repeat (a) under the condition that E0(z) and E1(z) have some zeros 
inside and some outside (but none on) the unit circle.

5.10. Let H0(z) = P0(z)∕D(z) and H1(z) = P1(z)∕D(z) with
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(P5.10)

Assume D(z) has all zeros inside the unit circle. Suppose the following condi- 
tions are true: (i) ∣H0(ejω)∣2 + ∣H1(ejω)∣2 = 1 for all ω. (ii) P0(z) is Hermitian 
and P1(z) is skew Hermitian. Show that we can express these transfer functions 
as H0(z) = [A0(z) + A1(z)]∕2 and H1(z) = [A0(z) — A1(z)]∕2 where A0(z) and 
A1(z) are stable unit-magnitude allpass.

5.11. Let H0(z) be a causal stable rational transfer function with ∣H0(ejω)∣ ≤ 1, with 
irreducible representation H0(z) = P0(z)∕D0(z). Assume that if α is a zero 
of D0(z) then 1∕a* cannot be a zero of P0(z). This means that there are no 
nontrivial allpass factors in H0(z).

a) Let H1(z) be a causal stable system such that ∣H1(ejω)∣2 + ∣H0(ejω)∣2 = 1, 
and let H1(z) = P1(z)∕D1(z) be an irreducible representation. Assume 
that H1(z) has no nontrivial allpass factors. Show that D1(z) = cD0(z) 
for some constant c.

b) Assume now that H0(z) above is power symmetric. Show that its denom- 
inator can be written in the form D0(z) = 1 + d(2)z-2 + ... d(2K)z-2K. 
That is, D0(z) = G(z2) for some FIR G(z).



5.12. Let H0(z) be a stable IIR power symmetric transfer function with possibly 
complex coefficients. Let H0(z) = P0(z)∕D(z) be an irreducible representation, 
where

(P5.12a)

with none of d(N), p0(0), p0(N) equal to zero. Assume that there are no allpass 
factors (of order > 0) in H0(z). Suppose N is odd and P0(z) Hermitian. Prove 
that H0(z) can be expressed as

(P5.12b)

where a0(z) and a1(z) are stable (rational) unit-magnitude allpass functions. 
Thus, the polyphase components are allpass. (Hint. use Problem 5.10.)

5.13. Analog QMF bank. In this problem we consider an extension of the maximally 
decimated filter bank system for the case where the input is a continuous-time 
signal. Consider the following 'two-channel filter bank' system, where xa(t) is 
a continuous-time signal with Laplace transform Xa(s).

The device labeled “sampler” operates as follows: in response to a continuous 
time input sa(t), it produces the sampled version

where δa(.) is the Dirac delta function (Sec. 2.3). This is illustrated in Fig. 
P5-13(b).
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a) Express Xa(jΩ) in terms of Xa(jΩ), and the various filter transfer func- 
tions. You will see that this expression is a linear combination of an infinite 
number of terms of the form

b) Suppose xa(t) is a σ-bandlimited signal, that is, Xa(jΩ) = 0 for ∣Ω∣ ≥ σ. 
(Assume 0 < σ < π.) We know that the Nyquist sampling rate is Θ = 2σ. 
(If we sample xa(t) at this rate, we can recover xa(t) from the samples with 
the help of a ideal lowpass filter with passband —σ < Ω < σ.) Define the 
corresponding Nyquist sampling period T = 2π∕Θ. Suppose T1 = 2T, that 
is, each channel in the figure performs sampling at half the Nyquist rate (so 
that the total number of samples per unit time, counting both channels, 
corresponds to Nyquist sampling). Show that, for any fixed frequency Ω, 
only two out of the infinite number of terms in the expression for Xα(jΩ) 
can be nonzero.

c) The aim is to choose the synthesis filters such that aliasing and other 
distortions are eliminated. Continuing with part (b), assume that the 
synthesis filters satisfy Fa,k(jΩ) = 0 for ∣Ω∣ ≥ σ. Show that we can obtain 
perfect reconstruction (that is, xa(t) = xa(t)) by solving for Fa,k(jΩ) from 
the equations

for —σ < Ω ≤ 0, and

(P5.13a)

(P5.13b)

for 0 ≤ Ω < σ. In other words, given the analysis filters Ha,0(s) and 
Ha,1(s), we can solve for the frequency responses of the synthesis filters 
from the above equations. The sets of equations to be used depends on 
the frequency region as indicated. (Outside this frequency region we just 
take Fa,k(jΩ) = 0.) (Note. This idea works as long as the 2 × 2 matrices 
in the equations above are nonsingular, but the resulting synthesis filters, 
in general, are not guaranteed to be stable or realizable!)

d) Continuing with part (c), let Ha,0(s) = 1, and let Ha,1(s) = s (i.e., a 
differentiator). Verify that the matrices above are nonsingular. So we can 
indeed find synthesis filters for perfect reconstruction. Find expressions 
for Fa,0(jΩ) and Fa,1(jΩ) in the above frequency regions. Show that these 
synthesis filters have impulse responses

Evidently these are noncausal (unrealizable) continuous-time filters.
Note: The above scheme gives rise to a number of generalizations to Nyquist 
sampling theorem. If xa(t) is σ-bandlimited, Nyquist theorem says that we can
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reconstruct it (by lowpass filtering) from its samples uniformly spaced apart 
by T seconds. According to above scheme, we can split xa(t) into two signals 
and sample each at half the rate, and still reconstruct the original version. In 
part (d) we are essentially sampling xa(t) and its derivative (output of Ha,1(s)) 
at half the Nyquist rate. We can recover xa(t) from these two undersampled 
signals by using the filters in (P5.13c). This gives a proof of the derivative 
sampling theorem, originally proposed in [Shannon, 1949] four decades ago. 
More generally, if we consider the M-channel version of this problem we will 
find that we can recover a bandlimited signal by sampling it and its M — 1 
derivatives M times slower than the Nyquist rate. As part (d) shows, the 
filters required to do this reconstruction are, as such, unrealizable. (In fact 
the ideal lowpass filter which is used to reconstruct a bandlimited signal from 
its 'traditional Nyquist-rate samples' is also unstable and noncausal.) These 
filters should therefore be replaced with practical approximations.

5.14. Given below are three sets of FIR analysis banks for a 3 channel maximally
decimated QMF bank (Fig. 5.4-1, with M = 3). In each case, answer the 
following: (i) Is it possible to obtain a set of FIR synthesis filters for perfect 
reconstruction? If so find them. (ii) If not, find a set of IIR synthesis filters for 
perfect reconstruction.  (iii) In the latter event, are the synthesis filters stable?

a) H0(z) = 1, H1(z) = 2 + z-1, H2(z) = 3 + 2z-1 + z-2.
b) H0(z) = 1, H1(z) = 2 + z-1+z-5, H2(z) = 3 + 2z-1 + z-2.
c) H0(z) = 1, H1(z) = 2 + z-1 + z-5, H2(z) = 3 + z-1 + 2z-2.

5.15. Prove that the structure of Fig. 5.6-3 has perfect reconstruction property if 
and only if the integers M and J are relatively prime. Under this condition, 
find x(n) in terms of x(n), M, and J.

5.16. Consider the M × M matrix

(P5.16)

Show that its determinant is of the form ±z-r. This shows that if the product 
P(z) = R(z)E(z) takes the form (5.6.7), then its determinant is a delay, that 
is, has the form (5.6.9).

5.17. Suppose the filter bank of Fig. 5.4-1 is alias-free, and let T(z) be the distortion 
function. Suppose we define a new filter bank in which the analysis and syn- 
thesis filters are interchanged, that is, Fk(z) are the analysis filters and Hk(z) 
the synthesis filters. Show that the resulting system is free from aliasing and 
has the same distortion function T(z). So we can swap each Fk(z) with corre- 
sponding Hk(z), without changing these input/output properties! (Hint. Use 
AC matrix formulation cleverly.)

5.18. Consider the M channel maximally decimated system of Fig. 5.4-1. Let the 
choice of filters be such that this is a perfect reconstruction system. Suppose 
we replace each synthesis filters Fk(z) with Fk(zWℓ), where W — e-j2π/M, and
ℓ is an integer (independent of k) with 0 ≤ ℓ ≤ M — 1. Let x1(n) be the new 
output of the QMF bank. How is it related to the input x(n)? Given x1(n), 
would you be able to recover x(n)? If so, how?
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5.20. Consider the following uniform DFT analysis bank,

where Ek(z) are stable allpass functions with ∣Ek(ejω)∣ = 1 for all ω. (Evidently, 
these are the polyphase components of H0(z).)

a) Show that the anlaysis filters are power complementary.
b) Show that each analysis filter is a spectral factor of an Mth band filter, 

that is, show that Hk(z)Hk(z) satisfies the Mth band property.
c) Draw a (stable) synthesis bank structure so that (i) aliasing is canceled, 

and (ii) T(z) becomes allpass thereby eliminating amplitude distortion.
5.21. Consider Fig. 5.7-2(c) with T = W* (uniform DFT analysis bank). Suppose 

Rk(z) are chosen as in (5.7.8), so that the product Rk(z)Ek(z) is independent 
of k. This ensures that aliasing has been canceled.

a) Just as a review, verify that the uniform-shift relations Hk(z) = H0(zWk) 
and Fk(z) = W-kF0(zWk) hold, where W = e-j2π/M.

b) Express the distortion function T(z) in terms of Ek(z), 0 ≤ k ≤ M — 1.
c) Show that the AC matrix H(z) is a left circulant.
d) Find the determinant of H(z) in terms of Ek(z). (Review of Sec. 5.5 helps 

here.) Show that this determinant is equal to cz-KT(z) where c ≠ 0, and 
K is some integer. Thus H(ejθ) is singular if and only if T(ejθ) = 0.

e) Suppose H0(z) = ΣNn=0 h(n)z-n. Assume h(n) is real with h(n) = h(N — 
n) (linear phase FIR). This property imposes certain constraints on the
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5.19. Consider the two channel QMF bank with analysis filters related as H1(z) = 
H0(-z). Suppose the synthesis filters are chosen as F0(z) = H0(z) and F1(z) = 
—H1(z), so that aliasing is canceled.

a) Write down the AC matrix H(z), and express its determinant in terms of 
H0(z).

b) Show that the distortion function T(z) is zero for some z if and only if 
H(z) is singular (i.e., the determinant equals zero) for this value of z.

c) Suppose H0(z) = ΣNn=0 h(n)z-n. Let N be even and let h(n) be real with 
h(n) = h(N — n) (Type 1 linear phase). Show that H(z) is singular for 
z = ejπ/2. In view of part (b) this proves that T(ejπ/2) = 0, a conclusion 
we already know from Sec. 5.2.2.

Figure P5-20



polyphase components Ek(z) (Problem 4.22). In particular, for some com­
binations of N and M, it is possible that some polyphase component 
EL(z) is an odd order filter with symmetric impulse response. This im­
plies EL(ejπ) = 0. Using part (b) prove that this implies T(ejω) = 0 for 
ω = π/M, 3π∕M, . . . etc. To avoid this situation, the relative values of M 
and N must be carefully chosen. Explain how. (You can do it using the 
notation 'm0' from Problem 4.22) (Hint. For M = 2, this should reduce 
to the requirement that N be odd, as seen in Sec. 5.2.2.)

5.22. In the above problem we took Rk(z) according to (5.7.8). This has a disadvan­
tage: each filter Rk(z), which is a product of M — 1 of the Eℓ(z)'s, can have 
very high order (for large M), so that the synthesis filters have high order. We 
can partially rectify this situation if we take a closer look at the form of Ek(z). 
Thus, let

(P5.22a)

where Nk,1(z), Nk,2(z) and Dk(z) are polynomials in z-1. Here Nk,2(z) is the 
part with all zeros inside the unit circle, (and Nk,1(z) has zeros on and/or 
outside).

a) Show that the choice

(P5.22b)

cancels aliasing. (Note that this choice gives stable synthesis filters.)
b) With such choice of Rk(z), what is the distortion function T(z)?
c) Making the further assumption that Nk,1(z) has no zeros on the unit cir­

cle for any k, how would you modify Rk(z) [without destroying stability 
of Rk(z), and the alias-free property] so that T(z) now becomes allpass 
(thereby eliminating amplitude distortion)?

5.23. Consider the following M channel multirate system, which is essentially a QMF 
bank with the additional transfer functions Ck(z) inserted.

We can imagine that Ck(z) represents the amplitude and phase distortions 
introduced by the kth channel. Assume throughout that the functions Fk(z),

Problems 279

Figure P5-23



Hk(z) and Ck(z) are rational and stable; unless stated otherwise, do not make 
specific assumptions about zeros of these transfer functions.

a) Suppose Hk(z) and Fk(z) are such that the system is alias-free in absence 
of channel distortion Ck(z) (i.e., with Ck(z) replaced with unity for all k). 
Now with Ck(z) present, find a modified set of (stable) synthesis filters 
Gk(z) to retain alias-free property.

b) Repeat part (a) by replacing "alias-free" with "alias-free and free from 
amplitude distortion" everywhere. Assume, however, that Ck(z) has no 
zeros on the unit circle. (Hint. First write the numerator of Ck(z) as 
Ak(z)Bk(z) where Ak(z) has all zeros inside the unit circle and Bk(z) has 
them outside.)

c) Repeat part (a) by replacing "alias-free" with “perfect reconstruction” 
everywhere. Assume now that Ck(z) has no zeros on or outside the unit 
circle.

Hint. This is not tedious, but you have to think straight!

5.24. Consider the tree structure shown in Fig. 5.8-1(a).
a) Show that the complete system is equivalent to Fig. 5.+1 with M = 4 

(four-band QMF bank) and identify Hk(z) and Fk(z) for 0 ≤ k ≤ 3, in 
terms of the filters in Figure 5.8-1(a).

b) Assume that the two-channel QMF bank with filters H0(1)(z), H1(1)(z), 
F0(1)(z), and F1(1)(z) is alias-free with distortion function T(1)(z). Let the 
same be true of H0(2)(z), H1(2)(z), F0(2)(z), and F1(2)(z), with distortion func- 
tion T(2)(z). Prove that the equivalent four-band QMF bank is alias-free, 
and find its distortion function T(z) in terms of T(1)(z) and T(2)(z).

c) Continuing with part (b), prove that T(z) is allpass if T(1)(z) and T(2)(z) 
are allpass. Thus, if each two-channel QMF bank is free from amplitude 
distortion, then so is the overall four-channel system. Similarly verify that 
T(z) has linear phase if T(1)(z) and T(2)(z) have linear phase.

d) If each two-channel QMF bank
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is a perfect reconstruction system, verify that the same is true for the 
equivalent four-channel system.

Note. These results can be extended to tree structures with more than two 
(say m) levels. We can thus build QMF banks with M = 2m, with any set 
of desired properties (such as freedom from selected set of distortions etc.), 
including perfect reconstruction. For composite M which is not a power of 
two, the idea can be extended. Thus if M = 3 × 2, we can build the QMF bank 
in terms of two-channel systems and three channel systems. So tree structures 
cover a wide class of useful filter banks.

5.25. Tree structures can be used to obtain QMF banks in which the decimation ratio 
is not the same for all channels (called nonuniform filter banks). Consider the 
system shown in Fig. P5-25(a).
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This is equivalent to the following five channel system.

Figure P5-25(b)

a) Identify the filters Gk(z) and Pk(z) in terms of the filters H0(z), H1(z), 
F0(z) and F1(z). Suppose H0(z) and H1(z) are real coefficient filters with 
magnitude responses as shown below.

Figure P5-25(c)

Sketch the magnitude responses ∣Gk(ejω)∣ for 0 ≤ k ≤ 4. Thus, the filters have 
unequal bandwidths, and the decimation ratios are inversely proportional to 
these bandwidths. This is called a nonuniform (maximally decimated) QMF 
bank.
b) Suppose the filters H0(z), H1 (z), F0(z) and F1(z) are such that the tradi- 

tional two channel QMF bank (Fig. 5.1-1(a)), has perfect reconstruction 
property, with distortion function T(z) = 1. Show that the five-channel 
nonuniform system also has perfect reconstruction property.

c) Suppose the filters H0(z), H1(z), F0(z) and F1(z) are such that the tradi- 
tional two channel QMF bank is alias-free, with distortion function T(z). 
Does the above five channel nonuniform system remain alias-free? If not, 
how would you modify the structure of Fig. P5-25(a) to obtain this prop- 
erty, and what is the resulting distortion function?

5.26. Consider a transmultiplexer with M = 2.
a) Let the analysis filters be H0(z) = 1 + z-1 and H1(z) = 1 —z-1. Find a set 

of FIR synthesis filters F0(z) and F1(z) such that the system has perfect 
reconstruction property.
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b) Let the analysis filters be H0(z) = 1 + z-1 and H1(z) = 1 + z-1 + z-2. 
Can we find FIR synthesis filters such that there is perfect reconstruction? 
If so find them.

5.27. Consider a three-channel transmultiplexer with synthesis filters

Figure P5-30

In each of the following cases, what can you say about the input output relation 
of the system? Give as much information as possible, based on given data.

a) M = 2 and H(z) is an IIR power symmetric elliptic filter of odd order.
b) M is arbitrary, and H(z) is a zero-phase Mth band lowpass filter.

5.31. Consider the following M-channel analysis/synthesis system.

Figure P5-31(a)

This reduces to the QMF bank of Fig. 5.4-1 if L = Μ. If L < M, this is called 
a nonmaximally decimated QMF bank. With such a system, elimination of 
aliasing turns out to be relatively easy (as this exercise will demonstrate).

a) Find an expression for X(z).
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Find a set of FIR analysis filters such that perfect reconstruction property is 
satisfied.

5.28. Suppose we have a three channel alias-free QMF bank with distortion function 
T(z) = z-2∕(1 — az-1). Find closed form expressions for the elements of the 
3 × 3 matrix P(z) [Fig. 5.5-3(c)] in terms of a, z.

5.29. Assuming that the matrix P(z) is pseudocirculant, verify that (5.7.22) indeed 
reduces to (5.7.13) (with Pm(z) denoting P0,m(z)).

5.30. Consider the following multirate system.



b) Suppose M = 4 and L = 3. Suppose the analysis bank is the uniform DFT 
bank, i.e., Hk(z) = H0(zWk4),0 ≤ k ≤ 3. Assume that H0(z) has response 
shown below.

Figure P5-31(b)

How small would e have to be so that H0(z) does not overlap with the 
aliased versions H0(zWn3),n = 1,2? With such e, show typical responses 
of Fk(z),0 ≤ k ≤ 3 such that aliasing terms are eliminated. (The trivial 
choice Fk(z) = 0 is forbidden, of course!). What is the distortion transfer 
function after such elimimation of aliasing?

Note. In nonmaximally decimated systems, the total number of samples per 
unit time at the output of the decimated analysis bank is evidently more than 
for x(n). This is the price paid to obtain the simplicity of alias elimination.

5.32. Consider the following system which is a general M channel nonuniform filter 
bank.

Figure P5-32

If the integers nk are such that

(P5.32a)

the system is said to be maximally decimated. (Note that this condition holds 
for Fig. 5.4-1, where nk = M for all k. Also the tree structured system in Prob­
lem 5.25 is a special case of this nonuniform filter bank, with decimation ratios 
8, 8, 4, 4, 4.) The kth analysis filter Hk(z) has total passband width ≈ 2π∕nk, so 
that it makes sense to decimate its output by nk. This system suffers from the 
usual set of errors (aliasing, amplitude distortion, and phase distortion) as does
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Fig. 5.4-1. Given an arbitrary set {ni} of M integers nk satisfying (P5.32a), it 
is not in general possible to find nonideal filters Hk(z) and Fk(z) to eliminate 
aliasing completely. The alias terms at the output of the kth expander are
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(P5.32b)

(Wm stands for e-j2π/m.) So, unlike in Fig. 5.4-1, the “shifted versions” created 
by different channels have different amounts of shift. For example, the 0th 
channel generates

(P5.32c)
Unless each of these is also generated by at least one other channel, we cannot 
"cancel" all alias terms with nonideal filters.
If a set of integers {ni} is such that every shifted copy of X(ejω) appears at the 
output of at least two expanders, we say that {ni} is a compatible set. Com- 
patibility of {ni} is thus a necessary condition for complete alias cancelation in 
Fig. P5-32. If the filter bank is derived from a tree structure, (i.e., by starting 
from a system similar to Fig. P5-25(a) where uniform filter banks, not neces- 
sarily two-channel each, are used repeatedly), then the compatibility property 
is satisfied automatically because we know the system can be designed to be 
alias free (Problems 5.24, 5.25).
Which of the following sets are compatible?

a) (2, 3, 6)
b) (2, 6, 6, 6)
c) For large sets of integers [e.g., part e) below], it is tedious to directly check 

compatibility. Devise an efficient test for compatibility of a given set {ni}.
d) Using the test developed above, show that the set (2,6,10,12,12,30,30) 

is compatible.
e) Show that the set in part d) cannot be derived from a tree structure. Thus, 

there exist compatible sets which are not derived from tree structures.
5.33. Consider Fig. 5.4-1. Suppose the filters are chosen such that the system has 

the perfect reconstruction (PR) property. Now suppose that we replace each of 
the analysis and synthesis filters with Hk(z2) and Fk(z2), for 0 ≤ k ≤ M — 1. 
Does the resulting system still have the PR property?

5.34. In Problem 5.33, suppose we replace Hk(z) and Fk(z) with Hk(zL) and Fk(zL) 
for some integer L > 0. (So with L = 2, we obtain Problem 5.33). Find a 
necessary and sufficient condition on L such that the resulting system continues 
to have the PR property.



6

Paraunitary

Perfect Reconstruction (PR) 

Filter Banks

6.0 INTRODUCTION

From Sec. 5.5 we know that the analysis and synthesis filters of the M 
channel maximally decimated filter bank can be expressed in terms of the 
polyphase matrices E(z) and R(z). If the filters are FIR and the filter bank 
has the perfect reconstruction (PR) property, then the polyphase matrix 
E(z) has to satisfy the property (5.6.10). That is, the determinant of E(z) 
must be a delay. This ensures that its inverse is FIR so that we can find 
FIR R(z) satisfying the PR requirement.

In this chapter we study PR filter banks in which E(z) satisfies a special 
property called the lossless or paraunitary property. This property automat­
ically ensures (5.6.10) [even though paraunitariness is not a necessary condi- 
tion for (5.6.10)]. In addition to perfect reconstruction, the FIR filter bank 
based on paraunitary E(z) satisfies many other useful properties. These are 
summarized at the end of Sec. 6.7.1. Here is a short preview of some of the 
benefits.

1. The synthesis filter Fk(z) has the same length as the analysis filter 
Hk(z).

2. Fk(z) can be found from Hk(z) by inspection.
3. There exist good design techniques with fast convergence.
4. The paraunitary property is basic to the design of cosine modulated 

perfect reconstruction systems, described in Sec. 8.5. We will see that 
these systems combine the perfect reconstruction property with very 
low design as well as implementation complexity.

5. The paraunitary property is also basic to the generation of the so called 
'orthonormal wavelet basis' to be studied in Chap. 11.
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Brief historical notes

The ideas of passivity, paraunitariness, and losslessness originate from clas- 
sical electrical network theory [Brune, 1931], [Darlington, 1939], [Guillemin, 
1957], [Potapov, 1960], [Belevitch, 1968], [Balabanian and Bickart, 1969], 
and [Anderson and Vongpanitlerd, 1973]. These have been applied for the 
design of robust digital filter structures [Fettweis, 1971], [Swamy and Thya- 
garajan, 1975], [Bruton and Vaughan-Pope, 1976], [Antoniou, 1979], [De­
prettere and Dewilde, 1980], [Rao and Kailath, 1984], [Vaidyanathan and 
Mitra, 1984], and [Vaidyanathan, 1985a,b]. Also see Sec. 14.1.

Paraunitary transfer matrices were applied to the design of perfect 
reconstruction systems in Vaidyanathan [1987a,b]. It turns out that the 
two channel power symmetric PR QMF bank (Sec. 5.3.6) has paraunitary 
E(z) (Sec. 6.3.2), even though the authors [Smith and Barnwell, 1984] and 
[Mintzer,1985] used a different approach in their derivation. It has been 
shown [Vetterli and Le Gall, 1989] that some of the earlier filter bank de­
signs [Princen and Bradley, 1986] also have the paraunitary property. The 
lapped orthogonal transform (LOT) [Cassereau, 1985], [Malvar and Staelin, 
1989], has been shown later to have the paraunitary property (see Sec. 6.6). 
Paraunitary matrices have also been considered in the context of multidi­
mensional multirate filter banks [Karlsson and Vetterli, 1990] (see Chap. 
12). Subsequently, paraunitary systems have been used in the design of co­
sine modulated filter banks, which offer great simplicity of design as well 
as implementation [Malvar, 1990b], [Koilpillai and Vaidyanathan, 1991a], 
[Ramstad, 1991].

We will see that the paraunitary condition is a very natural choice. 
For example, if the anaysis filters have ideal brick-wall responses, then E(z) 
is paraunitary [see comments after eqn. (6.2.13) later]. Second, some of 
the approximate reconstruction designs (the pseudo QMF design, Chap. 8), 
developed prior to the introduction of paraunitary filter banks, are such that 
E(z) is “approximately” paraunitary.

Outline

The presentation in this chapter is in terms of discrete-time language, and 
will not require the electrical network theoretic background mentioned above. 
In Sec. 6.1 we introduce the lossless and paraunitary properties. Section 6.2 
studies the properties of filter banks with paraunitary E(z). In Sec. 6.3 and 
6.4 the two channel case is studied in depth. We present design techniques 
as well as robust lattice structures for FIR PR QMF banks with paraunitary 
E(z). These results are extended to the M channel case in Sec. 6.5. In Sec. 
6.6 we introduce transform coding and the lapped orthogonal transform 
(LOT). Section 6.7 provides a summary and comparison of the many design 
techniques introduced in this and the previous chapters.

In Sec. 8.5 we will return to the study of cosine modulated paraunitary 
filter banks. A detailed study of paraunitary systems is presented in Chap. 
14. As in Chap. 5, we will sometimes use the term 'QMF' even for the M
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6.1 LOSSLESS TRANSFER MATRICES
In Sec. 2.2 we introduced r-input p-output linear time invariant (LTI) sys- 
tems. These are characterized by p × r 'transfer matrices' H(z). Such ma­
trices were used in Chap. 5 to characterize filter banks. For example, the 
analysis bank was described by an M × 1 transfer matrix h(z), and synthesis 
bank by a 1 × M matrix fT(z) [see Eq. (5.4.1)]. These two vectors were 
expressed in terms of the polyphase matrices E(z) and R(z) according to
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channel case. This is for simplicity, and is a misnomer unless M = 2.

(6.1.1)

The matrices E(z) and R(z) were defined in Sec. 5.5.
In this chapter we will impose the “paraunitary” or “lossless” property 

on E(z), and thereby obtain the perfect reconstruction property. Towards 
this end, we give a brief review of lossless systems, which will serve the 
purpose of this chapter.† For the interested reader, a detailed treatment can 
be found in Chap. 14.

6.1.1 Definition and properties
A p × r causal transfer matrix H(z) is said to be lossless if (a) each entry 
Hkm(z) is stable and (b) H(ejω) is unitary, that is,

(6.1.2)

for some d > 0. If in addition the coefficients of H(z) are real (i.e., H(z) 
real for real z), we say that H(z) is lossless bounded real (abbreviated LBR). 
Note that the phrase "H(z) is lossless" is equivalent to the phrase "the LTI 
system with transfer function H(z) is lossless."

The property (6.1.2) is the unitary property. Thus, H(z) is unitary on 
the unit circle of the z-plane. For p = r = 1 this reduces to the allpass 
property (Sec. 3.4). In order to satisfy (6.1.2) we require p ≥ r. (If p < r 
the rank of the left hand side in (6.1.2) is less than r, and the right hand 
side cannot be dIr.) The subscript r on Ir, which is a reminder that it is an 
r × r matrix, will be deleted unless there is room for confusion.

Paraunitary property. For rational transfer functions, it can be ver­
ified (Problem 14.1) that (6.1.2) implies

(6.1.3)

which is termed the paraunitary property. Conversely, (6.1.3) implies (6.1.2). 
We can, therefore, define a lossless system to be a causal, stable paraunitary

† At this point, it is useful to review Sec. 2.3 on matrix notations, par­
ticularly H†, H(z), H*(z) and so on.



system. So, in order to prove that a causal system is lossless, it is sufficient 
to prove (a) stability and (b) paraunitariness. If H(z) is square and lossless, 
then H(z) is paraunitary but not lossless (unless it is a constant). Whenever 
causality and stability are obvious from the context, we do not mention them; 
we then use "lossless" and "paraunitary" interchangeably. Notice that any 
constant unitary matrix is (trivially) paraunitary as well as lossless.

Columnwise orthogonality. Letting Hk(z) and Hm(z) denote the 
kth and mth columns of H(z), we see that these columns are mutually 
orthogonal, that is, Hk(z)Hm(z) = 0 for k ≠ m. Moreover, each column 
represents a set of p power complementary filters, i.e., Hk(z)Hk(z) = d. We 
say “each column is power complementary."

Normalized systems. If a lossless system has d = 1 in (6.1.2) we say 
that it is normalized-lossless. Correspondingly the properties (6.1.2) and 
(6.1.3) are termed normalized-unitary and normalized-paraunitary.
Square Matrices

For the case of square matrices, (6.1.3) implies

(6.1.5)

the paraunitary property H(z)H(z) = dI can be written explicitly in terms 
of the elements Hkm(z) as:

(6.1.6)

Some properties of Paraunitary Systems
1. Determinant is allpass. Assume p ≈ r, and let A(z) denote the deter­

minant of H(z). From (6.1.3) we get A(z)A(z) = dr for all z, proving 
that A(z) is allpass. In particular, if H(z) is FIR then A(z) is a delay, 
that is,
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(6.1.4)

so that the inverse is obtained essentially by use of 'tilde' operation. More- 
over, in this case we have H(z)H(z) = H(z)H(z) = dI. So every row is 
power complementary, and any pair of rows is orthogonal.

For the special case where H(z) is 2 × 2, that is,

(6.1.7)



2. Power complementary (PC) property. For an M × 1 transfer matrix 
h(z) = [ H0(z) . . . Hm-1(z)]T, the paraunitary property implies the
power complementary property, that is,

Figure 6.1-1 A cascade of two paraunitary systems.

Example 6.1.1: Cascaded Paraunitary Systems
Consider the transfer matrix

(6.1.9)

Fig. 6.1-2(a) shows a flowgraph of this system. If y = Rmx, then y is 
obtainable by rotating x by θm, clockwise. This can be seen from Fig.
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(6.1.8)

This follows directly from h(z)h(z) = c.
3. Submatrices of paraunitary H(z). From the definition it is clear that 

every column of a paraunitary transfer matrix is itself paraunitary (i.e., 
PC). In fact any p×L submatrix of H(z) is paraunitary (Problem 14.2).
These three properties also hold if we replace "paraunitary" with "loss- 

less" everywhere.

6.1.2 Interconnections and Examples
We now consider examples of lossless systems, with particular emphasis on 
filter banks. We begin by noting a number of operations and interconnections 
which preserve the lossless property.
Operations Preserving Paraunitary and Lossless Properties

We can verify that if H(z) is square and paraunitary, then so are the 
following matrices: (a) H(zM) for any integer M (b) HT(z), and (c) H(z). 
If H(z) is lossless, then the first two are lossless as well.

Consider next the cascaded structure of Fig. 6.1-1. The overall transfer 
matrix is H(z) = H1(z)H0(z). (The sizes of H0(z) and H1(z) can be dif- 
ferent as long as the product makes sense.) This product is paraunitary if 
H0(z) and H1(z) are. (Proof: H(z)H(z) = H0(z)H1(z)H1(z)H0(z) = dI, 
since H0(z) and H1(z) are paraunitary.) Furthermore if H0(z) and H1(z) 
are lossless, so is the product (as it does not have new poles). Thus, the 
operation of cascading (or product) preserves losslessness.



6.1-2(b)), which shows the components of x and y in terms of θm. In 
this figure r is the 'length' of x, that is, r = √xTx.

Figure 6.1-2 (a) The Givens rotation, and (b) demonstration of rotation.

The operator Rm is known as the Givens rotation [Givens, 1958], 
[Golub and Van Loan, 1989], planar rotation or simply rotation. It is 
easily verified that Rm is unitary (with RTmRm = I). Next consider the 
2 × 2 system of Fig. 6.1-3 with transfer matrix

We have

(6.1.10)

so that Λ(z) is paraunitary.
Figure 6.1-4 shows a cascade of the above paraunitary systems, 

which is therefore paraunitary. Its transfer matrix is
(6.1.12)

As an example let N = 1 so that HN(z) = R1Λ(z)R0. With θ0 = θ1 = 
π∕4 the transfer function of the cascaded system is

(6.1.13)
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A second verification of the fact that (6.1.13) is paraunitary is obtained 
by noting that the matrix

(6.1.14)

is unitary. In this example, the building blocks are also causal and FIR 
so that HN(z) is lossless.

Figure 6.1-3 A simple, yet fundamental paraunitary system.

Λ(z)
Figure 6.1-4 A cascade of paraunitary building blocks. Rm is the planar 
or Givens rotation shown in Fig. 6.1-2(a).

Example 6.1.2: Paraunitary Vectors
The system of Fig. 6.1-5(a) has transfer matrix

(6.1.15)

We have
(6.1.16)

so that e(z) is paraunitary. Next consider the system of Fig. 6.1-5(b) 
with transfer matrix

(6.1.17)

We have PT0 P0 = 1 so that P0 is normalized lossless.
Finally consider the cascade of Fig. 6.1-6. Here the leftmost build­

ing block is as in (6.1.17) and the other building blocks have transfer 
functions of the forms (6.1.9) or (6.1.10). Since all the building blocks
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are paraunitary, the cascaded system is paraunitary. It has transfer 
matrix

Figure 6.1-5 Examples of 2 × 1 paraunitary systems.

Figure 6.1-6 Example of more general 2 × 1 FIR paraunitary system. Each 
Rm is as in Figure 6.1-2(a).

Example 6.1.3: More on Paraunitary Filter Banks
Consider the system of Fig. 6.1-7 which is a cascade of two systems with 
transfer matrices e(z) and W* respectively. Note that W represents the 
M × M DFT matrix so that W* is unitary. Moreover e(z)e(z) = M so 
that e(z) is paraunitary. The overall transfer matrix

(6.1.19)

is thus paraunitary. This implies in particular that h† (ejω)h(ejω) = M2, 
so that the set Hk(z) is power complementary. Recall (example 4.1.1) 
that H0(z) is lowpass with approximately 13 dB stopband attenuation, 
and that the filters Hk(z) form a uniform-DFT analysis bank.

IIR lossless systems. One can obtain examples of IIR lossless systems 
simply by replacing each delay z-1 in the above examples with a stable
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(6.1.18)
This system is essentially a power complementary analysis bank.



unit-magnitude allpass function Ak(z). For instance, in Example 6.1.1 if the 
building block Λ(z) is replaced with the IIR lossless system

(6.1.20)

we obtain an IIR lossless system.

Figure 6.1-7 An M-channel filter bank. This is M × 1 paraunitary.

6.2 FILTER BANK PROPERTIES INDUCED BY PARAUNITARINESS
We now study some consequences of constraining the polyphase matrix E(z) 
to be paraunitary. Whenever E(z) is paraunitary, we often express it by 
saying that “the analysis filters form a paraunitary set,” or “the analysis 
bank is paraunitary”, or “paraunitary QMF bank” (whenever R(z) is also 
paraunitary). In the two channel case, we often say "[H0(z), H1(z)] is a 
paraunitary pair".

The paraunitary property implies
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(6.2.1)

So we choose R(z) as
(6.2.2)

for some c ≠ 0, to satisfy the perfect reconstruction condition (5.6.6). Nei- 
ther c nor K is fundamental, but choice of a positive K serves to ensure 
that R(z) [hence Fk(z)] is causal. For example, we know from the previous 
section that if E(z) is a cascade as in Fig. 6.1-4, and if the matrices Rm 
satisfy

(6.2.3)
then E(z) is paraunitary. With E(z) so chosen, we can satisfy (6.2.2) by 
taking R(z) to be

(6.2.4)



where
(6.2.5)

This corresponds to (6.2.2) with c = 1 and K = N.
Stability. If the analysis filters (hence E(z)) are stable and IIR, then 

the choice (6.2.2) results in unstable filters. This is because the poles of 
the (k, m) element of E(z) are reciprocal conjugates of those of Em,k(z), 
and therefore are outside the unit circle. So R(z) in (6.2.2) is unstable. We 
cannot therefore build useful perfect reconstruction systems with IIR lossless 
E(z). We therefore restrict attention to the FIR case. (However, see Problem 
6.12 where the adjugate of E(z) is used to define R(z), thereby eliminating 
stability problems).

6.2.1 Relation Between Analysis and Synthesis Filters

The condition R(z) = cz-KE(z) between the analysis and synthesis banks 
implies a very important relation between the analysis and synthesis filters. 
This relation enables us to find fk(n) simply by 'flipping' and conjugating 
the coefficients hk(n). More precisely we will show that the relation R(z) = 
cz-KE(z) implies
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(6.2.6)

where L = M -1 + MK. For the FIR case this means, in particular, that the 
synthesis filters have same length as the analysis filters! In the z-domain, 
(6.2.6) is equivalent to

(6.2.7)

that is, Fk(z) is the Hermitian image of Hk(z) (up to scale). To prove this, 
just substitute R(z) = cz-KE(z) into (6.1.1) to obtain

(6.2.8)

from which the desired result follows. As the proof shows, the relation (6.2.6) 
is induced by (6.2.2), and really has nothing to do with paraunitariness of 
E(z). Moreover, it holds whether the filters are FIR or IIR. If Hk(z) are IIR 
with poles inside the unit circle, then the synthesis filters given by (6.2.7) 
have poles outside the unit circle.

Frequency domain implication. Eq. (6.2.7) implies

(6.2.9)

which means that the magnitude response of Fk(z) is exactly the same as 
that of Hk(z) (up to scale).



Converse of the above property. As mentioned above, the relation 
(6.2.6) follows entirely from (6.2.2), and not from paraunitariness. In fact if 
(6.2.6) holds for all k, the polyphase matrices are related as in (6.2.2). To 
prove this converse, note that (6.2.6) is equivalent to
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(6.2.10)

In terms of E(z) and R(z) this becomes

(6.2.11)

This implies (6.2.2) indeed (Problem 6.6).
The following theorem [Vaidyanathan, 1987a] summarizes the crucial re­
lations between paraunitariness, perfect reconstruction, and the condition 
(6.2.6).

♠ Theorem 6.2.1. Consider the maximally decimated QMF bank with 
causal FIR analysis filters Hk(z), and let E(z) be the polyphase matrix for 
the analysis filters. Consider the following three statements.

1. E(z) is lossless (that is, paraunitary).
2. The synthesis filters are given by fk(n) = ch*k(L — n), 0 ≤ k ≤ M - 1, 

for some c ≠ 0 and some integer L.
3. The system has perfect reconstruction property.

If any two of these statements are true, then the remaining statement also 
holds. ◊

Proof. (Not very entertaining!) Suppose the first two statements are 
true. Paraunitariness implies E(z)E(z) = dI, whereas the second statement 
implies R(z) = cz-KE(z) (as proved above). Combining these we arrive at 
R(z)E(z) = c0z-m0I, implying statement 3.

Next let statements 2 and 3 be true. Statement 2 implies the relation 
R(z) = cz-KE(z) whereas statement 3 implies R(z)E(z) = c0z-m0I. Com­
binining these we arrive at E(z)E(z) = dI, that is, E(z) is paraunitary. We 
can prove that statements 1 and 3 imply 2 in a similar manner. ▽ ▽ ▽

6.2.2 Other Properties Induced by Paraunitary E(z)
Power Complementary Property

Consider the vector of analysis filters given by h(z) = E(zM)e(z). Pa- 
raunitariness of E(z) implies that E(zM) is paraunitary. Moreover, the delay 
chain e(z) is also paraunitary. So, the product h(z) is paraunitary as well. 
This in turn implies that the analysis filters Hk(z) are power complementary, 
that is,



With E(z) chosen to be paraunitary, the only choice of synthesis filters Fk(z) 
to obtain perfect reconstruction is given by (6.2.6) (use Theorem 6.2.1). 
Since this implies (6.2.9), the M synthesis filters are also power complemen­
tary.
The AC Matrix is Paraunitary if, and only if, E(z) is

Recall from Section 5.5 that the alias component (AC) matrix H(z) and 
polyphase matrix E(z) are related as

(6.2.12)

where
(6.2.13)

and W is the M ×M DFT matrix. By using the facts that WW† = MI and 
D(z)D(z) = I, we conclude that H(z)H(z) = βI if and only if E(z)E(z) = 
βI∕M. Summarizing, the AC matrix H(z) is paraunitary if and only E(z) is 
paraunitary.

As an application, we can show that if E(z)E(z) = I, then each analysis 
filter has unit energy, that is, ∫02π ∣Hk(ejω)∣2dω∕2π = 1. This is because 
E(z)E(z) = I implies H(z)H(z) = MI, that is, in particular,

If we integrate both sides over the range [0,2π), each term on the left hand 
side yields the same answer. From this we arrive at the desired result.

Another simple application of the above result is this: suppose the 
analysis filters are ideal and nonoverlapping, with

(6.2.14)
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Then the AC matrix H(z) is paraunitary (why?). So E(z) is paraunitary as 
well.
Relation to M-th band [or Nyquist(M)] filters

From the above property, we obtain a very interesting relation between 
paraunitary filter banks and Mth band filters (or Nyquist(M) filters; these 
were defined in Sec. 4.6.1): if E(z) is paraunitary, then each analysis filter 
Hk(z) is a spectral factor of a (zero-phase) Mth band filter. In other words, 
the filter Gk(z) defined as



is an Mth band filter.
To prove this, recall that the Mth band property is essentially defined 

by the property (4.6.6) (for zero phase systems). Thus it is sufficient to prove

(6.2.15)

Since paraunitariness of E(z) implies that of H(z), each column of H(z) is 
paraunitary, that is,

(6.2.16)

Using the definition of Gk(z), the desired property (6.2.15) follows.

6.3 TWO CHANNEL FIR PARAUNITARY QMF BANKS
In this section we consider the two channel QMF bank (Fig. 5.1-1(a)) in 
which the analysis filters are causal and FIR, that is,

We know that if the 2 × 2 polyphase matrix E(z) is paraunitary, then all 
properties stated in Sec. 6.2 are true. For the two channel case, some 
additional properties are satisfied, which we study next.

6.3.1 Further properties
Power Symmetric Property

We know the alias-component (AC) matrix (defined in Sec. 5.4) is given 
by

(6.3.2)

From Sec. 6.2.2 we know that paraunitariness of E(z) (i.e., E(z)E(z) = dI) 
implies that of H(z), i.e., H(z)H(z) = βI, where β = 2d. From this we 
obtain the three equations

298 Chap. 6. Paraunitary perfect reconstruction filter banks

(6.3.3a)

(6.3.1)

(6.3.3b)
(6.3.3c)



Using the decimation notation A(z)∣↓2 defined in (4.1.14), we can rewrite 
the above three equations as

Thus paraunitariness of E(z) is equivalent to (6.3.4). From the first of the 
above equations we see that H0(z)H0(z) is a half-band filter (Sec. 4.6.1). In 
other words, H0(z) is power symmetric. (This property was defined in Sec. 
5.3. The original definition had β = 1, but it is convenient to allow arbitrary 
β > 0.) Same comment holds for H1(z).

Order of H0(z) is necessarily odd. Assume h0(0), h0(N) and N are 
nonzero (as in any useful design). Then the order N is necessarily odd, that 
is, N = 2J + 1. This is because H0(z)H0(z) is a zero-phase half band filter 
and has order of the form 4 J + 2 (Sec. 4.6.1).
Relation Between the Two Analysis Filters

From Sec. 6.2.2 we already know that the two analysis filters are power 
complementary if E(z) is paraunitary. We will show that the analysis filters 
are also related as

(6.3.6a)

From (6.3.6b) we have

(6.3.6c)

Equation (6.3.6a) implies that there are no common factors between H0(z) 
and H1(z) (since the right hand side is constant). So H0(-z) and H1(-z) 
have no common factors either. From (6.3.6c) we therefore conclude that
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(6.3.4)

(6.3.5a)

In other words, in the time domain,

(6.3.5b)

In view of this, we can find h1(n) from h0(n) by inspection. (In practice we 
do not lose anything by setting c = 1.)

Derivation of (6.3.5a). If E(z) is paraunitary then the AC matrix 
H(z) is paraunitary, so that (6.3.3) holds. Furthermore H(z)H(z) = βI as 
well. From this we obtain three equations similar to (6.3.3), two of which 
are

(6.3.6b)



H1(z) = cz-LH0(-z). By substituting this into (6.3.6a) and using (6.3.3a) 
we obtain ∣c∣ = 1. By substituting H1(z) = cz-LH0(-z) into (6.3.6b), it can 
further be verified that L has to be odd.

Frequency domain implication. The relation (6.3.5a) implies that 
the two analysis filters are such that

Example 6.3.2

which is paraunitary. Then, 

H0(z) = 1 + z-1 and H1(z) = 1 — z-1, and again the three properties 
listed in the previous example are satisfied. We can find a set of synthesis 
filters for perfect reconstruction, by setting c = 1 and L = 1 in (6.2.7). 
Thus F0(z) = 1 + z-1 and F1(z) = -1 + z-1.

Power Symmetry of H0(z) Implies E(z) is Paraunitary
We now consider the converse of some of the above results. We will 

show that, given any power symmetric H0(z), we can always force E(z) to 
be paraunitary by defining H1(z) as in (6.3.5a). For this, note that power 
symmetry of H0(z) implies that the 0th column of the AC matrix H(z) is 
paraunitary. In view of the relation H1(z) = cz-LH0(—z), the 1st column 
of H(z) is also paraunitary. By using this relation we can also verify that 
the two columns of H(z) are mutually orthogonal, that is,

In other words, H(z) satisfies the three properties (6.3.4), that is, we have 
H(z)H(z) = βI. This implies that E(z) is paraunitary.
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(6.3.7)
So the magnitude response of H1(z) is obtained by shifting that of H0(z) by 
π. For the real coefficient case this means that if H0(z) is lowpass then H1(z) 
is highpass; both filters have the same ripple sizes, and same transition band 
widths.

Example 6.3.1
Let E(z) = I, which is paraunitary. The analysis filters are H0(z) = 1, 
and H1(z) = z-1, and can be verified to satisfy all the above properties. 
For example, (a) each of these is power symmetric, (b) they are related 
as in (6.3.5a) for L = 1, and (c) they form a power complementary pair. 
The synthesis filters for perfect reconstruction can be found from (6.2.7), 
where c ≠ 0 and L is odd. Choosing c = 1 and L = 1 we get F0(z) = z-1 
and F1(z) = 1.

As a second example let E(z) =

(6.3.8)



We summarize all the above results as follows:
♠ Theorem 6.3.1. Let H0(z) and H1(z) be causal FIR and let E(z) 

be the 2 × 2 polyphase matrix of the analysis bank [H0(z), H1(z)]. Then the 
following statements are equivalent:

1. H0(z) is power symmetric (i.e., H0(z)H0(z)∣↓2 = 0.5β, β > 0), and
H1(z) = cz-LH0(-z) for some ∣c∣ = 1 and odd L.

2. E(z)E(z) = 0.5βI, that is, E(z) is paraunitary, (same as 'lossless' since 
E(z) is causal FIR).

3. H(z ) is paraunitary, that is, H0(z) and H1(z) together satisfy (6.3.4).◊

Comments. It is also true that, for a given power-symmetric H0(z), 
the function H1(z) which forces E(z) to be paraunitary must have the form 
(6.3.5a). This follows from the steps of the derivation of (6.3.5a).

Summary of Properties Induced by Paraunitary E(z)
Summarizing, the two-channel causal FIR QMF bank with paraunitary 

E(z) has the following properties.
1. H0(z) is power symmetric. This statement is equivalent to any one of 

the following:
a) H0(z) is a spectral factor of a half band filter, that is, H0(z)H0(z) 

is a half band filter.
b) H0(z)H0(z)∣↓2 = 0.5β.

2. H1(z) has all the properties of H0(z). Together they satisfy (6.3.4), that 
is, the AC matrix H(z) is paraunitary.

3. H1(z) = cz-LH0(-z) where ∣c∣ = 1, and L is odd.
4. H0(z) and H1(z) form a power complementary pair.
5. H0(z) has odd order N (as long as h0(0), h0(N) and N are nonzero).

6.3.2 Design of Perfect Reconstruction QMF Bank
The above results place in evidence the following procedure for the design of a 
two channel FIR perfect reconstruction QMF bank: first design a zero-phase 
half-band filter H(z) with H(ejω) ≥ 0, by using any standard technique 
(Sec. 4.6.1). Then compute a spectral factor H0(z) by using any method 
mentioned in Sec. 3.2.5 or Appendix D. This gives one of the analysis filters 
H0(z) = ΣNn=0 h0(n)z-n (a power-symmetric function), with order N = 
2J + 1. Obtain the other analysis filter H1(z) and the two synthesis filters 
F0(z) and F1(z) as
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(6.3.9a)



This system is identical to the one presented in Section 5.3.6! In this 
section we have obtained an independent derivation starting from the pa­
raunitary property. This derivation enables us to generalize the technique 
for M channels, as we will see. In addition, it gives rise to lattice structures 
which preserve perfect reconstruction in spite of quantization (see below).
Properties of the Above Filter Bank

If the above four filters (6.3.9) are used in the QMF bank of Fig. 5.1-1(a) 
then the following are true:

1. There is perfect reconstruction, and x(n) = 0.5βx(n — N).
2. The analysis filters are power complementary, and furthermore satisfy 

the relation ∣H1(ejω)∣ = ∣H0(-ejω)∣.
3. The synthesis filters Fk(z) satisfy ∣Fk(ejω)∣ = ∣Hk(ejω)∣, and are also 

power compementary.
4. All filters have order N = 2J + 1 which is automatically odd.
5. The polyphase matrix E(z) is paraunitary. Since the synthesis filters 

are chosen as in (6.3.9), the polyphase matrix R(z) of the synthesis 
bank is given by R(z) = z-JE(z), and is paraunitary as well.
Completeness. It is worth emphasizing that, every filter bank de- 

signed according to the design procedure in Sec. 5.3.6 has paraunitary E(z). 
Conversely, whenever E(z) is FIR and paraunitary, the four filters in the 
QMF bank are such that they can, in principle, be obtained by the above 
design procedure (Theorem 6.3.1).

6.4 THE TWO CHANNEL PARAUNITARY QMF LATTICE
We now consider the specical case of the above FIR two channel QMF bank, 
with real coefficient filters. In this case the paraunitary matrix E(z) has real 
coefficients. From Example 6.1.1 we know that a cascaded structure of the 
form in Fig. 6.1-4 is paraunitary whenever Rm has the form given in (6.1.9) 
(Givens rotations), and Λ(z) is as in (6.1.10).

It turns out that the above cascade is very general in the sense that every 
paraunitary system can be implemented like this! More precisely, we will 
show in Sec. 14.3.1 that any 2 × 2 real coefficient (causal, FIR) paraunitary 
matrix can be factorized as

(6.4.1)

where α is a positive scalar. To obtain the synthesis bank which would result 
in perfect reconstruction, we have to use (6.2.2). Let us choose K = J (so
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or, equivalently, in terms of impulse response coefficients as:

(6.3.9b)



that R(z) is causal), and c = 1. We then have

(6.4.2)

where Γ(z) is as in (6.2.5). Fig. 6.4-1 shows the complete lattice structure 
for the QMF bank. This is called the QMF lattice [Vaidyanathan and Hoang, 
1988]. The analysis and synthesis filters have order N = 2J + 1.

Figure 6.4-1 The QMF lattice structure. (a) Analysis bank, (b) synthesis bank, 
and (c) details of the unitary matrix Rm.
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The Two Multiplier QMF Lattice
In practice a more efficient version of the lattice structure can be used 

to implement this system. For this note that the rotation matrix Rm can 
be written as

(6.4.3)

if cos θm ≠ 0, and as
(6.4.4)

otherwise. Assume for simplicity of discussion that cos θm ≠ 0 for any m. We 
can then redraw the lattice structure as in Fig. 6.4-2 with S = α(Πm cos θm). 
Notice that we have also moved the decimators and expanders in accordance 
with the noble identities. The quantity S can be expressed directly in terms 
of αm as
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(6.4.5)

Notice that the element ±1 in (6.4.2) has been replaced with '-1.' The 
reason is that, the other choice of sign would be equivalent to replacing z 
with —z. This means that H1(z) becomes lowpass and H0(z) highpass. This 
does not add generality, as it can also be covered by renumbering the filters. 
Also see Problem 6.5.

6.4.1 Properties of the Paraunitary QMF Lattice
Most of the properties of the lattice structure follow immediately from the 
fact that E(z) is paraunitary and that R(z) = z-JE(z). These are summa- 
rized below, with notations adapted to the real coefficient case.

1. ∣H0(ejω)∣2 + ∣H1(ejω)∣2 = 2α2.
2. H1(z) = -z-NH0(-z-1), that is, h1(n) = (-1)nh0(N - n), with N = 

2J + 1.
3. Fk(z) = z-NHk(z-1), that is, fk(n) = hk(N — n) for k = 0,1. So the 

synthesis filters have same lengths as the analysis filters.
4. ∣H1(ejω)∣ = ∣H0(-ejω)∣. Also ∣Fk(ejω)∣ = ∣Hk(ejω)∣,k = 0,1.
5. H0(z) is power symmetric, that is, H0(z)H0(z) is a half-band filter.
6. The system satisfies x(n) = α2x(n — N), that is, it is an FIR PR QMF 

bank.
Completeness

It is worth emphasizing that every two channel (real-coefficient, FIR) 
paraunitary QMF bank can be represented using the above lattice structure. 
It is also important to note these points:
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1. Given a real coefficient power symmetric FIR filter H0(z), we can al- 
ways define H1(z) = —z-NH0(-z-1), and implement the analysis bank 
using the above lattice; the polyphase matrix E(z) is guaranteed to be 
paraunitary.

2. Any system designed as in Sec. 5.3.6 (by spectral factorization of a 
half-band filter) can be represented using the above lattice structure.

Hierarchical Property
Figure 6.4-3(a) is a redrawing of the analysis bank of Fig. 6.4-2(a), 

with decimators moved to the right for convenience of discussion. Suppose 
we eliminate the Jth stage, that is, just delete the lattice section which has 
the multiplier αJ, along with its delay element. We now have a new system 
with analysis and synthesis filters of reduced order N — 2. The polyphase 
matrix for the analysis filter is still paraunitary. Similar comment holds for 
the synthesis bank. So the reduced system is a perfect reconstruction system 
and satisfies all the properties listed above, with N replaced by N — 2.

So if we “cut” the lattice structure after m stages, we still have a FIR 
PR QMF bank with filters of order 2m + 1. In practice the only thing that 
happens as m increases is that the filters H0(z) and H1(z) have better and 
better attenuation characteristics (i.e., sharper cutoff and higher attenua­
tion). Referring to Fig. 6.4-3(b), the analysis filters for the m-stage lattice 
are given by

Figure 6.4-3 (a) The analysis bank of the QMF lattice, and (b) schematic for
the m-th stage.
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(6.4.6)



So the new lowpass filter H0(m)(z) (order 2m+1) is obtained from the old 
lowpass filter H0(m-1)(z) (order 2m—1) by adding a “correction” proportional 
to αm. The same holds for the highpass filter H1(m) (z). Summarizing, the 
lattice structure represents a whole sequence of perfect reconstruction pairs 
[H0(m)(z), H1(m)(z)] with improved frequency responses as m grows. (How­
ever, given a lattice structure with good frequency responses, if we delete 
the rightmost section, the resulting responses are not necessarily good, even 
though the perfect reconstruction conditions are preserved.)

Such a hierarchical property is not possible if we implement the filters 
H0(z), H1(z), F0(z), F1(z) using a direct-form structure. For example, if we 
merely replace the highest impulse response coefficient h0(N) with zero [and 
adjust the remaining filters to satisfy (6.3.9b)], the result is not a perfect 
reconstruction system.

Robustness to Coefficient Quantization
Suppose that we implement the lattice using finite precision arithmetic. 

So the coefficients αm have to be quantized to some value Q[αm]. Now the 
matrix

(6.4.8)
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(6.4.7)

remains unitary, that is, QTmQm = c1I, c1 > 0. So the cascaded lattice 
structures for E(z) and R(z) remain paraunitary, and all six properties in the 
preceding list continue to hold including (a) the power symmetric property 
of H0(z) and (b) the perfect reconstruction property of the QMF bank.

Such robustness to quantization is however not offered by the direct- 
form implementation of the filters. Direct quantization of the coefficients 
h0(n) [with other filters re-adjusted to satisfy (6.3.9b)] results in loss of 
power symmetric property of H0(z), which is crucial to perfect reconstruc­
tion. Properties 2-4 in the preceding list are retained by the direct form 
under quantization, but these are only of secondary importance.

6.4.2 Calculating Lattice Coefficients from the Impulse Response

Suppose the power symmetric filter H0(z) has been designed somehow, say 
as in Sec. 6.3.2. We can now define h1(n) as in (6.3.9b) and write down 
E(z). From Theorem 6.3.1 we know that E(z) is paraunitary. So we are 
assured of the existence of a lattice structure as in Fig. 6.4-2(a) for the 
analysis bank (as we show in Sec. 14.3.1).

One can find the coefficients αm by inverting the recursion (6.4.6) to 
obtain



We initialize this recursion by setting H0(J)(z) = H0(z) and H1(J)(z) = H1(z). 
The coefficient αm is chosen so that the highest power of z-1 in H0(m)(z) — 
amH1(m)(z) is canceled. The fact that the lattice exists in this case assures 
the following things: (a) the next highest power of z-1 is also canceled (so 
that the order is reduced by two), and (b) the coefficients of z0 and z-1 in 
amH0(m)(z) + H1(m)(z) are reduced to zero so that H1(m-1)(z) in (6.4.8) is 
indeed causal. Problem 6.7 develops a direct proof that the recursion (6.4.8) 
works for any power symmetric filter H0(z).

Table 6.4.1 shows the lattice coefficients calculated in this manner for 
Design example 5.3.2 presented earlier. Notice that ∣αm∣ gets smaller and 
smaller as m gets large. Also note that the sign of αm alternates. This alter- 
nation property is consistently observed in all good designs with minimum 
phase H0(z), but has not yet been theoretically explained!

TABLE 6.4.1 Lattice coefficients 
for the perfect reconstruction anal- 
ysis bank example

m αm

0 -0.2588883 e+01
1 0.8410785 e+00
2 -0.4787637 e+00
3 0.3148984 e+00
4 -0.2179341 e+00
5 0.1522899 e+00
6 -0.1046526 e+00
7 0.6906427 e-01
8 -0.4258295 e-01
9 0.3111448 e-01

Numerical Accuracy
The lattice structure of the above form exists only if H0(z) is the spec­

tral factor of a half-band filter. In practice, due to numerical errors (e.g., 
accuracy of spectral factorization, degree of quantization of h0(n) etc), this 
property does not hold. So the lattice generated by the above recursion rep­
resents H0(z) only approximately. The numerical accuracy can be improved 
considerably as follows: since [H0(z), H1(z)] is a power complementary pair, 
we can synthesize a paraunitary lattice as shown later in Fig 14.3-3. And 
since H0(z) is almost power symmetric, the even numbered coefficients sat- 
isfy cm ≈ 1 and sm ≈ 0 (why?). If we replace these with cm = 1 and sm = 0,
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then the resulting structure resembles Fig. 6.4-1(a) (and can then be denor­
malized as in Fig. 6.4-2(a)). In our experience, this lattice represents H0(z) 
more accurately than the lattice obtained by direct use of (6.4.8).

6.4.3 Direct Design Technique Based on Lattice
Since the lattice guarantees perfect reconstruction regardless of values of αm, 
we can use it to design the transfer function H0(z). Thus, we optimize αm 
in order to minimize
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(6.4.9)

which is proportional to the stopband energy of H0(z). The remaining three 
filters are completely determined by H0(z) because of (6.3.9b). We do not 
have to worry about the passband of H0(z) because the power symmetric 
property, which is guaranteed by the structure, ensures that the passband is 
good.

There are many standard optimization programs which can be used to 
minimize a specified nonnegative function of several parameters [Press, et 
al., 1989]. These programs require the designer to supply a routine which 
can calculate the objective function φ for a given set of coefficients αm. The 
first step in this calculation would be to compute the coefficients of H0(z) 
using the recursion (6.4.6). The recursion is initialized with

After J steps we get H0(J) which is the desired H0(z). The quantity φ can 
now be written as

(6.4.10)

where r(k) is the autocorrelation of h0(n), that is,

(6.4.11)

We interchange the summation with the integral to rewrite (6.4.10) as

(6.4.12)

So for a given set of αm, we can evaluate the objective function φ without 
having to perform numerical integration. Standard optimization techniques



[Press, et al., 1989] can now be employed to minimize φ with respect to the 
coefficients αm. The resulting H0(z) is a power symmetric FIR filter with 
smallest possible stopband energy. Note that in this design procedure no 
computation of spectral factors is required.

TABLE 6.4.2 Design example 6.4.1.
Optimized lattice coefficients for the per­
fect reconstruction analysis bank

m

0 -0.3836487 e+01
1 0.1247866 e+01
2 -0.7220668 e+00
3 0.4951553 e+00
4 -0.3688423 e+00
5 0.2885146 e+00
6 -0.2327588 e+00
7 0.1913137 e+00
8 -0.1598938 e+00
9 0.1348106 e+00

10 -0.1140321 e+00
11 0.9681786 e-01
12 -0.8223478 e-01
13 0.6963367 e-01
14 -0.5867790 e-01
15 0.4913793 e-01
16 -0.4081778 e-01
17 0.3353566 e-01
18 -0.2713113 e-01
19 0.2149517 e-01
20 -0.1658255 e-01
21 0.1238607 e-01
22 -0.8895189 e-02
23 0.6072120 e-02

Design example 6.4.1. Perfect Reconstruction QMF Lattice

In order to demonstrate the above ideas, consider a lattice structure 
with 24 sections (J = 23) so that the filters have order N = 2J + 1 = 47. 
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Let the stopband edge be at ωS = 0.54π. Table 6.4.2 shows the coefficients 
αm, optimized in order to minimize the stopband energy (6.4.12). Notice 
that ∣αm| gets smaller as m grows, and that the sign of αm alternates. The 
impulse response h0(n) can be calculated from αm by using (6.4.6). Figure 
6.4-4(a) shows the analysis filter responses, which have a minimum stopband 
attenuation of 32 dB.

Figure 6.4-4(b) shows plots of ∣H0(ejω)∣2 + ∣H1(ejω)∣2 (which is twice 
the amplitude distortion, that is, 2∣T(ejω)∣), with quantized coefficients. For 
this example, the quantization was done by rounding the mantissa part to 
two decimal digits. For example, in Table 6.4.2, α20 was replaced with [-0.17 
e—01]. The solid curve is for the direct form implementation of the analysis 
and synthesis filters, whereas the broken curve is for the lattice structure. 
This demonstrates the perfect reconstruction property of the lattice inspite 
of coefficient quantization. The only effect of quantization in the lattice 
structure is a deterioration of the attenuation characteristics of the filters, 
as demonstrated in Fig. 6.4-4(c).

Figure 6.4-4(d) shows the response of another analysis bank designed 
using the same technique. The lattice has J = 31 (i.e., 32 sections) so that 
the filter order is N = 63. The value ωS = 0.58π was used in the opti- 
mization. The minimum stopband attenuation of the resulting system is 74 
dB. This example demonstrates that we can design perfect reconstruction 
systems with very large attenuation. If this filter were designed by starting 
from a half-band filter H(z) (as in Design example 5.3.2), the required at- 
tenuation would be 148 dB. Finding a spectral factor of such a half-band 
filter is subject to severe numerical errors, and the resulting analysis filter 
will not satisfy the PR condition. The lattice structure on the other hand 
avoids these steps, and provides the designer with filter coefficients which 
are guaranteed to have the PR property. The lattice coefficients for this 
and many other designs can be found in Vaidyanathan and Hoang [1988]; in 
this reference, the above two designs have been numbered as 48E and 64D, 
respectively.

6.4.4 Complexity of the Paraunitary QMF Lattice
The total number of multipliers required to implement the lattice sections 
in the analysis bank is equal to 2(J + 1) + 2. Each of these operates at half 
the input sampling rate so that we have an average of J + 2 MPUs, which 
simplifies to 0.5(N + 3) for the analysis bank. With each lattice section 
requiring two additions, the number of APUs can be verified to be 0.5(N + 1). 
The synthesis bank has same complexity. So the lattice structure is much 
more efficient, requiring half as many MPUs as the direct form. For a given 
filter order N, the lattice has nearly the same complexity as the polyphase 
implementation of Johnston’s QMF bank (Sec. 5.2.2).

For a given set of specifications (e.g., stopband attenuation, transition 
bandwidth etc.) Johnston’s filters may have higher or lower order (as com­
pared to the above perfect reconstruction system) depending on the accept­
able level of amplitude distortion. See Sec. 6.7.2 for more comparisons.
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Figure 6.4-4 Design example 6.4.1. (a) Magnitude responses of analysis filters, 
(b) amplitude distortion after quantization, and (c) response of H0(z) after lattice 
quantization.
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Figure 6.4-4 (continued) (d) Another example of lattice-optimized H0(z).

6.4.5 Summary of Advantages of the QMF Lattice

1. The lattice has the lowest implementation complexity (in terms of MPUs 
and APUs) among all known (real coefficient FIR PR QMF) structures 
with paraunitary E(z).

2. All six properties listed at the beginning of Sec. 6.4.1 are retained in 
spite of the values of coefficients αm.

3. In particular, perfect reconstruction property is preserved inspite of 
coefficient quantization.

4. Moreover the lattice can be used as a design tool. We can optimize the 
lattice coefficients to minimize the stopband energy. This method has 
the advantages that (a) there is no need to compute spectral factors 
of high order half-band filters, (b) the resulting filter H0(z) is auto- 
matically power symmetric with smallest stopband energy, and (c) the 
resulting filter bank is guaranteed to have perfect reconstruction regard- 
less of the quality of convergence of optimization.

5. In fact, if we want the power symmetric filter H0(z) to have minimum 
energy (rather than equiripple as in Design example 5.3.2), then there 
is no other known technique to design it, other than optimization of the 
above lattice.

6. Hierarchical property. If we delete an arbitrary number of lattice sec- 
tions, the resulting structure still satisfies all the six properties listed 
earlier, including perfect reconstruction. Thus, as we add more stages 
to the lattice, the frequency responses of Hk(z) improve, while retaining 
perfect reconstruction property.
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For an arbitrary FIR filter H0(z) of order N, it is possible for all the 
N zeros to be on the unit circle. However, if H0(z) is power-symmetric, 
then the maximum number (nmax) of zeros on the unit circle is restricted. 
The number nmax can be easily found. For example, if N = 47 (as in 
Design example 6.4.1), then nmax = 24. See Appendix A of Vaidyanathan 
and Hoang [1988] for details. From the plot of Fig. 6.4-4(a) we see that 
there are indeed 24 zeros on the unit circle (as there are twelve in the range 
0 ≤ ω ≤ π). Experience shows that, in all the examples obtained by lattice 
optimization, the filter H0(z) has this maximum permissible number (nmax) 
of zeros on the unit circle. The same is true if H0(z) is generated as a 
spectral factor of a optimal equiripple half band filter.

6.5 M-CHANNEL FIR PARAUNITARY FILTER BANKS
We now consider the case of M-channel filter banks. If the analysis filters 
Hk(z) are constrained to be FIR with paraunitary E(z), then the choice of 
synthesis filters as in (6.2.7) results in perfect reconstruction. In this section 
we outline some methods for finding the analysis filter coefficients hk(n), so 
that they have good bandpass responses, under the constraint that E(z) be 
paraunitary.

6.5.1 The Basic Optimization Problem
In Chap. 14 we will develop several systematic techniques for representing 
(or implementing) paraunitary systems in terms of simple budding blocks. 
in this section, we state and use one of these results.
A Characterization of Paraunitary Matrices

Consider the transfer matrix
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(6.5.1)

where vm are column vectors (size M × 1), with unit norm, that is, v†mvm = 
1. Using this unit norm property, it is easy to verify that Vm(z)Vm(z) = I 
so that Vm(z) is paraunitary. This matrix can be implemented as in Fig. 
6.5-1 using one delay, and therefore has degree equal to one. †

It can be shown that any causal degree-J FIR paraunitary E(z) can be 
expressed as

(6.5.2)
where Vm(z) are paraunitary systems as above, and U is a constant unitary 
matrix, that is, U†U = dI. This factorization result [Vaidyanathan, et al., 
1989] will be proved in Sec. 14.4.2. Fig. 6.5-2 shows the cascaded structure

† The degree of a transfer matrix is the minimum number of delays re- 
quired to implement it.



corresponding to this. We will also show (Sec. 14.6.2) that any constant 
unitary matrix U can be expressed as

Figure 6.5-1 Implementation of paraunitary Vm(z) using one delay.

Figure 6.5-2 Factorization of paraunitary E(z). Building blocks are as in Fig. 
6.5-1.
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(6.5.3)

where D is a diagonal matrix with diagonal elements Dii = ejθi, and

(6.5.4)

Here ui are unit-norm column vectors. Matrices of the form (6.5.4) are 
unitary with U†iUi = I, and are called Householder matrices. Fig. 6.5-3 
shows a structure implementing the building block Ui.

Figure 6.5-3 Cascaded structure for unitary U with Householder building 
blocks.



These representations hold whether the coefficients of E(z) (i.e., co- 
efficients of analysis filters) are real or complex. For the important real 
coefficient case, the vectors vk and ui are real.

Optimization of the Coefficients vm and ui
It now remains only to optimize the components of vm and ui such 

that the responses ∣Hk(ejw)∣ represent 'good' filters. For this we formulate 
an objective function φ as in the two channel case, representing the attenu- 
ation characteristics of the filters. We optimize vm and ui using nonlinear 
optimization techniques (e.g., see [Press, et al, 1989]), so as to minimize φ. 
The resulting vectors vm and ui completely determine E(z), thereby de- 
termining all the analysis filters Hk(z). The synthesis filters are then found 
from (6.2.7), resulting in a perfect reconstruction system.

Completeness. The characterization (6.5.2) is complete in the sense 
that all (causal FIR) paraunitary E(z) of degree J are covered. Moreover, 
the matrix E(z) is guaranteed to be paraunitary regardless of the values of 
the quantities vm and ui as long as they have unit-norm. As a result, the 
filter-bank system is guaranteed to have the perfect reconstruction property 
regardless of the values of these unit norm vectors, as long as the synthesis 
filters are chosen as in (6.2.7). So when the vectors vm and ui are being 
optimized, we are searching precisely over the complete class of FIR filter 
banks with paraunitary E(z).
Objective Function to be Minimized

For simplicity assume that the filters have real coefficients, so that 
∣Hk(ejω)∣ is an even function of ω. (Extension to complex coefficient case 
is easy.) Figure 6.5-4 demonstrates for M = 3, a typical set of desired mag- 
nitude responses for the analysis filters. The passbands of the filters are 
nonoverlapping. In the frequency region designated as “passband” for the 
filter Hk(z), all other filters have their stopbands.

The paraunitary property of E(z) ensures that the analysis filters are 
power complementary (Sec. 6.2.2), that is, satisfy (6.1.8). Consequently, if 
the stopband responses are sufficiently small, then the passband responses 
of ∣Hk(ejω)∣ are sufficiently close to unity (assuming c = 1 in (6.1.8) for 
simplicity). This means that, if we minimize an objective function φ which 
reflects the stopband energies of Hk(ejω), then the passbands of all the 
filters will automatically be “good”. Based on this logic we conclude that it 
is sufficient to formulate an objective function of the form
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(6.5.5)

Minimizing φ (by optimization of the parameters ui and vm) results in filters 
which have good stopbands as well as passbands.



(6.5.6)

Figure 6.5-4 Typical magnitude responses for an analysis bank with M = 3.

Figure 6.5-5 Design example 6.5.1. Magnitude responses of optimized analysis 
filters for a 3 channel FIR perfect reconstruction system. Filter order N = 14.
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Design example 6.5.1
Figure 6.5-5 shows the magnitude responses of the analysis filters for a 

three channel system designed in this manner. This is obtained by minimiz­
ing

The impulse responses of the optimized analysis filters hk(n) are given in 
Table 6.5.1, with filter order N = 14. The coefficients of the synthesis filters 
for perfect reconstruction are given by fk(n) = hk(14-n). Notice that about 
20 dB stopband attenuation has been obtained for each filter.



TABLE 6.5.1 Design example 6.5.1. The optimized filter 
coefficients for the FIR perfect reconstruction analysis bank. 
Here N = 14 and M = 3.

n h0(n) h1(n) h2(n)

0 -0.0429753 -0.0927704 0.0429888
1 0.0000139 0.0000008 -0.0000139
2 0.1489104 0.0087654 -0.1489217
3 0.2971954 0.0000226 0.2972354
4 0.3537539 0.1864025 -0.3537496
5 0.2672266 -0.0000020 0.2672007
6 0.0870758 -0.3543303 -0.0870508
7 -0.0521155 -0.0000363 -0.0520909
8 -0.0875973 0.3564594 0.0875756
9 -0.0427096 -0.0000049 -0.0427067

10 0.0474530 -0.1931082 -0.0474452
11 0.0429618 0.0000230 0.0429677
12 0.0 0.0 0.0
13 -0.0232765 -0.0000026 -0.0232749
14 0.0000022 0.0 0.0000022

6.5.2 Incorporation of Symmetry
In most practical designs the response ∣MM-1-k(ejω)∣ can be taken to be 
the image of ∣Hk(ejω)∣ with respect to π/2, that is,

(6.5.7)

This is demonstrated in Fig. 6.5-6 for M = 5. (We assume the filter coef­
ficients to be real so that the magnitude responses are automatically sym- 
metric with respect to π.) Indeed, in Design example 6.5.1 the responses 
∣H0(ejω)∣ and ∣H2(ejω)∣ do satisfy this property approximately, (and more- 
over ∣H1(ejω)∣ is self-symmetric with respect to π∕2) because the stopband 
regions [regions of integration in (6.5.6)] were chosen with such symmetry.

This opens up an idea. Suppose we modify the polyphase structure 
such that the symmetric constraint is built into the structure. Because of 
this constraint, the number of degrees of freedom (i.e., vm's) will be reduced 
by almost a factor of 2, which reduces the number of parameters to be 
optimized for a given filter order. This in turn will result in drastic reduction 
of optimization time [Nguyen and Vaidyanathan, 1988].
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For the three channel real coefficient case, we can incorporate the sym­
metry condition (6.5.7) by the constraint

Figure 6.5-6 Demonstrating the symmetry of responses with respect to π∕2.

Figure 6.5-7 The three-channel analysis bank, with Hk(z) = H2-k(-z).

(6.5.10)
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(6.5.8)
[This is not the only way to achieve (6.5.7), but it works.] In particular H1(z) 
is constrained to be a function of z2. These imply ∣H2(ejω)∣ = |H0(ej(π-ω))| 
and ∣H1(ejω)∣ = ∣H1(ej(π-ω))∣, so that (6.5.7) is satisfied. Notice from Table 
6.5.1 that the filter coefficients of the previous design example almost sat- 
isfy (6.5.8)! It will, therefore, be judicious to force this symmetry prior to 
optimization.

Figure 6.5-7 shows a structure for imposing (6.5.8). Here the transfer 
functions are given by

(6.5.9)

Retaining the Perfect Reconstruction Property
It only remains to 'worry about' the perfect reconstruction property of 

this modified structure. Note that the analysis bank can be written as



The real matrix A is unitary, with ATA = 2I. So if we force E'(z) to be 
paraunitary in the usual way, and choose the synthesis bank as in Fig. 6.5- 
8, then the complete analysis/synthesis system is equivalent to Fig. 6.5-9. 
This, indeed, is a perfect reconstruction system, since the integers 2 and 3 
are relatively prime (see Fig. 5.6.3 and associated comments). The synthesis 
filter vector is given by

Figure 6.5-8 The synthesis bank corresponding to Fig. 6.5-7. This results in a 
perfect reconstruction system when E'(z) is paraunitary. (See text.)

Figure 6.5-9 The analysis bank of Fig. 6.5-7 followed by the synthesis bank of 
Fig. 6.5-8 is equivalent to the above structure when E'(z) is paraunitary. Here c 
is a nonzero constant, and α = integer.

Paraunitariness of E(z). Notice that the polyphase component ma- 
trix E(z) is not the same as E'(z). In the above design problem, it is not 
necessary to know what E(z) is, as it does not directly enter the optimiza­
tion. It turns out, however, that E(z) is paraunitary. [This follows from
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(6.5.11)

from which we verify that the relation

(6.5.12)

holds for appropriate c0 and L.



Theorem 6.2.1 because the system under consideration is a perfect recon- 
struction system satisfying (6.5.12)].

An extension of this idea for arbitrary M is possible [Nguyen and 
Vaidyanathan, 1988]. The details depend on whether M is even or odd. 
Figure 6.5-10 shows the structure for odd M (of which Fig. 6.5-7 is a special 
case), which forces the condition

(6.5.14)

Clearly A is unitary with ATA = 2I. If E'(z) is constrained to be parau- 
nitary, we have to choose the synthesis filters as fk(n) = c0hk(L - n) for 
perfect reconstruction. Notice that for a given filter order N, the number 
of parameters which enter the optimization problem is nearly halved, when 
compared with the direct approach [which uses E(zM) rather than E'(z2M)].

Figure 6.5-10 Extension of the symmetric analysis bank for arbitrary odd M.

Design example 6.5.2
Figure 6.5-11 shows the frequency response of an FIR perfect reconstruc­

tion system designed in the above manner, using an optimization program 
from [IMSL, 1987]. The analysis filters have order ≤ 55, and the impulse 
response coefficients can be found in Table I of Vaidyanathan, et al. [1989].

In order for the optimization to converge to an acceptable solution in 
reasonable time, it is very important to ‘initialize’ the unknown parameters

Sec. 6.5 M-channel paraunitary systems 321 

(6.5.13)

and hence (6.5.7). Here A is a generalization of the matrix A in (6.5.10). 
For example, with M = 5, we have



in a judicious way. This initialization can be done by designing approximate 
reconstruction systems (called pseudo QMF designs, Sec. 8.1). In Sec. 8.5 
we return to a more systematic design procedure (cosine modulated perfect 
reconstruction systems), and provide further details.

Figure 6.5-11 Design example 6.5-2. Magnitude responses of analysis filters for 
a three channel FIR perfect reconstruction system. Analysis filters are related as 
in (6.5.8), and filter order N = 55. (© Adopted from 1989 IEEE.)

6.6 TRANSFORM CODING AND THE “LOT”

Before the introduction of FIR QMF banks with paraunitary E(z), some 
authors have independently reported other techniques for perfect recovery 
systems, which work for the case where the filter order is N = 2M — 1. One of 
these is the lapped orthogonal transform (LOT) studied in Cassereau [1985], 
Malvar and Staelin [1989], and Malvar [1990a]. The second is a special case 
(introduced in [Princen and Bradley, 1986]) of the pseudo QMF bank to be 
discussed in Chap. 8. The polyphase matrices in these methods have the 
form E(z) = e0 + e1z-1 so that the analysis filters have order N = 2M — 1.

It was observed in Vetterli and Le Gall [1989] that the above two systems 
have paraunitary E(z), thereby offering a very simple explanation of the 
perfect reconstruction property. We now elaborate this point.

6.6.1 Review of Transform Coding

In the area of waveform quantization and coding, there exists a popular tech- 
nique called transform coding [Jayant and Noll, 1984]. In this technique, a 
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signal x(n) is divided into blocks of length M, and each block transformed 
into a new block of length M by a linear (nonsingular) transformation T. 
This can be schematically represented as in Fig. 6.6-1, using multirate no- 
tation. Let us denote a block of length M as

(6.6.1)

Then the transformed block is obtained as

(6.6.2)

Notice that successive blocks of input do not overlap, that is, x(n) and 
x(n + 1) do not have overlapping samples. If we take T = W*, the above 
system becomes the familiar uniform-DFT bank.

Figure 6.6-1 The transform-coder/decoder schematic.

The components of the transformed data y(n) are typically quantized 
and transmitted. With y(n) denoting the quantized y(n), the reconstructed 
signal is obtained by using the inverse transformation T-1, and unblocking 
the resulting vector x(n) by use of expanders and delay chain as shown in 
the figure. In the absence of quantization of y(n), the system has the perfect 
reconstruction property, i.e., x(n) = x(n — M + 1).

The aim is to quantize the components of y(n) in such a way that 
the quantization error in the reconstructed signal x(n) is minimized. In 
practically all applications, the transformation matrix T satisfies T†T = 
I (orthogonal transform coding). Under this condition, and with suitable 
statistical assumptions one can solve for the best set of quantizers, resulting 
in the so called optimal bit-allocation schemes (Appendix C).

The main advantage of transform coding is that, an appropriate choice 
of T results in reduced number of bits per second, after quantization. (The
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extent of this reduction is quantitatively measured by the so-called coding 
gain. † A related problem in transform coding is the choice of best unitary 
T. This has been solved for the case of wide sense stationary x(n): the 
best T is the one whose rows are equal to the eigenvectors of the M x M 
autocorrelation matrix E[x(n)x†(n)]. This T is called the Karhunen-Loeυe 
Transform (KLT) (see Appendix C for details).

A commonly observed disadvantage of transform coding is the blocking 
effect, caused by the encoding of x(n) block-by-block without overlap. In im- 
age coding, this manifests in the form of visible discontinuities across block 
boundaries; in speech coding it is perceived as extraneous tones. Elegant 
techniques for reducing the blocking effect have been proposed based on the 
so-called lapped orthogonal transforms (LOT) [Cassereau, 1985], [Malvar 
and Staelin, 1989]. We shall now define the LOT in the framework of multi- 
rate systems, and observe that it is a filter bank with paraunitary polyphase 
matrix E(z).

6.6.2 Transforms with Overlap
Figure 6.6-2(a) shows a modification of the transform coder, where the matix 
T is M × L rather than M × M, with L ≥ Μ. This means that the input is 
partitioned into overlapping blocks

† Notice the similarity of this philosophy to subband coding. We can 
think of subband coding as a generalization of this transform coding idea, 
with T replaced by E(z) [Fig. 5.5-3(b)].
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of length L, and each block transformed into a block of (smaller) length Μ. 
Fig. 6.6-2(b) demonstrates this overlap for L = 5,M = 3. The existence 
of overlap between blocks has been shown to reduce the 'blocking effect' in 
speech and image processing.

The 'inverse' transform operation is also indicated in the figure (where 
Q has to be chosen appropriately; see below). Note that the process of 
obtaining y(n) from x(n) is equivaIent to the use of an analysis bank, with 
the analysis filter vector h(z) [eqn. (5.4.1)] given by

(6.6.3)

with e1(z) = [1 z-1 ... z-(L-1)]T. In all known applications we have
L < 2M. We shall let L = 2M, (with the provision that some columns of T 
are allowed to be zero, permitting the L < 2M case). Evidently the analysis 
filters have lengths ≤ 2M. By partitioning T as

(6.6.4)



where T0 and T1 are M × M, we can write

(6.6.5)

where e(z) is the delay chain vector [ 1 z-1 ... z-(M-1) ]T. By com­
paring with (5.5.2b), we see that the analysis bank has M × M polyphase 
component matrix

Figure 6.6-2 (a) The transform-coder/decoder with successive blocks overlap­
ping. For appropriate choice of T, this leads to the Lapped Orthogonal Transform 
(LOT) technique. (b) Demonstration of overlap, with L = 5 and M = 3.

We know that if E(z) is paraunitary, we can obtain perfect reconstruc­
tion (in absence of quantization) by taking the synthesis filters to be
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(6.6.6)

Paraunitariness of E(z) implies E(z)E(z) = cI. In terms of T0 and T1 this 
simplifies to

(6.6.7)



After making appropriate notational changes, we find that these are precisely 
the conditions (4) and (5) given by Malvar and Staelin, [1989]. So the LOT 
structure is a subclass of filter banks with paraunitary E(z), with analysis 
filter length = 2M.

We know that the above choice of fk(n), which results in perfect recon- 
struction, corresponds to the choice R(z) = z-1E(z) [Fig. 5.5-3(b)]. This 
in turn helps us to identify the matrix Q in Fig. 6.6-2(a) (Problem 6.17).

The LOT has been extended by Malvar to obtain the extended LOT 
(abbreviated ELT). This system, again, is a paraunitary filter bank with 
some additional structure on the filters, namely the cosine modulation prop- 
erty. We will return to this in Sec. 8.5.

6.7 SUMMARY, COMPARISONS, AND TABLES
In this and the previous chapters several types of filter banks have been 
presented. In Chap. 5 a number of techniques for the design of two-channel 
QMF bank were studied, and the general theory of M-channel maximally 
decimated filter banks was developed. In Tables 5.10.1-5.10.4 we already 
summarized these results.

In this chapter we have concentrated on filter banks with paraunitary 
polyphase matrix E(z). The main points are summarized in Table 6.7.1. Spe­
cial properties of two-channel paraunitary filter banks were studied in Sec. 
6.3, and various results summarized at appropriate places in that section. In 
Sec. 6.4 we presented a lattice structure for these systems. This structure 
is such that, perfect reconstruction (PR) is preserved inspite of multiplier 
quantization.

6.7.1 Venn Diagram for Perfect Reconstruction Systems
Paraunitariness of E(z) is not a necessary condition for obtaining the PR 
property in FIR QMF systems. From Chap. 5 we know that (5.6.10) is 
really necessary and sufficient. Indeed, in Chap. 7 we will show for the two 
channel case, that if the analysis filters are required to have linear phase, it 
is necessary to give up the paraunitary property.

In Fig. 6.7-1 we show a Venn diagram which summarizes various possi- 
bilities with FIR E(z). Set 2 here is the set of E(z) for which the determinant 
is a strictly minimum phase polynomial, that is, has all zeros inside the unit 
circle (except possibly some zeros at z = ∞, as in the function z-1). In this 
case if we take R(z) = E-1(z), we obtain perfect reconstruction with stable 
synthesis filters. But the synthesis filters are IIR, and typically have very 
high order (for large M). Set 3 is further constrained by the requirement 
that the determinant of E(z) be a delay. In this case the synthesis filters are 
also FIR but still can have very high order for large Μ. Set 4 represents
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and
(6.6.8)



TABLE 6.7.1 Perfect reconstruction filter banks with paraunitary E(z)

Any M-channel QMF bank (Fig. 5.4-1) can always be redrawn as shown 
in Fig. 5.5-3(a), where E(z) and R(z) are the polyphase component matrices 
of the analysis and synthesis banks.

1. We say that E(z) is paraunitary if E(z)E(z) = dI for some d > 0. If in 
addition E(z) is causal and stable (as we assume in following summary), 
we say that it is lossless. We use 'lossless' and 'paraunitary' interchange­
ably whenever causality and stability are clear from context.

2. Paraunitariness of E(z) is not necessary for perfect reconstruction. If 
E(z) is paraunitary, the choice R(z) = cz-KE(z) results in perfect 
reconstruction. Assuming E(z) is FIR, this choice of R(z) is also FIR 
and results in causal synthesis filters Fk(z) for proper choice of K.

3. The condition R(z) = cz-KE(z) is equivalent to
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with L = MK + M — 1. That is, coefficients of Fk(z) are essentially 
obtained by writing the coefficients of Hk(z) in reverse order and con- 
jugating; c is just a scale factor.) This choice of Fk(z) also implies 
∣Fk(ejω)∣ = ∣cHk(ejω)∣.

4. if E(z) is FIR and paraunitary, we obtain perfect reconstruction by 
choosing the synthesis filters as above, i.e., fk(n) = ch*k(L - n). See 
Theorem 6.2.1 for further complete summary.

5. Factorization. An FIR paraunitary system E(z) of degree J can al- 
ways be factorized as in (6.5.2), in terms of unit norm vectors vm and 
ui (see (6.5.1)-(6.5.4)). Conversely, (6.5.2) always represents a parau- 
nitary system as long as vm and ui have unit norm. The vectors vm 
and ui can be optimized to obtain good analysis filters Hk(z) for perfect 
reconstruction.

6. Paraunitariness of E(z) induces further properties (Section 6.2.2).
b) The analysis filters are power complementary: ΣΜ-1k=0 ∣Hk(ejω)∣2 = 

nonzero constant.
c) The function Hk(z)Hk(z) is an Mth band (Nyquist(M)) filter.
d) The alias component matrix H(z) is paraunitary. In fact H(z) 

is paraunitary if and only if E(z) is paraunitary because of the 
relation (6.2.12).

Results on two-channel paraunitary QMF banks.
These were derived in Sections 6.3 and 6.4, and the main results are 

summarized at appropriate places in these sections.



E(z) of the form

(6.7.1)

where Rm are nonsingular (not necessarily unitary) matrices, and Λ(z) is a 
diagonal matrix of delay elements [e.g., as in (6.1.10)]. This is a convenient 
subset of all matrices satisfing [det E(z)] = delay.

Finally set 5 is the paraunitary set, and has many advantages explained 
in this chapter. These advantages are summarized below, and hold for two- 
as well as M-channel cases.

Figure 6.7-1 Summary of various ways to force the perfect reconstruction 
property in FIR QMF banks.

Advantages of Paraunitary E(z) in FIR Filter Banks
1. No matrix inversions are involved in the design.
2. The synthesis filters are FIR, have the same length as the analysis filters, 

and can be obtained by time-reversal and conjugation of the analysis 
filter coefficients.
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3. If the paraunitary matrix E(z) is implemented as a cascaded structure 
(Fig. 6.5-2), the perfect reconstruction property can be retained in spite 
of multiplier quantization. For the two-channel case, this was justified 
in Sec. 6.4.1. For the M channel case, see Sec. 14.11.2.

4. The cascaded paraunitary structure also ensures that the computational 
complexity (for implementing the analysis bank) is low. This was justi­
fied in Sec. 6.4.4 for the two channel case. For the M channel case, see 
below.

5. The objective function to be optimized during design is simple, and 
does not have to explicitly include passband error. (It is implicitly there 
because of power complementary property of analysis filters, induced by 
paraunitariness of E(z).)

6. Filter banks with paraunitary E(z) can be used to generate an orthonor­
mal basis for the so-called wavelet transforms. See Chap. 11.

6.7.2 Complexity comparisions
For each of the methods studied in this and the previous chapters, we also 
presented design examples, and counted the number of multiplications and 
additions per unit time (MPU and APU). Table 6.7.2 gives a summary of 
the major features of various two-channel QMF banks, along with compu- 
tational complexities. Table 6.7.3 provides a comparison for a chosen set of 
specifications for the response of H0(z). It is clear that the perfect recon- 
struction QMF bank implemented with lattice structures (Method 2) is quite 
competetive with the approximate reconstruction systems (Method 1). Fi­
nally Table 6.7.4 compares the FIR PR lattice with the IIR power-symmetric 
method (Sec. 5.3). The IIR system has the lowest complexity among all the 
methods with given specifications on H0(z).
Complexity of M-channel Paraunitary QMF Bank

First suppose that we implement the filters Hk(z) in direct form. Even 
though the filters are constrained by the fact that E(z) is paraunitary, there 
is no obvious relation among the coefficients of these filters (except the op- 
tional relation (6.5.13), if symmetry has been imposed through the struc- 
ture). So the cost of a direct form implementation is roughly proportional 
to MN where N is the filter order and M is the number of channels. Since 
each Hk(z) is followed by a decimator, we can implement it in polyphase 
form (Sec. 4.3). So the analysis bank requires N MPUs and N APUs.

The second method is to implement the system using polyphase matri- 
ces, that is, exactly as in Fig. 5.5-3(b). In this manner, the implicit relation 
between the analysis filters, induced by the paraunitariness of E(z), can be 
exploited. We will show below that the complexity of this system is only
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(6.7.2)

For example if J = 10 and M = 5, then N = 54 and the analysis bank 
requires 26.6 MPUs and 24.8 APUs. For the first method where each Hk(z)



TABLE 6.7.2 Comparison of three types of two-channel QMF banks.
Note: ALD = Aliasing distortion; AMD = Amplitude distortion; PHD = Phase distortion. 

N = Order of H0(z)

Method 1 (FIR)

Section 5.2.2

Method 2 (FIR) 
Perfect Reconstruction 

with lossless E(z) 
Section 6.4

Method 3 
IIR Allpass 

based.
Section 5.3.4

Relation between 
filters

H1(z) = H0(-z)
F0(z) = H0(z), F1(z) = -H1(z)

H1(z) = -z-NH0(-z) 
F0(z) = z-NH0(z), 
F1(z) = z-NH1(z) 

H0, H1 power comp.

Same as 
method 1

Phase response 
of H0(z)

linear nonlinear nonlinear 
since H0(z) IIR

Distortions 
in QMF bank

ALD canceled 
AMD minimized 
PHD eliminated

ALD canceled 
AMD eliminated 
PHD eliminated

ALD canceled 
AMD eliminated

PHD remains

Features of
H0(z)

H0(z)∕H0(z) is a 
(zero-phase FIR) 

half-band filter, i.e., 
H0(z) is power symmetric

2H0(z) = a0(z2) 
+z-1a1(z2), 

a0(z), a1(z) IIR 
allpass. H0(z) is 
power symmetric.

Complexity, i.e., 
No., of (MPU, APU) for 

analysis bank‡
0.5(N + 1), 0.5(N + 1), 

using polyphase
(N + 1), N using 

direct form polyphase. 
0.5(Λ + 3), 0.5(N + 1) 

using paraunitary lattice

0.25(N - 1),
0.5(N + 1)

Group delay 
of entire 

analysis/synthesis 
system

N samples N samples nonconstant

‡ In each case, complexity of the sythesis bank is essentially same as that of the analysis bank. 
MPU = multiplications per unit time. APU = additions per unit time.

One unit of time = separation between samples of input x(n).
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TABLE 6.7.3 Comparison of Design examples for two FIR two-channel QMF banks. 
In both methods, H0(z) has AS ≃ 40dB and ωS ≃ 0.586π.

Method 1 
(Johnston’s 32D filter) 

i.e., imperfect reconstruction 
with linear phase 

analysis and sythesis filters

Method 2 
(Vaidyanathan and Hoang) 

Perfect reconstruction lattice 
with nonlinear phase 

analysis and synthesis filters

Required order 
of H0(z) N = 31 for

peak amplitude distortion = 0.025 dB
N = 31

Group delay 
of entire 

analysis∕synthesis 
system

31 31

No. of (MPU, APU) 
for analysis bank (16, 16) (17, 16)

Price paid by 
the method

Amplitude distortion not 
equal to zero

H0(z) and H1(z) 
do not have linear-phase

TABLE 6.7.4 Comparison of Methods 2 and 3. 
In both cases, AS ≃ 40dB and ωS ≃ 0.62π.

Method 2
FIR Perfect reconstruction

QMF lattice

Method 3
IIR allpass based system 

with nonzero 
phase distortion

Required order N 
for H0(z) 21 5

No. of (MPU, APU) 
for analysis bank (12, 11) (1, 3)

Group delay 
distortion None

Difference between 
largest and smallest 
delays =14 samples

Other distortions None None
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is implemented independently in polyphase form, we require 54 MPUs and 
APUs. This shows that the implementation based on E(z) is more efficient.

To justify (6.7.2), recall that any FIR paraunitary E(z) of degree J can 
be implemented in cascade form as in Fig. 6.5-2. Here Vm(z) and U are M × 
M matrices. Each of the building blocks Vm(z) requires 2M real multipliers 
(since vm is real for real-coefficient case). The unitary matrix U can be 
implemented as a cascade of M — 1 Householder matrices [eqn. (6.5.3)]. 
Each Householder matrix is implemented as in Fig. 6.5-3. The unit-norm 
vectors ui appearing in these Householder matrices have a restricted number 
of nonzero entries as elaborated in Sec. 14.6.2. From these details, we can 
verify that E(z) (hence the analysis bank) requires 2N+M2 multipliers. The 
number of additions is 2N + (M - 1)2. Since E(z) is operating at M times 
lower rate, the matrix E(z) (hence the analysis bank) has the complexity 
given in (6.7.2). If the filters are constrained by symmetry conditions such as 
(6.5.13), we obtain a further saving by about a factor of 2 (since the degree 
of E'(z) in Fig. 6.5-10 is nearly halved for fixed filter order N).

The implementation in terms of the cascaded structure for E(z) has the 
additional advantage that when the multipliers are quantized, the perfect 
reconstruction property is unaffected (Sec. 14.11). The same is not true for 
the direct form implementation of Hk(z).

Cosine modulated FIR PR systems. In Chap. 8 we will study a 
class of FIR perfect reconstruction systems in which all analysis filters are 
derived from a single prototype by cosine modulation. This has the advan- 
tage that during the design (optimization) phase the number of parameters 
to be optimized is very small, even for large Μ. Another advantage is that 
the complexity of the implementation is very small. Indeed, among all tech- 
niques for designing (perfect or approximate) QMF banks for arbitrary M, 
this method appears to have least complexity (both during design and im- 
plementation). The perfect reconstruction property in this scheme is again 
acheived by exploiting paraunitariness of E(z), as we shall see in Sec. 8.5.
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PROBLEMS

6.1. Consider the following FIR analysis bank.

Figure P6-1

a) Find E(z), and the analysis filters H0(z), H1(z). Is E(z) paraunitary? 
What is its determinant?

b) Find a set of causal FIR synthesis filters which result in perfect recon- 
struction.

6.2. Find an example of a real-coefficient two-channel FIR perfect reconstruction 
QMF bank, with the following features: (i) E(z) is paraunitary, and (ii) H0(z) 
is causal, with order ≥ 3. You must explicitly indicate the values of the filter 
coefficients H0(z), H1(z), F0(z) and F1(z).

6.3. Consider the example generated in Problem 6.2.
a) Verify that H0(z) is power symmetric.
b) Draw the lattice structures for the analysis and synthesis banks, and indi- 

cate the values of the lattice coefficients αm.

6.4. Let E(z) denote the polyphase matrix of an M-channel analysis bank.
a) Suppose E(z) is normalized lossless. Show that all the analysis filters 

Hk(z) have unit energy, i.e., Σn ∣hk(n)∣2 = 1.
b) Conversely, let all the filters Hk(z) have unit energy, and furthermore let 

them be power complementary. This does not necessarily mean that E(z) 
is paraunitary. Prove this by counter example.

6.5. Consider the lattice structure of Fig. 6.+3(a). Suppose we perform the fol- 
lowing changes: (a) replace the multiplier "-1" (just prior to stage 0) with a 
multiplier equal to “+1,” and (b) exchange each αk with —αk. Show then that 
the analysis filter H0(z) remains unchanged, and that H1(z) gets replaced with 
—H1(z). This shows that the multiplier with value "-1" in the figure is not of 
major importance.

6.6. Let R(z) and E(z) be matrices with rational entries, and let e(z) be the delay 
chain vector [as in (5.4.1)]. Prove that the relation (6.2.11) implies R(z) = 
cz-KE(z).

6.7. In this problem we obtain a second, independent, proof that the recursion
(6.4.8) for synthesizing the perfect reconstruction lattice works. Let H0(m)(z) =
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Σ2m+1n=0 h(m)(n)z-n be a transfer function with real coefficients, satisfying

Figure P6-7

6.8. The system in (6.5.1) can be written as h(0) + h(1)z-1 where h(n) are the 
'impulse response' coefficients of Vm(z). Let

This is a unit norm vector. By using this in (6.5.1), evaluate the coefficients 
h(n). Hence fill all the nine entries of Vm(z).

6.9. Consider the paraunitary system Vm(z) of Problem 6.8. Suppose we take this 
as the polyphase matrix E(z) of a three channel maximally decimated filter 
bank.

a) Find the coefficients of the analysis filters.
b) Find the coefficients of a set of FIR synthesis filters, which would result in 

perfect reconstruction.
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(P6.7a)

where cm is a nonzero constant. This is nothing but the power symmetric 
property, except that cm is not necessarily unity. Define

(P6.7b)

Assume h(m)(0) ≠ 0. Suppose we define H0(m-1)(z) as in (6.4.8) where ατn = 
—h(m)(2m + 1)∕h(m)(0). Prove the following.
a) H1(m-1)(z) defined in (6.4.8) satisfies a relation similar to (P6.7b) with m 

replaced by m — 1.
b) H0(m-1)(z) satisfies a property similar to (P6.7a) with m replaced by m — 1.
c) h(m-1)(0) ≠ 0.
d) H0(m-1)(z) and H1(m-1)(z) are causal with degree ≤ 2m - 1.

Summarizing, the pair [H0(m-1)(z), H1(m-1)(z)] satisfies all the properties of 
the higher order pair [H0(m)(z), H1(m)(z)]. So the recursion can be repeated. 
After a finite number of recursions we obtain H0(0)(z) and H1(0)(z). Write 
down the forms of these. Hence show that the pair [H0(m)(z), H1(m)(z)] can be 
implemented in the form of the following lattice structure.



6.10. Consider the product Vm(z) . . . V1(z) where Vm(z) are M × M matrices as 
in (6.5.1). Let vm be chosen so that v†mvk = δ(m - k). Show that the product 
reduces to z-1I.

6.11. Consider the M-channel maximally decimated system of Fig. 5.4-1. Let H(z) 
be the alias component (AC) matrix for the analysis bank, and let E(z) be the 
polyphase component matrix for the analysis bank. Show the following:

a) [det H(z)] = cz-K for some c ≠ 0 and integer K if and only if [det E(z)] = 
dz-L for some d ≠ 0 and integer L.

b) [det H(z)] is allpass if and only if [det E(z)] is allpass.
6.12. In a certain QMF bank suppose the M × M polyphase matrix E(z) is lossless. 

Let the polyphase matrix for the synthesis bank be given by R(z) = Adj [E(z)], 
where 'Adj' denotes the adjugate matrix (Appendix A). Show that the system 
is alias-free. Find an expression for the distortion function T(z) and hence 
show that amplitude distortion has been eliminated.

6.13. Consider an analysis bank Hk(z), 0 ≤ k ≤ M — 1, with paraunitary polyphase 
matrix E(z). Define a new analysis bank H'k(z), 0 ≤ k ≤ M - 1, by replacing 
z with zejθ where θ is an arbitrary real number. In other words, H'(z) = 
Hk(zejθ). Show that the polyphase matrix E'(z) of the resulting system is 
paraunitary. [Note. In general E'(z) ≠ E(zejθ).]

6.14. Consider Fig. 5.2-5, where ai(z) are causal stable with ∣ai(ejω)∣ = 1. This 
represents a two channel QMF bank. Let E(z) and R(z) be the polyphase 
matrices of the analysis and synthesis banks.

a) Identify E(z) and R(z).
b) Is E(z) lossless?
c) Write down R(z) in terms of E(z).
d) What is the product R(z)E(z)?

6.15. We now look into some deeper properties of tree structured QMF banks. Con- 
sider Fig. 5.8-1 again. Let H0(k)(z) = ΣNkn=0 h(k)(n)z-n and let the filters be 
related as
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(P6.15a)
and

(P6.15b)
for k = 1, 2. Assume Nk to be odd. Let the synthesis filters be chosen as

(P6.15c)
a) Prove that the system has perfect reconstruction property.
b) Consider the equivalent four channel system of the form in Fig. 5.4-1. Verify 

that Fm(z) and Hm(z) are related as Fm(z) = cz-LHm(z) for 0 ≤ m ≤ 3, for 
some c and L.

c) Show that the 4 x 4 polyphase matrix E(z) of the equivalent four channel 
system is paraunitary.
Note. This problem is not tedious, if the properties in Sec. 6.2 are used judi­
ciously. These results can also be generalized to tree structures with arbitrary 
number of levels, and arbitrary number of channels in a given level.



6.16. Consider Fig. 5.4-1. Find an example of a FIR perfect reconstruction system 
for which Fk(z) = Hk(z) for each k. To avoid trivialities, make sure M ≥ 2 in 
the example.

6.17. Consider the LOT structure of Fig. 6.6-2(a). Let T = [T0 T1], where T0
and T1 are M x M, and assume that (6.6.7) and (6.6.8) hold. Find Q in terms 
of T0 and T1, in order to have perfect reconstruction.
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Linear Phase

Perfect Reconstruction 

QMF Banks

7.0 INTRODUCTION

In some applications it is desirable to have a filter bank in which the analysis 
filters Hk(z) are constrained to have linear phase. Such systems are called 
linear phase filter banks. These should not be confused with filter banks free 
from phase distortion, that is, filter banks for which the distortion function 
T(z) has linear phase. For example the system in Design example 5.3.2 
is not a linear phase filter bank (since the impulse response coefficients in 
Table 5.3.3 do not exhibit any symmetry), yet it is a perfect reconstruction 
system. On the other hand, the system in Design example 5.2.1 is a linear 
phase QMF bank (all filters have linear phase), but it is not a PR system 
since there is residual amplitude distortion (Fig. 5.2-4(b)).

In this chapter we show how to design linear phase filter banks which at 
the same time satisfy the perfect reconstruction (PR) property. The basic 
results were independently reported in Nguyen and Vaidyanathan [1989] and 
Vetterli and Le Gall [1988, 1989].

7.1 SOME NECESSARY CONDITIONS

In both the design examples mentioned above, the analysis filters H1(z) and 
H0(z) are constrained in some manner. In Design example 5.3.2 they are 
power complementary, whereas in Design example 5.2.1, H1(z) = H0(-z). 
It turns out that, in order to design FIR linear phase QMF banks which at 
the same time enjoy the PR property, it is necessary to give up the power 
complementary property, as well as the relation H1(z) = H0(-z). We begin 
the chapter by explaining why.
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Power Complementary Constraint Must be Avoided
Suppose H(z) and G(z) are linear phase FIR filters, which at the same 

time satisfy the power complementary property. We will show that H(z) 
is a sum of two delays, that is, H(z) = az-K + bz-L, where K and L are 
integers. G(z) has similar form. As a result, the responses ∣H(ejω)∣ and 
∣G(ejω)∣ are very restricted.

To prove this we assume that H(z) and G(z) are causal with the impulse 
response coefficients h(0) ≠ 0,g(0) ≠ 0. If this is not the case, we can 
redefine H(z) and G(z) by shifting the impulse responses, which does not 
affect either the linear phase property or the power complementary property. 
Let N denote the order of H(z), so h(N) ≠ 0. Let N > 0. (Otherwise there 
is nothing to prove.) The power complementary property implies

(7.1.1)

Equating like powers on both sides we see that G(z) also has order N. So 
H(z) = ΣNn=0 h(n)z-n and G(z) = ΣNn=0 g(n)z-n, with g(N) ≠ 0. From 
Sec. 2.4.2 we know that the linear phase property of H(z) and G(z) implies

(7.1.2)

for real α,β. Substituting into (7.1.1) and simplifying we get

(7.1.3)

Since all quantities on the left hand side are FIR, this implies

(7.1.4)

where pq = c2, and K + L = N. Adding and subtracting these two equations 
we get

(7.1.5)

for appropriate a, b and γ, with ∣γ∣ = 1.
Consequences. As a consequence of this result, we have to remove the 

power complementary restriction on the analysis filters in order to obtain 
good responses. Since paraunitariness of the polyphase matrix E(z) (Sec. 
6.2.2) implies that H0(z), H1(z) are power complementary, it is necessary to 
give up paraunitariness of E(z) as well.
The Relation H1(z) = H0(-z) Must be Avoided

In Sec. 5.2 we studied alias-free FIR QMF banks with analysis fil­
ters related as H1(z) = H0(-z). The overall distortion function is T(z) = 
0.5[H20(z) - H20(-z)]. If H0(z) has linear phase, then T(z) has linear phase,



and phase distortion is eliminated. This system however suffers from ampli­
tude distortion, that is, ∣T(ejω)∣ is not perfectly flat. The residual amplitude 
distortion can be made very small using Johnston’s procedure (Design ex- 
ample 5.2.1). This means that we have already seen examples of linear phase 
FIR QMF banks which “almost” satisfy the PR property. By increasing the 
order of H0(z) we can decrease the amplitude distortion to any desired de­
gree [while maintaining the attenuation requirements of H0(z)], so that the 
system gets as close to PR as we wish.

With this system, however, we can never achieve PR property exactly! 
We proved this in Sec. 5.2.1 by showing that the distortion function of the 
alias-free system has the form T(z) = 2z-1E0(z2)E1(z2), where H0(z) = 
E0(z2) + z-1E1(z2). For perfect reconstruction T(z) has to be a delay, that 
is, H(z) has to be a sum of two delays, which is not useful. As a result, it is 
necessary to give up the condition H1(z) = H0(-z) as well.

7.2 LATTICE STRUCTURES FOR LINEAR PHASE FIR PR QMF BANKS
Recall that neither the relation H1(z) = H0(-z) nor the power complemen­
tary property is necessary for perfect reconstruction in FIR QMF banks. 
The condition (5.6.10) is really (necessary and) sufficient. It turns out that 
we can design very good linear phase analysis filters which at the same time 
satisfy this condition. As a first step, we generate an example with nontriv­
ial analysis filters, such that neither the power complementary property nor 
the relation H1(z) = H0(-z) is satisfied.

Example 7.2.1 An FIR Linear-Phase PR QMF Bank
Consider the analysis bank of Fig. 7.2-1(a). Here the polyphase matrix 
E(z) = T1Λ(z)T0, where

(7.2.1)

Assume k is real and k ≠ ±1. This ensures that T0 is nonsingular. A 
corresponding synthesis bank which gives rise to perfect reconstruction 
is shown in Fig. 7.2-1(b). This is obtained by taking 

for appropriate c. The analysis and synthesis filters are verified to be
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Many points are worth noting here. The synthesis filters satisfy F0(z) = 
H1(-z) and F1(z) = - H0(-z), consistent with the alias cancelation 
condition (5.1.7). The analysis filters evidently have linear phase, and 
are nontrivial in the sense that they are not just sums of two delays. 
However, they are not power complementary, nor is the relation H1(z) = 
H0(-z) satisfied. Finally, the synthesis filters are not given by Fk(z) = 
z-3 Hk(z-1) as in a paraunitary perfect reconstruction system.

Figure 7.2-1 Example of linear phase PR QMF bank. (a) Analysis bank, and 
(b) synthesis bank.

What is the trick behind the success of this example? The matrices T0 
and T1 have, no doubt, been 'carefully' chosen. The choice of T0 is such 
that Q0(z) is the Hermitian image of P0(z) (see Fig. 7.2-1(a). The choice of 
T1 is such that H0(z) and H1(z) are the sum and difference of the image pair 
P0(z), z-2Q0(z), so that h0(n) is symmetric and h1(n) is antisymmetric!

Example 7.2.2

We can in fact generate similar examples of arbitrary order. To demon­
strate this, consider Fig. 7.2-2(a) in which
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Figure 7.2-2 More general linear phase FIR PR QMF bank. (a) Basic 
generation technique for analysis bank. (b) Complete analysis bank. (c) 
Complete synthesis bank. (d) Details of the building blocks.
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The main point of the example is that we can generate linear phase 
FIR PR QMF banks in which the analysis filters are nontrivial (i.e., not 
restricted to be a sum of two delays). The next design example shows that 
these analysis filters can provide excellent attenuation as well.
Design Example 7.2.1. Linear Phase FIR PR Lattice

Consider a lattice with J = 31 so that the filters have order N = 63. 
The lattice coefficients should now be optimized in order to minimize an

342 Chap. 7. Linear phase perfect reconstruction systems

(7.2.3)

are real coefficient polynomials and km is real. Let Qm-1(z) be the 
Hermitian image of Pm-1(z), i.e., Qm-1(z) = z-(2m-1)Pm-1(z-1). Then 
the transfer functions

(7.2.4)

are also Hermitian images, i.e., satisfy Qm(z) = z-(2m+1)Pm(z-1). (This 
can be verified by substitution.) By repeated application of this, we 
see that the cascaded lattice structure shown in Fig. 7.2-2(b) has the 
property

(7.2.5)
The analysis filters in this figure are given by

(7.2.6)

From this it is easily verified that these filters satisfy

(7.2.7)

that is, in terms of impulse response coefficients,

(7.2.8)

so that they have linear phase. Figure 7.2-2(c) shows a synthesis bank 
which results in perfect reconstruction. This is obtained by choosing the 
polyphase matrix of the synthesis bank to be R(z) = cz-JE-1(z). Here 
Sm = (1 - k2m)T-1m. The synthesis filters satisfy (5.1.7) within a scale 
factor (Problem 7.1).



appropriate objective function. The simple function (6.4.9) is not suitable 
any more because H0(z) is not power symmetric, and moreover there is no 
power complementary relation between H0(z) and H1(z). It is necessary to 
define an objective function which reflects the passbands and stopbands of 
both filters. For example we can take

(7.2.9)

Figure 7.2-3(a) shows the analysis filter responses of the optimized design. 
The filter coefficients are tabulated in Nguyen and Vaidyanathan [1989]. The 
transition bandwidth is about 0.172π. For comparison, we show in Fig. 7.2- 
3(b) the responses of Johnston’s 64D filters (which also have order 63, and 
the same transition bandwidth). Johnston’s filters offer a minimum stopband 
attenuation of 65 dB, in comparison to only 42.5 dB offered by the perfect 
reconstruction system. † The peak amplitude distortion of Johnston’s 64D 
QMF bank is about 0.002 dB. Johnston’s 32D filter, on the other hand, has 
nearly the same attenuation as the PR system.

Even though the PR system has higher order for a given attenuation, it 
can be implemented more efficiently than Johnston’s filters, because of the 
lattice structure (see computational complexity below).

Recall that in order to obtain perfect reconstruction using linear phase 
filters, we had to give up the relation H1(z) = H0(-z) as well as the power 
complementary property. Also the plot of ∣H0(ejω)∣2 + ∣H1(ejω)∣2 is very flat 
for Johnston’s design but not for the linear phase PR pair (see Fig. 7.2-4). 
In spite of this the linear phase lattice structure enjoys perfect reconstruc­
tion because the quantity ∣H0(ejω)∣2 + ∣H1 (ejω)∣2 is not proportional to the 
amplitude distortion unlike in Johnston’s design!
Computational Complexity of Linear Phase QMF Lattice

The lattice structure of Fig. 7.2-2(b) has J + 1 sections, with two 
multipliers per section. However, each section can be rearranged, permit- 
ting an implementation with only one multiplier (and three adders) per 
section (Problem 7.2)‡. From this we deduce that the analysis bank requires 
0.25(N + 1) + 1 MPUs and 0.75(N + 1) + 1 APUs (where N = filter order). 
In our example N = 63 so this reduces to 17 MPUs and 49 APUs. For com­
parison suppose we consider Johnston’s 32D filter, which has nearly the same

† Improved optimization has recently been reported by Nguyen [1992a], 
whereby the perfect reconstruction system can provide almost as good at­
tenuation as Johnston’s filters of the same order.

‡ This is unlike in the paraunitary lattice (Fig. 6.4-2), which required a 
minumum of two multipliers per section.
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Figure 7.2-3 Design example 7.2.1 (Linear phase QMF banks). Magnitude re­
sponses of analysis filters for (a) perfect reconstruction system, and (b) Johnston's 
64D system. Both systems have analysis filters of length 64. (© Adopted from 
1989 IEEE.)

specifications (including minimum stopband attenuation) as the linear-phase 
lattice filters, and has a peak amplitude distortion of 0.025 dB. This can be 
implemented with a total of 16 MPUs and 16 APUs for the analysis bank. 
Summarizing, the linear phase PR QMF lattice has about the same num­
ber of MPUs as Johnston’s filters with same specifications (and amplitude
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distortion of 0.025 dB). The number of APUs, however, is higher.
Table 7.2.1 summarizes the comparison between the linear phase PR 

QMF bank and Johnston’s design.

Figure 7.2-4 Pertaining to Design example 7.2.1. (© Adopted from 1989
IEEE.)

Initialization of the Lattice Parameters for Optimization
Since Johnston’s filters have linear phase and “almost” satisfy the PR 

property, it is possible to obtain a lattice structure for these, which “almost” 
resembles Fig. 7.2-2(b). This can be used to initialize the parameters km.

Let us make the above statement more precise. Given the Nth order pair 
H0(z), H1(z) from Johnston’s design, suppose we define PJ(z) and QJ(z) 
according to (7.2.6). Then (7.2.5) is satisfied because (7.2.7) holds. Define 
P'N(z) = PJ(z), Q'N(z) = QJ(z) for convenience. We can now construct a 
pair of lower order transfer functions as follows:

(7.2.10)

We choose ℓN = p'N(N)/q'N(N) so that P'N-1(z) has degree N — 1. Because 
of the relation (7.2.5), this same value of ℓN ensures that Q'N-1(z) defined 
in (7.2.10) is causal with degree N - 1 or less. Assuming ℓ2N ≠ 1 we can 
invert (7.2.10) to get

(7.2.11)
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This gives rise to the lattice representation of Fig. 7.2-5(a). It can be verified 
from above that Q'N-1(z) = z-(N-1)P'N-1(z-1), so that we can repeat the 
process, resulting in Fig. 7.2-5(b). ‡ Here the scale factors (1 — ℓ2m) have all 
been lumped together into α.

TABLE 7.2.1 Comparison between the linear-phase perfect 
reconstruction design and Johnston’s 32D design.

Feature Johnston’s 32D 
Pair of Filters

Linear phase 
QMF lattice

Phase response Linear Linear
Filter order 31 63
Stopband 

Attenuation
38dB 42.5dB

Peak amplitude 
distortion

0.025dB No error

Number of MPU 
for analysis bank

16 17

Number of APU 
for analysis bank

16 49

Power Comple- 
mentarity

Approximately 
holds

Does not 
hold

Relation between 
Analysis Filters

H1(z) = H0(-z) Not explicit. 
Implicitly 
such that 

det E(z)=delay
Overall Group 

Delay of 
QMF bank

31 63

Abasing Canceled Canceled

Phase distortion Eliminated Eliminated

Amplitude 
distortion

Minimized Eliminated

‡ Readers familiar with linear predictive coding will notice the resem- 
blance to the LPC lattice [Markel, and Gray, Jr., 1976]. However, there 
are two differences. In the LPC lattice the coefficients ℓm (called reflection 
coefficients) are typically bounded as ℓ2m < 1. Also the rightmost section, 
which generates H0(z), H1(z), is absent.
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So Johnston’s analysis bank can be represented in this manner, pro- 
vided ℓ2m ≠ 1 for any m (and this is the case in all practical examples). 
This structure, however, is not in polyphase form because the system inside 
broken lines in Fig. 7.2-5(b) is not a function of z-2 (so that it is not equal 
to E(z2)). However, since the filters have linear phase and almost satisfy the 
PR property, the coefficients ℓ2, ℓ4, . . . and so on, turn out to be very close to 
zero. By setting these to zero, the remaining coefficients ℓ2m+1 can be used 
to initialize the coefficients kn in the linear-phase lattice of Fig. 7.2-2(b). 
Such initialization leads to significantly faster convergence of optimization, 
as compared to random initialization. This method was used in the above 
design example.

Figure 7.2-5 Lattice structure for an arbitrary (i.e. not necessarily PR) linear 
phase pair [H0(z), H1(z)].

7.3 FORMAL SYNTHESIS OF LINEAR PHASE FIR PR QMF LATTICE

In Example 7.2.2 H0(z) and H1(z) are filters with odd order (N = 2J + 1) 
satisfying (7.2.7) and the PR condition [det E(z)] = delay. The next question 
is, given such a pair of FIR filters, is it always possible to find a structure 
like Fig. 7.2-2(b)? In other words, does the lattice cover every analysis bank
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satisfying the said properties? The answer is yes with some minor exceptions 
which will be made clear soon.

The given set of filters H0(z), H1(z) can always be expressed as in (7.2.6) 
by defining PJ(z) and QJ(z) as

(7.3.1)

With analysis filters expressed in polyphase form (5.6.11), we have

In other words

(7.3.2)

(7.3.3)

and the PR condition (5.6.10) is equivalent to the condition

(7.3.4)

The linear phase condition (7.2.7) is, of course, equivalent to (7.2.5).
So the problem of designing linear phase FIR PR QMF banks can be 

transformed to that of finding a lattice structure for [PJ(z) QJ(z)]T which 
satisfies the properties (7.3.4) and (7.2.5). For convenience of discussion let 
us write
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(7.3.5)

so that (7.2.5) is equivalent to

(7.3.6)

The following Lemma is crucial to our discussion.
♠ Lemma 7.3.1. Let PJ(z) and QJ(z) be as in (7.3.5), and satisfy 

(7.3.6) and (7.3.4), where FJ(z) is defined as in (7.3.3). Let N be odd, that 
is, N = 2J + 1. Assume pJ(n), qJ(n) are real, and 0 ≠ pJ(0) and pJ(0) ≠ 
±pJ(N). Then we can find two FIR filters PJ-1(z) = ΣN-2n=0 pJ-1(n)z-n 
and QJ-1(z) = Σn-2n=0 qJ-1(n)z-n and a real kJ ≠ ±1 such that

(7.3.7)



(7.3.9)

by (7.3.9). With

(7.3.11α)

(7.3.11b)

(7.3.12)

Moreover QJ-1(z) = z-(N-2)PJ-1(z-1) and pJ-1(0) ≠ 0. ◊
Remark. The condition k2J ≠ 1 automatically ensures that the 2 × 

2 matrix in (7.3.7) is nonsingular. By inverting it, we can obtain the 
lattice structure of Fig. 7.2-2(a) with J in place of m. The remainder 
[PJ-1(z) QJ-1 (z)]T has all the properties of [PJ(z) QJ(z)]T so that we 
can repeat this process provided pJ-1(0) ≠ ±pJ-1(N - 2). So we can obtain 
the lattice structure shown in Fig. 7.2-2(b), for the system [PJ(z) QJ(z)]T 
provided that each one of the remainders satisfies

(7.3.8)

This means that we can implement the analysis bank [H0(z) H1(z)]T as 
m Fig. 7.2-2(b).

Proof of Lemma 7.3.1. From (7.3.7) it is clear 
that kJ has to satisfypJ(N) - kJqJ(N) = 0 so that 

With this choice of kJ, the coefficient of z-N in PJ(z) - kJQJ(z) drops off.
We now show that the coefficient of z-(N-1) in PJ(z) - kJ QJ (z) is also zero, 
so that PJ-1(z) has order N-2 as claimed. For this note that this coefficient is

(7.3.10)

the condition (7.3.4) implies

But we have

where M = (N - 1)∕2. The coefficient of z0 in the LHS of (7.3.11b) is

(7.3.13a)
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The coefficient of z-2M is, on the other hand,

(7.3.14)

from which it follows that pJ(0) = pJ-1(0), so pJ-1(0) ≠ 0 indeed. ▽ ▽ ▽

Condition on H0(z), H1(z) for Lattice Realization

The analysis filters have the form H0(z) = ΣΝn=0 h0(n)z-n, H1(z) = 
ΣNn=0h1(n)z-n, N ≥ 3. The condition pJ(0) ≠ ±pJ(N) in Lemma 7.3.1 
can be satisfied by assuming that neither of h0(N), h1(N) is zero. Now what 
does pJ(0) = 0 mean? Since (7.3.13a) equals zero, this means qJ(0) = 0 
or pJ(1) = 0. This means that either h0(0) = h1(0) = 0 or that PJ(z) and 
QJ(z) have the form PJ(z) = z-2Pj-1(z) and QJ(z) = QJ-1(z). The former 
case is trivial and can be avoided by shifting. The latter case implies that 
we can interchange the roles of PJ(z) and QJ(z) and then take kJ = 0. So 
the situations created by violation of the condition '0 ≠ pJ(0) ≠ ±pJ(N)', 
can be handled easily. It is, however, still possible to find examples where 
(7.3.8) is violated for some value of m < J. In such cases the lattice cannot 
be synthesized.

It nevertheless remains a significant fact that the lattice of Fig. 7.2-2 
can be used to generate a wide class of linear phase FIR PR systems. More 
general study of two-channel linear phase FIR PR systems can be found in 
Nguyen and Vaidyanathan [1989]. For instance, it can be shown that one can 
take both h0(n) and h1(n) to be symmetric (provided their orders are even 
and unequal). Such systems have a different type of lattice structure. Also 
see [Vetterli and Le Gall, 1989] and Nguyen and Vaidyanathan [1990] for 
M-channel linear phase FIR perfect reconstruction systems. For a general 
theory of M-channel linear phase FIR paraunitary filter banks see [Soman, 
Vaidyanathan, and Nguyen, 1992].
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(7.3.13b)

Since N ≥ 3, we have 2M > 0. So (7.3.11b) implies that at least one of
(7.3.13a), (7.3.13b) is zero. By using the image property (7.3.6) it is verified

that (7.3.13a) and (7.3.13b) have the same value. Setting this zero we see
that (7.3.10) is indeed zero. So PJ-1(z) has the stated form.
We can verify that QJ-1(z) = z-(N-2) PJ-1(z-1) by substituting (7.3.6) into 
(7.3.7). So QJ-1(z) has the state form too. Inverting (7.3.7) one obtains



PROBLEMS

7.1. The lattice structure shown in Fig. 7.2-2 (b) and (c) represents a perfect 
reconstruction QMF bank. Express the synthesis filters Fk(z) in terms of the 
analysis filters Hk(z).

7.2. Consider the two multiplier lattice section shown in Fig. P7-2(a).

Figure P7-2

Show that this can be redrawn as shown in Fig. P7-2(b) where β = α∕(1 — α), 
assuming α ≠ 1. Hence show that the linear phase perfect reconstruction system 
(Fig. 7.2-2) can be rearranged so that the analysis bank requires a total of 
0.25(N + 1) + 1 MPUs and 0.75(N + 1) + 1 APUs.

7.3. Consider the analysis bank structure given below, where αm, βn are real.

Figure P7-3

The building block B(z) has the form

(P7.3a)

Evidently the analysis filters H0(z) and H1(z) are causal and FIR. Show that 
they have linear phase. More specifically show that the impulse responses 
satisfy
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(P7.3b)
where N0 = 2 J, N1 = 2 J + 2. Find a set of FIR synthesis filters [in terms of 
H0(z) and H1(z)] which result in perfect reconstruction. (Note. this prob­
lem shows that we can obtain an FIR perfect reconstruction QMF bank in 
which both analysis filters are symmetric unlike in Sec. 7.2 where H1(z) was 
antisymmetric.)

7.4. Let H(z) and G(z) be two real coefficient linear phase FIR filters satisfying 
∣H(ejω)∣2 + ∣G(ejω)∣2 = 1 for all ω. Prove that ∣H(ejω)∣2 = α cos2(αω + b) for 
some real α, a, b.



7.5. Let H(z) be a linear phase FIR filter, and let H(z)H(z) satisfy the Mth band 
property.

a) For M = 2 (i.e., H(z)H(z) is half-band) show that H(z) can have at most 
two nonzero coefficients.

b) For M > 2, a similar statement is not true. Show, by construction, that 
the number of nonzero coefficients of H(z) can exceed L, for any arbitrary 
integer L.

Hints. Use the results of Sec. 4.6.3 and 7.1.
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8

Cosine Modulated 

Filter Banks

8.0 INTRODUCTION

In Chap. 5 and 6 we considered M channel maximally decimated analy­
sis/synthesis systems, and studied various errors, as well as techniques to 
eliminate these. In particular, we studied the concept of perfect reconstruc­
tion (PR) in detail, and presented techniques to design FIR PR systems.

In this Chapter we will present filter banks based on cosine modulation. 
In these systems, all the M analysis filters are derived from a prototype filter 
P0(z) by cosine modulation. Two outstanding advantages of these systems 
are:

1. The cost of the analysis bank is equal to that of one filter, plus modu- 
lation overhead. The modulation itself can be done by fast techniques 
such as the fast discrete cosine transform (DCT). See, for example, Yip 
and Rao [1987]. The synthesis filters have the same cost as the analysis 
filters.

2. During the design phase, where we optimize the filter coefficients, the 
number of parameters to be optimized is very small because only the 
prototype has to be optimized.
Two classes of such systems will be studied — approximate reconstruc­

tion systems (pseudo QMF) and perfect reconstruction systems.

A. Cosine Modulated Pseudo QMF Banks (Sec. 8.1-8.3)
Prior to the development of perfect reconstruction systems, several au­

thors have developed techniques for designing approximate reconstruction 
systems. These are called the pseudo QMF systems, introduced by Nuss- 
baumer [1981] and developed further by Rothweiler [1983], Chu [1985], Mas- 
son and Picel [1985], and Cox [1986]. In these systems the analysis and 
synthesis filters Hk(z) and Fk(z) are chosen so that only "adjacent-channel 
aliasing" (to be explained below) is canceled, and the distortion function
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T(z) is only approximately a delay. Such approximate systems, called pseudo 
QMF banks, are acceptable in some practical applications.
B. Cosine Modulated Perfect Reconstruction Systems (Sec. 8.5)

More recently, cosine modulated systems with the perfect reconstruction 
property have been developed independently by Malvar [1990b and 1991], 
Ramstad [1991], and Koilpillai and Vaidyanathan [1991a and 1992]. These 
are paraunitary systems. They retain all the simplicity and economy of the 
pseudo QMF system, and yet have the perfect reconstruction property. In 
Sec. 8.4 we study some properties of cosine modulation matrices. These 
are then used in Sec. 8.5 to derive cosine modulated perfect reconstruction 
systems. These two sections can be studied independently of the pseudo QMF 
derivations, with Sections 8.1-8.3 serving only as references.

8.1 THE PSEUDO QMF BANK
In this section we present the theory of pseudo QMF banks. In Sec. 8.2 
and 8.3 we will outline design procedures and structures for these. Readers 
interested only in perfect reconstruction systems can go directly to Sec. 8.4 
(and use sections 8.1-8.3 only as a reference).

8.1.1 Generation of M Real Coefficient Analysis Filters
In Sec. 4.3.2 we saw how a set of M filters can be derived from one prototype 
filter by use of the structure of Fig. 4.3-5(a). In that structure, the filters 
Eℓ(z) represent the Type 1 polyphase components of the prototype filter 
H0(z), and the filters Hk(z) are related to H0(z) as Hk(z) = H0(zWkM), 
where WM = e-j2π/M. This means that the frequency responses Hk(ejω) 
are uniformly shifted versions of the prototype, as demonstrated in Fig. 4.3- 
5(b). Since hk(n) is obtained by exponential modulation of h0(n), (that is, 
hk(n) = h0(n)ej2πkn/M), the coefficients hk(n) are in general complex even 
if h0(n) is real. This means that the output of Hk(z) could be a complex 
signal even if the input x(n) is real.

We now derive a class of filters with real coefficients, by using cosine 
modulation rather than exponential modulation. This can be done by first 
obtaining 2M complex filters using exponential modulation, and then com­
bining appropriate pairs of filters.

Consider Fig. 8.1-1 which is a modification of Fig. 4.3-5(a) (replace M 
with 2M). This is a uniform-DFT analysis bank, with the 2M filters related 
as
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(8.1.1)

In this section, unsubscripted W stands for W2M, that is,

(8.1.2)

Also, W is the 2M × 2M DFT matrix.



P0(z) is called the prototype filter. Throughout this chapter, its impulse 
response p0(n) is real so that ∣P0(ejω)∣ is symmetric with respect to ω = 0. 
This filter is typically lowpass, with cutoff frequency π∕2M [Fig. 8.1-2(a)]. 
The polyphase components of P0(z) are Gk(z), 0 ≤ k ≤ 2M - 1.

From (8.1.1) we have

Figure 8.1-1 Generation of 2M uniformly shifted filters from prototype P0(z). 
Here Gm(z), 0 ≤ m ≤ 2M - 1, are the polyphase components of P0(z).

Figure 8.1-2 (a) Magnitude response of the prototype P0(z), and (b) Magnitude 
responses of shifted versions.
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that is, the response Pk(ejω) is the right-shifted version of P0(ejω) by an 
amount kπ∕M [Fig. 8.1-2(b)]. From the figure we see that the responses 
∣Pk(ejω)∣ and ∣P2M-k(ejω)∣ are images of each other with respect to zero- 
frequency, so that they are suitable candidates to be combined, to get a real 
coefficient filter. The typical passband width of such a 'combined filter' is 
equal to 2π∕M, which is twice that of P0(z) (which is not combined with 
any other filter).



In order to make all the filter bandwidths equal after combining pairs, we 
use a right-shifted version of the original set of 2M responses [Fig. 8.1-3(a)], 
the amount of right-shift being π∕2M. This is accomplished by replacing z 
with zW0.5 as indicated in Fig. 8.1-3(b). (The quantity z2M is replaced 
with - z2M since WM = WM2M = — 1.) The complex filters Qk(z) are given 
in terms of the prototype P0(z) by

(8.1.4)

The magnitude responses of Qk(z) and Q2M-1-k(z) are now images of each 
other with respect to zero-frequency, that is, ∣Qk(ejω)∣ = |Q2M-1-k(e-jω)|. 
The impulse response coefficients of Qk(z) and Q2M-1-k(z) are conjugates 
of each other, that is,

Figure 8.1-3 Shifting the responses by π∕2M, by replacing z with zW1/2.

Figure 8.1-4 Magnitude response of the kth analysis filter Hk(z). Synthesis 
filter Fk(z) is chosen to have similar magnitude response. See text.
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Definition of the Real Coefficient Analysis Filters

Here ck and ak are unit-magnitude constants, whose purpose will be clarified 
soon. (Actually, we could have done away with ck by absorbing it in ak, but 
the above form is more convenient for discussion.) Fig. 8.1-4 summarizes 
the situation.

We will assume the prototype to be of the form
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Define
(8.1.5)

and
(8.1.6)

We then generate the M analysis filters as follows:

(8.1.7)

(8.1.8)

that is, Nth order FIR. All analysis filters are then FIR with order ≤ N, 
that is,

(8.1.9)

Since the coefficients of P0(z) are real, the coefficients of Vk(z) and Uk(z) 
are conjugates of each other. So hk(n) are real.

8.1.2 Alias Cancelation
Recall the intricacies of alias cancelation (Sec. 5.4.2). The decimated 
output of Hk(z) gives rise to the alias components Hk(zWℓM)X(zWℓM), 
[i.e., frequency-shifted versions of Hk(z)X(z)]. The synthesis filter Fk(z), 
whose passband coincides with that of Hk(z), retains the unshifted version 
Hk(z)X(z), and also permits a small leakage of the shifted versions. When 
we add the outputs of all M synthesis filters, these leakages should "some- 
how" be canceled.

Remembering that the passbands of Fk(z) should coincide with those 
of Hk(z), we generate Fk(z) as

(8.1.10)

where bk are unit-magnitude constants. (The choice of ak, bk and ck will 
soon be settled.)

In general, the output of Fk(z) has the components Hk(zWℓM)X(zWℓM) 
for all values of ℓ, i.e., 0 ≤ ℓ ≤ M — 1. However, if the stopband attenuation



of Fk(z) is sufficiently high, only some of these components are of practical 
significance. The other components, though not exactly equal to zero, will 
be ignored, giving rise to the term “approximate alias cancelation.”

Figure 8.1-5 shows some of the shifted versions Uk(zWℓM) and Vk(zWℓM). 
Notice that, the response of Uk(zWM) does not overlap with that of Uk(z). 
However, the responses of Uk(zW-kM) and Uk(zW-(k+1)M) overlap with the re­
sponse of Vk(z). Similarly, the responses of Vk(zWkM) and Vk(zW(k+1)M) have 
overlap with that of Uk(z). This means that the alias-components X(zWℓM), 
which are significant at the output of Fk(z), correspond to

Figure 8.1-5 Demonstration of alias components which overlap with main 
synthesis filter response ∣Fk(ejω)∣.

Constraint on ak and bk to Cancel Aliasing
Here, then, is the fundamental principle behind the approximate alias 

cancelation scheme: since the outputs of Fk(z) as well as Fk-1(z) have the 
common alias components X(zW±kM), we try to choose Fk-1(z) and Fk(z) 
such that this component is canceled when these outputs are added. In fact, 
such cancelation can be accomplished just by appropriately constraining ak 
and bk, as we show next.
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(8.1.11)

Similarly, at the output of Fk-1(z), the significant alias components are for

(8.1.12)

Note that negative values of ℓ should be interpreted modulo M. For example, 
ℓ = -1 is equivalent to ℓ = M — 1.



The negative-frequency part of Fk(z), [i.e., b*kVk(z)] has the following 
significant alias components:

(8.1.13)

(8.1.14)

(8.1.15)

(8.1.17)

By considering the signal at the output of the positive frequency component 
bkUk(z) of Fk(z), we again obtain the same condition for alias cancelation. 
More specific choice of ak and bk will be given soon.

8.1.3 Eliminating Phase Distortion
Having canceled aliasing, we now turn to the distortion function T(z). From 
Sec. 5.4.2 we know that T(z) can always be expressed as

(8.1.18)

The QMF bank is free from phase distortion if T(z) has linear phase. We 
can ensure this if the synthesis filters are chosen according to the mirror 
image condition
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and the negative-frequency part of Fk-1(z) has

The alias component X(zW-kM) can therefore be eliminated if

By using the definitions for Uk(z) and Vk(z), and the condition ∣ck∣ =
∣ck-1∣ = 1, we can rewrite (8.1.15) entirely in terms of Vi(z)'s as

(8.1.16)

This condition can be satisfied by constraining ai and bi such that

(8.1.19a)
or equivalently as

(8.1.19b)



In this case (8.1.18) becomes

which shows that T(z) has linear phase.
We know that Hk(z) and Fk(z) are already related in some way because 

of their definitions in terms of the same set of components Uk(z) and Vk(z). 
By careful choice of the constants ak, bk, ck, we can satisfy the additional 
relation (8.1.19) as well. We do this in two steps as follows.
Choice of ck to Ensure Linear Phase of Uk(z) and Vk(z)

The phase response of P0(z) has not entered our discussion so far. We 
will now restrict P0(z) to be a linear phase filter with symmetric p0(n), that 
is, p0(n) = p0(N — n), so that
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(8.1.20)

Clearly

(8.1.21)

(8.1.22)

[Antisymmetric p0(n) would be inconsistent, since P0(z) is lowpass.] We 
then have

(8.1.23)
where PR(ω) is real-valued (Sec. 2.4.2). We will choose ck so that the 
complex-coefficient filters Uk(z) and Vk(z) have same (linear) phase as P0(z). 
(This will make it easier to determine the appropriate choice of ak and bk 
later.) From (8.1.5) we have

(8.1.24)

If we choose
(8.1.25)

then

(8.1.26)

Since PR(ω) is real, Uk(z) is a linear phase filter with phase response φ(ω) = 
-ωN∕2. Thus the phase responses of the modulated filters Uk(z) are identical 
to that of the prototype P0(cjω). Same is true of Vk(z), with ck chosen as 
above.



Choice of bk to Ensure the Relation Fk(z) = z-NHk(z-1)
The linear phase nature of Uk(z) and Vk(z) permits us to write

Figure 8.1-6 Demonstration of overlap of V0(ejω) with U0(ejω), and overlap of 
VM-1(ejω) with UM-1(ejω).

(8.1.31)
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(8.1.27)
analogous to (8.1.22). By using these relations in (8.1.7) we can verify

(8.1.28)
If we now choose

(8.1.29)
then the RHS of (8.1.28) reduces to Fk(z) [defined as in (8.1.10)]. This 
proves that the mirror image condition (8.1.19b) can indeed be satisfied by 
enforcing the constraint bk = a*k. The distortion T(z) now takes the form 
(8.1.20), and hence has linear phase.

Choice of ak
It only remains to choose ak. The alias cancelation constraint (8.1.17) 

can be simplified by using the further relation (8.1.29) to obtain a2k = -a2k-1, 
that is,

(8.1.30)
This can be used to determine all ak's, provided a0 is somehow determined. 
To make this final choice, we note that the components Uk(z) and Vk(z) do 
not overlap significantly except when k = 0 or M — 1 (Fig. 8.1-6). So the 
expression (8.1.18) can be simplified into

by using the condition akbk = aka*k = 1. The cross-terms U0(z)V0(z) and 
UM-1(z)VM-1(z) can create significant distortions around the frequencies 
ω = 0 and ω = π, respectively. By constraining a0 and aM-1 such that

(8.1.32)



we can eliminate these cross-terms, yielding

Based on these considerations we choose

(8.1.33)

(8.1.34)

This implies ak = (-1)kjak-1, satisfying (8.1.30). Evidently (8.1.32) is also 
satisfied. We also choose bk and ck as stated above. All constants are now 
determined.
Summary

1. The condition for alias cancelation is given by akb*k = —ak-1b*k-1.
2. The choice ck = W(k+0.5)N/2 (where W = e-jπ/M) ensures that Uk(z) 

and Vk(z) have the same (linear) phase response as the propotype P0(z). 
(This is a convenience which simplifies further design rules.)

3. The further constraint bk = a*k forces the relation Fk(z) = z-NHk(z-1). 
This in turn leads to the linear phase form (8.1.20) for T(z).

4. The constraint ak = (-1)kjak-1, together with bk = a*k ensures that 
the above alias cancelation condition is satisfied. Consistent with this 
constraint on ak, we choose ak = ejθk, θk = (-1)kπ∕4. This also en- 
sures (8.1.32) so that T(z) is further simplified to (8.1.33) (i.e., the two 
cross-terms given by U0(z)V0(z) and UM-1(z)VM-1(z), which can cause 
amplitude distortion around ω = 0 and π, are eliminated).

5. Summarizing, the M analysis filters are given by (8.1.37) (see below), 
with θk = (—1)kπ∕4. With the synthesis filters chosen as in (8.1.19a), we 
have approximate alias cancelation and complete elimination of phase 
distortion. Amplitude distortion still remains, and should be minimized 
as shown in the next section. Notice finally that all the analysis and 
synthesis filters have real coefficients.

8.1.4 Closed Form Expressions for the Filters
We now find expressions for the analysis filters hk(n). The first term in 
(8.1.7) is

so that its impulse response coefficients are

(8.1.36)
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(8.1.35)



The coefficients of the second term in (8.1.7) are obtained by conjugating 
this. So hk(n) equals two times the real part of the first term, that is,
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(8.1.37)

(since p0(n) is real). The synthesis filters fk(n) are obtained by replacing ak 
with bk. Since bk = a*k, this is equivalent to replacing θk with -θk, that is,

(8.1.38)

We can obtain this same fk(n) by using the mirror image relation (8.1.19), 
which we imposed in the above derivation. The analysis and synthesis filters, 
in general, do not have linear phase (even though the prototype P0(z) has 
linear phase). The distortion function T(z), however, has linear phase.

As all the analysis and synthesis filters are related to the prototype 
p0(n) by cosine modulation, the only design freedom for the QMF bank is in 
the choice of p0(n). This design issue will be addressed in the next section.

8.2 DESIGN OF THE PSEUDO QMF BANK
In the previous section we considered the pseudo QMF bank, and eliminated 
phase distortion and (approximately) eliminated aliasing. It only remains 
to reduce amplitude distortion. Recall that amplitude distortion arises if 
∣T(ejω)∣ is not exactly flat. The prototype P0(z) should now be designed in 
such a way that ∣T(ejω)∣ is acceptably flat.

8.2.1 Reducing Amplitude Distortion
We begin by pointing out some subtleties about the behavior of the distortion 
function T(z).
Unit-Circle Zeros of T(z)

We know that it is undesirable for T(z) to have zeros on the unit circle, 
as this would imply severe amplitude distortion. From the expression (8.1.21) 
we see that T(ejω0) is nonzero unless all the M filters satisfy Hk(ejω0) = 0. 
This unfortunate situation will not arise, unless the passband width of the 
prototpe P0(ejω) is unreasonably narrow.

Periodicity of ∣T(ejω)∣
Consider the linear phase prototype (8.1.23). From Sec. 2.4.2 we know 

that P2R(ω) has period 2π for any N. Define F(ejω) = Ρ2R(ω) and G(z) = 
F(zW0.5). We can then express (8.1.33) as

(8.2.1)



by using the simplified expression for Uk(z) [i.e. eqn. (8.1.26)] and the fact 
that vk(n) = u*k(n). With G(z) = Σg(n)z-n, the summation in the above 
equation simplifies to

showing that the variable z appears only in powers such as z2M. This shows 
that T(z) has the form

for some FIR f(z). In particular, therefore, ∣T(ejω)∣ has period 2π∕2M.
Origin of Amplitude Distortion

Consider the expression (8.1.33). If ω is a frequency belonging to pass- 
band of some filter Uk(z), then T(ejω) ≈ U2k(ejω)∕M. This shows that 
∣T(ejω)∣ is nearly the same at all frequencies which belong to the passbands 
of Uk(z)'s (or Vk(z)'s). However, if ω is at the transition between Uk(ejω) 
and Uk+1(ejω) [see Fig. 8.2-1(a)], then

Substituting from (8.1.26), this reduces to

(8.2.5)

Figure 8.2-1 (a) OverIapping responses ∣Uk(ejω)∣ and ∣Uk+1(ejω)∣, and (b) two
possible behaviors of ∣U2k(ejω) + U2k+1(ejω)∣, explaining the origin of amplitude to 
distortion.
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(8.2.2)

(8.2.3)

(8.2.4)



Typical behaviors of this quantity are illustrated in Fig. 8.2-1(b). Assuming 
the prototype P0(z) to have ‘good’ stopband attenuation, this quantity is 
significant only in the frequency interval

(The choice of e > 0 depends on the acceptable transition bandwidth.) So 
we optimize the coefficients p0(n) of P0(z) to minimize
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It can exhibit a ‘bump’ or ‘dip’ around the transition frequency (k + 1)π∕M. 
This is the source of amplitude distortion, that is, nonflatness of ∣T(ejω)∣.
An Objective Function Representing the Flatness Requirement

Notice that the quantity in paranthesis in (8.2.5) is nothing but a 
frequency-shifted version of

(8.2.6)

It follows that if we force this to be sufficiently ‘flat,’ then ∣T(ejω)∣ will be 
“sufficiently flat” for all frequencies. This can be accomplished during the 
design of the prototype p0(n) by including a term in the objective function, 
to reflect the nonflatness of (8.2.6). Such an objective function is given by

(8.2.7)

The above limits of integration are justified because ∣T(ejω)∣ has period π∕M 
as shown above.

8.2.2 Design of the Prototype Filter
The prototype P0(z) is a real coefficient linear phase FIR lowpass filter with 
cutoff π∕2M [Fig. 8.1-2(a)]. By designing it to have good stopband attenu- 
ation, we improve the attenuation characteristics of all the filters Hk(z) and 
Fk(z). Our choice of constants ak,bk,ck above already ensures that aliasing 
and phase distortion are eliminated. By designing P0(z) such that (8.2.7) is 
small, one can reduce the amplitude distortion as well.

An appropriate measure of stopband attenuation of P0(z) is given by

(8.2.8)

(8.2.9)

where α is a tradeoff parameter with 0 < α < 1. Standard nonlinear opti- 
mization packages [Press, et al, 1989] can be used for this.



Design example 8.2.1: Pseudo QMF Bank

TABLE 8.2.1 Design example 8.2.1. Im­
pulse response of the FIR prorotype filter 
for pseudo QMF design.

n Po(n)

0 -2.9592103 e-03
1 -4.0188527 e-03
2 -4.9104756 e-03
3 -5.4331753 e-03
4 -5.3730961 e-03
5 -4.5222385 e-03
6 -2.6990818 e-03
7 2.3096829 e-04
8 4.3373153 e-03
9 9.6099830 e-03

10 1.5951440 e-02
11 2.3175400 e-02
12 3.1013020 e-02
13 3.9127130 e-02
14 4.7132594 e-02
15 5.4622061 e-02
16 6.1194772 e-02
17 6.6485873 e-02
18 7.0193888 e-02
19 7.2103807 e-02

We now show details of an 8-channel system (M = 8), with prototype 
filter order N = 39. The coefficients of the prototye P0(z), designed as de- 
scribed above, are shown in Table 8.2.1. (Only the first half is shown due to 
linear phase). Fig. 8.2-2 shows the prototype magnitude response ∣P0(ejω)∣, 
whereas Fig. 8.2-3 shows the magnitude responses of the analysis filters. 
Adjacent filter responses intersect approximately at the 3 dB level. This is 
consistent with the expression
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because, at the transition between two filters, only two of the M terms in 
the above summation are significant, and these are required to add up to 
unity.

Figure 8.2-2 Design example 8.2.1. Pseudo QMF design. Magnitude response 
of the FIR linear phase prototype P0(z). Filter order N = 39.

Peak distortions Ea and Epp. Let us now look at various distor- 
tions. Recall that (5.4.7) represents the gain for the ℓth alias component 
X(zWℓ), ℓ > 0. Fig. 8.2-4 shows a plot of
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(8.2.10)

which demonstrates that each of the terms ∣Aℓ(ejω)∣ is very small for all ω. 
This shows that aliasing has been reduced satisfactorily. The quantity Ea, 
which is the maximum value of (8.2.10) over all ω, is the worst possible peak 
aliasing distortion.

Next, Fig. 8.2-5 shows a plot of M∣T(ejω)∣. This is very close to unity 
for all ω, verifying that amplitude distortion has been reduced satisfactorily. 
As argued earlier, ∣T(ejω)∣ is seen to have period 2π∕2M — π∕8. By design, 
T(z) has linear phase, so we need not worry about phase distortion. The 
maximum peak to peak ripple of M∣T(ejω)∣, denoted Epp, is usually taken 
to be a measure of worst possible amplitude distortion.

From (8.1.20) we see that T(z) has order 78, i.e., T(z) = Σ78n=0 t(n)z-n. 
Because of the form (8.2.3), only a subset of the coefficients t(n) are nonzero. 
The coefficients Mt(n) are shown in Table 8.2.2, which also verifies the linear 
phase nature of T(z). In fact, we see that T(z) is nearly a delay.



Figure 8.2-3 Design example 8.2.1. Pseudo QMF design. Magnitude responses 
of the analysis filters. (a) H0(z) only, and (b) all eight filters. Filter order N = 39; 
number of channels M = 8.
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Figure 8.2-4 Design example 8.2.1. Plot of aliasing error in pseudo QMF design. 
The quantity (8.2.10) is shown above.

TABLE 8.2.2 Design example 8.2.1.
Set of nonzero coefficients of MT(z) where 
T(z) is the distortion function for the pseudo 
QMF design.

n Mt(n)

7 0.0022752
23 0.0008191
39 0.9988325
55 0.0008191
71 0.0022752

Sec. 8.2 Design of pseudo QMF banks 369



Figure 8.2-5 Design example 8.2.1. Plot of amplitude distortion function in 
pseudo QMF bank.

8.3 EFFICIENT POLYPHASE STRUCTURES

With the constants ak, bk and ck constrained as summarized at the end of 
Sec. 8.1.3, we can rewrite the expression for the analysis filters as
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(8.3.1)

with 0 ≤ k ≤ M — 1. Here

(8.3.2)

Since the coefficients of Q2M-1-k(z) are conjugates of those of Qk(z), hk(n) 
are real as intended. As the filters Qk(z) can be represented by the structure 
of Fig. 8.1-3, we can implement the M analysis filters as in Fig. 8.3-1(a). 
From this figure we can write

(8.3.3)

where

(8.3.4)



Figure 8.3-1 (a) PoIyphase implementation of the M-channel cosine modu­
lated analysis bank, (b) simplified drawing, where T is a real matrix, and (c) 
corresponding synthesis bank. Here K = N — 2M + 1.
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The elements tkn simplify to

(8.3.5)

where θk = (—1)kπ∕4. Equation (8.3.3) permits us to draw the analysis bank 
as in Fig. 8.3-1(b), where T is M × 2M with elements tkn. Note that the 
coefficients tkn are precisely the elements which modulate p0(n) in (8.1.37) to 
obtain hk(n). The M cosine modualted filters Hk(z) are therefore obtained 
by implementing the polyphase components Gn(-z2M) which come from the 
single prototype P0(z), and then using the cosine modulation matrix T.

In terms of matrix notation, the analysis bank vector h(z) defined in 
(5.4.1) becomes

where

(8.3.7)

To obtain the structure for the synthesis bank we use the relation Fk(z) = 
z-NHk(z-1), and write the synthesis filter vector f(z) in terms of the anal- 
ysis filter vector h(z) as
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(8.3.6)

(8.3.8)
This system can be implemented as shown in Fig. 8.3-1(c), where the quan- 
tity K = N - 2M + 1.

In practice, we have decimators following the analysis filters, and ex- 
panders preceding the synthesis filters (Fig. 5.4.1). These devices can be 
moved by employing the noble identities (Fig. 4.2.3) to obtain more effi- 
cient polyphase structures. Figure 8.3-2 shows this scheme for the analysis 
bank, where the filters Gn(-z2) operate at the lowest possible rate. Similar 
arrangement can be obtained for the synthesis bank.

Figure 8.3-2 Improved polyphase implementation of the pseudo QMF analysis 
bank, with decimators moved “all the way to the left.”



Implementation Using the Discrete Cosine Transform (DCT)
A special case of interest arises when the filter length N + 1 is restricted 

to be N + 1 = 2mM for some integer m. In this case, the polyphase struc- 
ture can be redrawn in such a way that the main computational load is 
represented by a M × M matrix called the discrete cosine transform (DCT). 
Moreover, this matrix can be implemented using fast transform techniques 
[Yip and Rao, 1987]. Details of this special case are developed in the next 
few sections, where we also show how to modify the results of the present 
section to achieve perfect reconstruction in cosine modulated QMF banks.
Computational Complexity of Pseudo QMF Systems

We can implement the analysis bank as in Fig. 8.3-1(b), where Gk(z) are 
the 2M polyphase components of P0(z). The total number of multiplications 
and additions required for these components is nearly equal to the order 
N of the filter P0(z). So the complexity of the analysis bank is equal to 
about N multipliers and adders, plus the overhead required to implement 
the modulation matrix. The exact cost of this overhead depends on the value 
of M and the details of the fast DCT. Assuming this cost is negligible for 
simplicity, the complexity of the analysis bank is about N/M MPUs (and 
the same number of APUs). Recall from Sec. 6.7 that, for this same filter 
order N if N >> M, the perfect reconstruction system is only about two 
times more expensive.

8.4 DEEPER PROPERTIES OF COSINE MATRICES

The cosine modulation matrix T which appears in the pseudo QMF struc- 
ture of Fig. 8.3-2 satisfies some very useful mathematical properties. These 
properties, while not obvious, are important in the design of perfect recon­
struction cosine modulated filter banks, as we see in Sec. 8.5. The purpose 
of this section is to state and prove these properties.

8.4.1 The DCT and DST matrices

We first introduce the discrete cosine transform (DCT) matrix C, and the 
the discrete sine transform (DST) matrix S. These will play a crucial role 
in the theory as well as fast implementation of the cosine-modulated perfect 
reconstruction systems to be studied in Sec. 8.5.

The discrete cosine transform has been known since the early seventies 
[Ahmed, et al., 1974]. Four types of DCT and DST matrices have been 
documented in the literature [Yip and Rao, 1987]. Of these only Type 4 
matrices are relevant to our discussion. These are M × M matrices with 
elements

(8.4.1)
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We omit the adjective 'Type 4' in all further discussions. Evidently C and 
S are real. They satisfy the following properties.

1. Symmetry, that is, CT = C, and ST = S.
2. C and S are related as

and J is the reversal (or anti-diagonal) matrix defined in Appendix A 
(Sec. A.2). In words, if we renumber the nth column of S as the 
(M — 1 — n)th column (for each n), and insert a minus sign on all 
elements of every odd numbered row, the result is the C matrix. We 
can also rewrite (8.4.2) as S = ΓCJ, since Γ-1 = Γ and J-1 = J.

3. C and S are orthonormal, that is, CTC = STS = I. By combining with 
symmetry, we have C2 = S2 = I so that C-1 = C and S-1 = S.

Proofs
The first property is obvious. A proof of the second property is requested 

in Problem 8.6. We will now prove the third property. It is sufficient to prove 
orthonormality of C. Orthonormality of S then follows from S = ΓCJ.

Orthonormality of C. Consider Fig. 8.4-1 which is a system with 
2M inputs and M outputs. Here, W is the 2M × 2M DFT matrix, W = 
e-j2π/2M, and βn = W-(n+0.5)/2. This system has a M×2M transfer matrix, 
which we denote as V. This matrix has elements

In other words, except for the scale factor √2M, the first M columns of V 
are the same as those of C. (The × denotes an M × M matrix whose details 
are not relevant here.) By using the structure of Fig. 8.4-1 one verifies that

374 Chap. 8. Cosine modulated filter banks

(8.4.2)

where

(8.4.3)

So we can write
(8.4.4)

(8.4.5)



where Λβ and Λω are diagonal matrices of sizes 2M × 2M and M × M 
respectively, with diagonal elements

(8.4.6)

and U is the left 2M × M submatrix of W*. By using the fact that

In Problem 8.7 we verify that the first term above is 2MI and the second 
term is zero. This proves that CTC = I. ▽ ▽ ▽

8.4.2 Cosine Modulation Expressed Using DCT and DST
Consider the cosine modulation matrix T in the pseudo QMF structure of 
Fig. 8.3-2. We now show how this can be expressed in terms of the DCT 
and DST matrices. Recall that T is M × 2M with elements tkn as in (8.3.5), 
where N is the order of the prototype filter.

We consider only the special case where the filter length N + 1 and the 
number of channels M are related as

(8.4.8)

for some integer m. Let us partition T as

(8.4.9)
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we can verify

Figure 8.4-1 Pertaining to the proof that the DCT matrix is orthonormal.



where A0 and A1 are M × Μ. We will show that these matrices can be 
expressed in terms of the DCT and DST matrices as follows:

Here Λc and Λs are M × M diagonal matrices with diagonal elements

Notice that for fixed m, one of these two diagonal matrices is null, and the 
other has diagonal elements ±1. Using the above expressions for A0 and A1 
we will also show that they satisfy

(8.4.13)

Readers interested only in the consequences of these relations can skip the 
following proof, and proceed to Sec. 8.5.
Proof of the Relations (8.4.10)-(8.4.15)

For N = 2mM — 1, the elements tkn in (8.3.5) become

(8.4.16)

where

(8.4.19)

The elements of A1 are found by replacing n with n + M in (8.4.16), and 
simplifying. Thus
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(8.4.10)

(8.4.11)

(8.4.12)

(8.4.14)
(8.4.15)

(8.4.17)
and

(8.4.18)

The elements of the M × M matrix A0 are therefore

(8.4.20)



The quantities cos φk and sin φk can be simplified into

Using the diagonal matrices Λc and Λs we can then express

(8.4.22)

Depending on the value of m, this expression can be simplified further. If 
m is even then Λs = 0 and [Λc]kk = ±1. If m is odd, then the opposite 
situation prevails. This leads to the simplified relations claimed in (8.4.10) 
and (8.4.11).

if m is even, we find from (8.4.10)

(8.4.23)

The three properties of C and S listed at the beginning of Sec. 8.4.1 imply, 
in particular, C2 = S2 = I, and CΓS = SΓC = J. As a result the above 
relations reduce to (8.4.13)-(8.4.15) indeed. For odd m the proof can be 
carried out similarly. ▽ ▽ ▽

8.5 COSINE MODULATED PERFECT RECONSTRUCTION SYSTEMS
By using the results of the previous sections, it is now very easy to ob- 
tain a maximally decimated FIR perfect reconstruction system in which the 
analysis filters are related by cosine modulation [as in (8.1.37)], and the syn- 
thesis filters are as in (8.1.19a). This observation was made independently 
by Malvar [1990b], Ramstad [1991] and Koilpillai and Vaidyanathan, [1991 
and 1992]. Among all FIR perfect reconstruction systems known today for 
arbitrary filter lengths, this system is perhaps the simplest (both in terms of 
design and implementation complexities). It inherits all the simplicity and 
elegance of the cosine modulated pseudo QMF system and yet offers per­
fect reconstruction property. We now proceed to derive this. Historically, a 
special case of this result for N = 2M — 1 was first reported [Princen and 
Bradley, 1986], [Malvar and Staelin, 1989], and is related to the concept of 
lapped orthogonal transforms (LOT, Sec. 6.6). The result of this section
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(8.4.21)

(8.4.24)
(8.4.25)



can be considered to be a generalization of the LOT, and is presented in 
Malvar [1990b] in that light. Our presentation here is based on Koilpillai 
and Vaidyanathan [1991a, 1992].
Expression for the Polyphase Matrix E(z)

For the cosine modulated system the analysis bank has the structure 
shown in Fig. 8.3-1(b), where Gk(z) are the 2M polyphase components of 
the prototype P0(z) (see Fig. 8.1-1). Thus,

(8.5.1)

where e(z) is the delay chain vector [eqn. (5.4.1)] and gi(z) are diagonal 
matrices with

Comparing with h(z) = E(zM)e(z), we identify the polyphase matrix E(z) 
of the analysis bank as

(8.5.3)

Using the partition T = [ A0 A1 ] as before, we have

(8.5.4)

8.5.1 Forcing E(z) to be Paraunitary when N + 1 = 2mM
From Chapter 6 we know that we can achieve perfect reconstruction by 
constraining E(z) to be paraunitary (i.e., E(z)E(z) = dI) and taking the 
synthesis filter coefficients to be the time reversed conjugates as in (6.2.6). 
Recall that the paraunitary property is the same as losslessness, since we 
are discussing only causal FIR systems. The main result is summarized as 
follows:

♠ Theorem 8.5.1. Let the prototype P0(z) be a real-coefficient FIR 
filter with length N + 1 = 2mM for some integer m. Assume p0(n) = p0(N - 
n) (linear phase constraint). Let Gk(z), 0 ≤ k ≤ 2M — 1, be the 2M 
polyphase components of P0(z). Suppose the M analysis filters Hk(z) are 
generated by cosine modulation as in (8.1.37) with θk = (—1)kπ∕4. Then 
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the M × M polyphase component matrix E(z) is paraunitary if, and only if, 
Gk(z) satisfy the pairwise power complementary conditions

(8.5.6)

(8.5.7)

Since N + 1 = 2mM, each polyphase component Gk(z) has length m, that is, 
order m — 1. The relation p0(n) = p0(N-n) imposes the following constraint 
on these polyphase components (Problem 8.8):

(Recall from Appendix A (Sec. A.2) that JDJ has the effect of reversing 
the order of the diagonal entries of a diagonal matrix D.) If this relation is 
used in (8.5.7), the second term vanishes, and
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(8.5.5)

for some α > 0. ◊
Proof. From (8.5.4) we have

Since A0 and A1 satisfy (8.4.13)-(8.4.15), this becomes

(8.5.8a)

In other words the diagonal matrices g0(z) and g1(z) are related as

(8.5.8b)

(8.5.9)

It is now clear that E(z) is paraunitary if, and only if,

(8.5.10)

This condition is equivalent to saying that the polyphase components Gk(z) 
and GM+k(z) are power complementary, that is, that (8.5.5) holds. ▽▽ ▽

Remark. The cosine modulated pseudo QMF system developed in Sec. 
8.1 and 8.2 satisfies the relation (8.1.19a). Furthermore if the filters are
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well-designed as described in Sec. 8.2, the system is almost like a perfect 
reconstruction system (as demonstrated by Design example 8.2.1). This 
suggests, in view of Theorem 6.2.1, that E(z) is “almost paraunitary”. This 
leads us to expect that E(z)E(z) is “almost a diagonal matrix,” and the 
diagonal elements are "almost constant.” This, indeed, has been verified 
with the help of several design examples. This also shows that, if we force the 
matrix E(z) to be paraunitary apriori, that is, before optimizing the filter 
coefficients, then the resulting filters are almost the same as the pseudo 
QMF filters, except that they satisfy the perfect reconstruction property 
“perfectly”!

8.5.2 The Design Procedure

We know that all the analysis filter responses are controlled by the prototype 
response ∣P0(ejω)∣. As in Sec. 8.2.2 we have to optimize the coefficients of 
P0(z) to minimize an objective function. For pseudo QMF design we mini- 
mized a linear combination of φ1 and φ2 [defined in (8.2.7) and (8.2.8)]. But 
in the present case, it is sufficient to minimize only the stopband energy φ2. 
The quantity φ1 which represents the degree of nonflatness of ∣T(ejω)∣ is au- 
tomatically zero, because of the perfect reconstruction property guaranteed 
by paraunitariness of E(z).

Instead of minimizing the stopband energy φ2, it is also possible to 
minimize the maximum magnitude of ∣P0(ejω)∣ in its stopband region. Either 
of these minimizations can be done using standard optimization routines 
[Press, et al., 1989], [IMSL, 1987].

Imposing Paraunitary Constraint Using Two-Channel Lattice

During optimization it is however necessary to impose the paraunitary 
constraint on E(z), which we have shown to be equivalent to the power com­
plementary constraint (8.5.5). Now the power complementary property is 
equivalent to the condition that the FIR vector [Gk(z) GM+k(z) ] be paraunitary. 
In a manner similar to Sec. 6.4, this paraunitary vector can be implemented 
with the cascaded lattice structure of Fig. 8.5-1. (This will be proved in 
Sec. 14.3.2). Conversely, the transfer functions Gk(z) and GM+k(z) in this 
structure remain power complementary [i.e., satisfies (8.5.5) with α = 1] 
regardless of the values of the angular parameters θk,ℓ. This follows because 
the matrices Rk,ℓ are unitary; see Sec. 6.1.2.

The cosine modulated analysis bank, shown earlier in Fig. 8.3-2., now 
takes the appearance shown in Fig. 8.5-2. We now optimize the angles 
θk,ℓ so as to minimize φ2. During optimization, each lattice section remains 
paraunitary regardless of the values of θk,ℓ so that the pair (Gk(z), GM+k(z)) 
remains power complementary (i.e., satisfies (8.5.5) with α = 1). Thus, at 
the end of optimization, the matrix E(z) remains paraunitary, guaranteeing 
perfect reconstruction.



Figure 8.5-1 (a) Representation of the power complementary pair of functions
[Gk(z), GM+k(z)] using a lossless lattice. (b) Details of Rk,ℓ. Here ck,ℓ = cosθk,ℓ 
and sk,ℓ = sinθk,ℓ.

Figure 8.5-2 Implementation of cosine modulated PR analysis filter bank. 
Each polyphase component pair [Gk(-z2), GM+k(-z2)] is implemented by a two- 
channel lossless lattice.
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Number of parameters to be optimized. In view of the linear- 
phase relation (8.5.8a), only M/2 lattice sections [(M - 1)∕2 for odd M; see 
below] need to be optimized. For example, let M = 17. Since 2M = 34, there 
are 34 polyphase components Gk(z). The pair [G0(z), G17(z)] is generated 
using one lattice structure, the pair [G1(z), G18(z)] using another lattice 
structure, and so on. Thus the first eight lattice structures generate the 
sixteen polyphase components

(8.5.15)

Thus, K is completely determined. Moreover α does not affect frequency re- 
sponses except for a scale factor. Thus, the only parameters to be optimized 
are the parameters θk,ℓ of the eight lattice structures.

More generally, the number of parameters to be optimized is nearly 
equal to mM/2 ≈ N∕4, which is half the number required for the pseudo 
QMF approach! This technique for design of perfect reconstruction systems 
is, therefore, simpler than the pseudo QMF design, and dramatically simpler 
than the (more general) perfect reconstruction design described in Sec. 6.5.

Hierarchial property. If we wish to increase the prototype length, we 
have to do it in integer multiples of 2M (because of the constraint N + 1 =
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(8.5.11)

From these we can find the sixteen polyphase components

(8.5.12)

by use of the linear phase constraint (8.5.8a). There are two more compo- 
nents G8(z) and G25(z) to be determined. But the linear phase constraint 
implies

(8.5.13)

so that (8.5.5) reduces to

(8.5.14)

Thus we have to choose G8(z) = √0.5αz-K and G25(z) = √0.5αz(m-1-K).
For odd M, we can generalize this discussion and show (Problem 8.9) 

that

Using the fact that P0(z) is a lowpass filter with cutoff π∕2M [Fig. 8.1-2(a)], 
it can be shown (Problem 8.9) that the only acceptable choice of K is given 
by



2mM). This can be done as shown in Fig. 8.5-3, where one new section is 
added to each lattice structure. This hierarchial approach can be used in 
the design process, to recursively intialize the parameters to be optimized. 
Thus we optimize the angles θk,ℓ for small m, and then use these as initial 
values with m replaced by m + 1. (The newly introduced parameters θk,m 
have to be initialized rather arbitrarily.) ‡

Obtaining the analysis and synthesis filters. Once the prototype 
coefficients p0(n) are obtained as above, the M analysis filters are found 
from (8.1.37). The synthesis filters are then obtained as fk(n) = hk(N — n). 
In general these do not have linear phase, even though P0(z) does.

Figure 8.5-3 Explaining the hierarchial property of lattice-based design. L + 1 
is the number of lattice sections to be optimized.

Design Example 8.5.1: Cosine Modulated PR Systems
Let the number of channels be M = 17. For this choice of M we showed 

above that only eight lattice structures have to be optimized. Suppose the 
prototype filter P0(z) has order N = 101, so that m = 3. The kth lattice 
structure now has three angular parameters
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These 24 parameters are optimized to minimize the peak stopband error 
of P0(z). Figure 8.5-4 shows the magnitude responses of P0(z) and all the

‡ See Koilpillai and Vaidyanathan [1992], for further details about initial­
ization. A computer program, along with documentation, is available upon 
request.



17 analysis filters. Each analysis filter offers a stopband attenuation of 
about 40 dB. The impulse response p0(n) of the optimized prototype P0(z) 
is tabulated in Koilpillai and Vaidyanathan [1992].

Figure 8.5-4 Design Example 8.5-1. Magnitude responses for the 17-channel 
cosine modulated perfect reconstruction system. (a) Prototype of order N = 101 
and (b) the seventeen analysis filters. (© Adopted from 1992 IEEE.)

In this example the number of parameters to be optimized is equal to 24. 
For the same filter length and number of channels, the pseudo QMF system 
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(Sec. 8.2) has 51 parameters to be optimized, whereas the more general 
perfect reconstruction system (Sec. 6.5) has as many as 216 parameters! 
The method described in this section therefore has the fewest parameters, 
resulting in much faster design time. A more thorough comparison is given 
in the next section.

8.5.3 Complexity Comparison

We will now compare three types of M-channel maximally decimated filter 
banks, in terms of design complexity as well as implementation complexity. 
Recall that the filter coefficients are real. The quantity N denotes the order 
of the analysis filters, and M is the number of channels. The three types 
are:

Type 1. The general perfect reconstruction system with paraunitary 
E(z) described in Sec. 6.5, where E(z) was represented as a cascade of 
paraunitary building blocks of the form (6.5.1).

Type 2. The cosine modulated pseudo QMF (approximate reconstruc­
tion) system of Sec. 8.2.

Type 3. The cosine modulated perfect reconstruction (PR) system de- 
rived in this section.

Design Complexity

The number of parameters to be optimized during the design of the 
analysis filters depends on N, M, and the type of filter bank. In Table 8.5.1 
we have listed these, for the three types of filter banks. Table 8.5.2 shows 
this number for various choices of M and N. We see that for fixed N and 
M, the cosine modulated PR system has significantly fewer parameters to 
be optimized than either of the other methods.

Next, in Table 8.5.3 we compare the two cosine modulated systems for 
the specific case where N = 101 and M = 17. To describe this table, first re- 
call that the pseudo QMF system suffers from reconstruction errors, that is, 
residual aliasing and amplitude distortions. In Sec. 8.2.2 we defined quan­
titative measures for the aliasing error Ea and the peak-to-peak amplitude 
distortion Epp. By varying the parameter α in the composite objective func- 
tion (8.2.9), we can obtain a tradeoff between As and these reconstruction 
errors. In Table 8.5.3 we have shown a number of such tradeoffs. (The error 
≈ 10-15 in the PR case is due to machine precision.) For the same N and 
M, the table also shows the attentuation As obtainable for the perfect recon- 
struction system. It is clear that, when we pass from the cosine modulated 
pseudo QMF system to the perfect reconstruction system, we pay a price in 
terms of the stopband attenuation As. This price however is not severe; it is 
less than 5 dB in most practical examples.
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TABLE 8.5.1 The number of real valued parameters to be optimized 
during the design phase, for the three types of FIR M-channel maximally 

decimated QMF banks.

General FIR paraunitary 
perfect reconstruction 
system (section 6.5) 

(Type 1)

Cosine modulated 
pseudo QMF 

(Type 2)

Cosine modulated 
perfect reconstruction 

(Type 3)

(M-1)(N+1-M/M + M/2) (N+1/2) (N+1/2)(M-1/2M), M odd

N + 1 = filter length, M = number of channels

48 33 24
60 41 30

40 38 20
60 54 30

42 51 21
84 87 42

64 165 32
96 195 48

68 184 34
102 216 51

Implementation Complexity
In Sec. 6.7 we summarized the cost of the Type 1 filter bank in terms 

of the number of multiplications and additions per unit time (MPUs and 
APUs). Both Type 2 and Type 3 systems are cosine modulated systems 
with polyphase implementation as in Fig. 8.3-2. If these are implemented 
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like this, the analysis bank requires nearly (N + 1)∕M MPUs and N/M 
APUs in both cases, plus the cost of implementing the modulation matrix. 
This additional cost is independent of the filter order N, and depends only 
on M. Table 8.5.4 is a summary of the implementation costs. Once again, 
the cosine modulated pseudo QMF and PR systems have significantly lower 
complexity than the Type 1 perfect reconstruction system.

TABLE 8.5.3 Comparison of the two cosine modulated systems 
(pseudo QMF versus perfect reconstruction). N = 101 and M — 17.

Prototype Reconstruction
Error (Epp)

Aliasing 
Error (Ea)AS (dB) ωS

Pseudo- 
QMF 
bank

40.65
38.68
38.42

0.0590π
0.0585π
0.0581π

6.790 e-03
2.139 e-04
8.749 e-05

3.794 e-04
3.193 e-04
8.113 e-04

Cosine- 
modulated 
PR bank

35.72 0.0586π 8.216 e-15 1.041 e-15
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TABLE 8.5.4 Computational complexity of the analysis bank for three types of FIR 
M-channel maximally decimated QMF banks. For cosine modulated system, 

cost of modulation must be added to the above numbers.

Complexity

General FIR paraunitary 
perfect reconstruction 
system (section 6.5) 

( Paraunitary cascade 
implementation) 

(Type 1)

Cosine modulated 
pseudo QMF 

(Type 2)

Cosine modulated 
perfect reconstruction 

system 
(Type 3)

MPU

APU

N + 1 = filter length, M = number of channels
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Implementation using the lattice. The cosine modulated PR sys- 
tem can be implemented directly using the lattice structures which generate 
the pairs of polyphase components (Fig. 8.5-1). The schematic for this is 
shown in Fig. 8.5-2. From Chapter 6 we know that the two-channel lattice 
structure can be redrawn with two-multiplier sections (Fig. 6.4-2), by ex- 
tracting some scale factors. If this is done, the complexity of the analysis 
bank (i.e., the number of MPUs and APUs) remains nearly the same as for 
the direct polyphase implementation of Fig. 8.3-2.

8.5.4 Implementing Cosine Modulation with DCT and DST
In Sec. 8.4 we established a relation between the cosine modulation matrix 
T = [ A0 A1 ] and the DCT and DST matrices. These relations are given 
in (8.4.10), (8.4.11), and hold when N + 1 = 2mM. Based on this we can 
redraw the analysis bank entirely in terms of the DCT matrix C. This holds 
for both types of cosine modulated systems, that is, Type 2 (pseudo QMF) 
and Type 3 (perfect reconstruction).
Case When m is Even

The details depend on whether m is even or odd. We assume that m 
is even. (We leave it to the reader to work out the odd m case.) Since 
S = ΓCJ we can rewrite these entirely in terms of C to obtain

(8.5.16)

The set of M analysis filters can be expressed as in (8.5.1), where e(z) is 
the delay chain vector defined in (5.4.1). By using the above A0 and A1 we 
obtain

(8.5.17)
Here gi(z) are the diagonal matrices of polyphase components, defined as in 
(8.5.2). Using (8.5.17) we can draw the analysis bank as in Fig. 8.5-5(a). 
Fig. 8.5-5(b) shows the more explicit structure in terms of Gk(z). (The 
decimators can be moved to the left as we did earlier in Fig. 8.3-2.)

Recall that the synthesis filters are given by fk(n) = hk(N — n). From 
this we obtain the synthesis bank structure of Fig. 8.5-6, which the reader 
is requested to justify in Problem 8.10.

Fast implementation of the DCT. The DCT matrix C in the above 
figures can itself be implemented using fast techniques. A quick way to see 
this is to note that C can be embedded into the matrix V as shown in 
(8.4.4). This matrix can, in turn, be implemented as in Fig. 8.4-1. The 
main cost here is the implementaion of W*, where W is the DFT matrix. 
W* can be implemented efficiently by use of the Fast Fourier Transform 
(FFT) [Oppenheim and Schafer, 1989]. For more efficient and direct 'fast 
DCT algorithms', see Yip and Rao [1987] and references therein.



Figure 8.5-5 The cosine modulated analysis bank in terms of DCT. (a) Using 
matrix notations and (b) using more explicit notations. Here N + 1 = 2mM, and 
m = even.
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Figure 8.5-6 The cosine modulated synthesis bank, when N + 1 = 2mM, with 
m = even.

8.5.5 Advantages of the Cosine Modulated PR System
We now summarize the advantages of the FIR cosine modulated perfect 
reconstruction system.

1. All analysis filters Hk(z) are obtained from a real coefficient prototype 
P0(z), by cosine modulation as in (8.1.37). Only this prototype has to 
be optimized during the design, so that the design complexity is low. 
Due to the paraunitary constraint on the polyphase matrix, the number 
of parameters to be optimized is in fact only about half the number used 
in pseudo QMF design. Tables 8.5.1 and 8.5.2 give quantitative details.

2. With the synthesis filters chosen as fk(n) = hk(N — n), we have per­
fect reconstruction. (In particular the analysis and synthesis filters have 
same order N). The objective function to be minimized during opti- 
mization of the coefficients of P0(z) is therefore very simple, and has to 
reflect only the stopband attenuation of P0(z).

3. If we optimize the lattice coefficients θk,ℓ as in Sec. 8.5.2, then the 
paraunitary constraint is automatically imposed during the design of the 
prototype P0(z). So we can use an unconstrained optimization routine 
to compute θk,ℓ.

4. The implementation complexity for the entire analysis bank is equal to 
the cost of the prototype P0(z) plus the modulation cost (which depends 
on the number of channels M but not on the filter order N). This is 
same as that of the pseudo QMF system.

5. The modulation cost can be reduced by expressing the analysis and 
synthesis banks in terms of the DCT matrix (Figs. 8.5-5 and 8.5-6), for 
which there exist fast implementations.
Summarizing, the system has all the advantages and simplicity of the 

cosine modulated pseudo QMF system of Sec. 8.1, and in addition offers 
perfect reconstruction. The price paid for this is in terms of reduced stop- 
band attenuation of the prototype P0(z), but this is a minor loss in practice 
(Table 8.5.3).

It should be emphasized that, even though the prototype filter has linear 
phase, the cosine modulated analysis filters do not, in general, have linear 
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phase. In fact, if we give up the linear phase property of the prototype, 
there are some advantages [Nguyen, 1992b]. Also see [Mau, 1992] for further 
generalizations.
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PROBLEMS

8.1. In the pseudo QMF system discussed in Sec. 8.1 and 8.2, there is some resid­
ual aliasing distortion, which is measured by the quantity (8.2.10). Suppose we 
construct a new filter bank in which each Fk(z) is interchanged with the cor- 
responding Hk(z). How is the measure (8.2.10) affected? How is the distortion 
function T(z) affected?

8.2. For the pseudo QMF system we can find the synthesis filters either from (8.1.38) 
or from the relation fk(n) = hk(N — n) where hk(n) is as in (8.1.37). Verify 
that these two yield the same synthesis filter coefficients.

8.3. Let Hk(z) be a transfer function of the form
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(P8.3a)

where k0 is a half-integer (i.e., k0 — 0.5 is an integer) and ℓ1 is arbitrary. Show 
that the impulse response of Hk(z) has the form

(P8.3b)

where h(n) is the impulse response of H(z), which is defined by

(P8.3c)

8.4. Suppose we wish to design two-channel real coefficient FIR perfect reconstruc­
tion QMF banks using the method described in Sec. 8.5. Does this cover every 
design that can be generated using the two channel lattice structure of Sec. 
6.4.3?

8.5. Consider the three types of FIR filter banks summarized in Sec. 8.5.3. Suppose 
M = 15 and filter lengths N + 1 = 60.

a) For each type, what is the number of parameters to be optimized during 
the design phase?

b) For each type, what are the number of MPUs and APUs required to im­
plement the analysis bank?

8.6. Show that the DCT matrix C and DST matrix S are related as in (8.4.2).
8.7. Consider the expression inside the brackets in (8.4.7). Show that

(P8.7)

Note. the second equality requires more work.
8.8. Assuming that the prototype satisfies the linear phase condition, p0(n) = 

p0(N — n), establish the relation (8.5.8a) among the 2M polyphase compo­
nents. (Note. N + 1 = 2mM.)



Show further that K satisfies (8.5.15). You can use the fact that P0(z) is a 
linear phase lowpass filter with cutoff π∕2M.

8.10. In the text we saw that the analysis bank represented by (8.5.17) can be im- 
plemented as in Fig. 8.5.5. Let the M synthesis filters be chosen as fk(n) = 
hk(N — n). Then show that the synthesis filter bank can be realized as in Fig. 
8.5-6. Also draw the structure more explicitly in terms of polyphase compo- 
nents (i.e., as we did in Fig. 8.5-5(b) for the analysis bank).

8.11. Let P0(z) be the FIR prototype described in Theorem 8.5.1. Let the polyphase 
components of this prototype satisfy (8.5.5). Show then that P0(z)P0(z) is a 
Nyquist(2M) filter.
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8.9. Let the 2M polyphase components of P0(z) satisfy (8.5.5) as well as (8.5.8a). 
Assuming N + 1 = 2mM and that M is odd, verify that

(P8.9)



PART 3 Special Topics

9

Quantization effects

9.0 INTRODUCTION

In any digital filter bank implementation, the multipliers as well as internal 
signals have to be represented in quantized form. The effect of this quan- 
tization is that the filter output is different from the ideal one. Broadly 
speaking, we can classify the quantization effects into three categories, viz., 
coefficient sensitivity effects, roundoff noise and limit cycles. In this chapter 
we will analyze these effects quantitatively. In Appendix C we will deal with 
another important effect in filter bank systems, arising due to quantization 
of subband signals.

9.1 TYPES OF QUANTIZATION EFFECTS

Consider Fig. 9.1-1(a) which shows the implementation of a first order digital 
filter with transfer function H(z) = 1∕(1 — az-1). If the signal yi(n — 1) 
and multiplier a are represented with a certain precision, then the product 
ayi(n - 1) in general requires a higher precision. So the signal yi(n) requires 
higher precision than yi(n-1). Since yi(n) is circulated back during the next 
cycle, this process continues indefinitely, implying infinite bit accumulation.

In a practical system this is not feasible, and the result of a computation 
has to be quantized before recirculation. This is indicated schematically as 
shown in Fig. 9.1-1(b), where the box labeled Q represents a quantizer. The 
signal y(n) which is recirculated is the quantized version of an intermediate 
signal w(n), and we write y(n) = Q[w(n)]. In general there could be more 
than one quantizer in a system, but in order to avoid infinite bit accumulation 
it is sufficient to make sure that there are no loops without quantizers.
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Figure 9.1-1 (a) A first order filter, and (b) implementation with a quantizer
in the loop.

Effects of Multiplier (or Coefficient) Quantization
Quantization of the multiplier coefficients, for example, a in the above 

figure, results in a change of the transfer function from H(z) to Hq(z). Thus, 
the passband and stopband ripples after quantization can be significantly 
larger than the specified values. As an extreme case a stable filter may 
become unstable after coefficient quantization.

In a filter bank system, coefficient quantization can result in deeper 
consequences. For example, a QMF bank may lose the alias-free property, 
or perfect reconstruction (PR) property, because of multiplier quantization. 
It turns out, however, that in any perfect reconstruction system with pa­
raunitary polyphase matrix, the paraunitary property (and hence the PR 
property) can be retained in spite of multiplier quantization. (In this sense 
the structure is 'robust' to quantization.) This will be justified only in Sec. 
14.11 where we show how the paraunitary property of an M × M matrix 
can be retained in spite of coefficient quantization. A special case of this has 
already been noticed in Sec. 6.4.1 (two channel QMF lattice). In Sec. 5.3.5 
we also studied a two channel IIR QMF bank which is free from aliasing as 
well as amplitude distortion in spite of coefficient quantization.

Effects of Signal Quantization
The effect of quantizing internal signals is mote involved. Consider 

again Fig. 9.1-1(b). The quantity
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is called the quantizer error, and is a function of time n. We can model 
the structure as shown in Fig. 9.1-2. We say that q(n) is the noise source 
associated with the quantizer. Notice that the output y(n) in Fig. 9.1-2 
is different from the ideal output yi(n) in Fig. 9.1-1(a). The difference 
y(n) — yi(n) is not equal to the quantizer error q(n). This is because the 
effect of quantizer accumulates with time as explained below.

We can think of q(n) as an input to the filter (just like u(n) is). Its 
effect on the output is governed by the transfer function between q(n) and



y(n), called the noise transfer function. This is given by

(9.1.2)

which, in this example, happens to be the same as the filter transfer function 
H(z). Let e(n) denote the output of the system G(z), in response to the input 
q(n). Then the signal y(n) can be written as y(n) = yi(n) + e(n), where yi(n) 
is the output of the ideal system of Fig. 9.1-1(a). So the noise source affects 
the filter output in a manner which depends on the noise transfer function.

Figure 9.1-2 The roundoff noise model for the structure of Fig. 9.1-1(b).

In order to understand the effect of q(n) on the filter output more quanti­
tatively, it is common practice to model q(n) as a random process (Appendix 
B), satisfying a set of simplifying assumptions. This allows us to estimate 
the variance of the noise which actually reaches the filter output, using sim­
ple and elegant techniques. The main point to note here is that the effect 
of signal quantization is to contribute a random component e(n) to the fil­
ter output. Under some conditions, quantization also results in nonrandom 
components, called limit cycles. We will return to this in Sec. 9.6.

Subband Quantization

In subband coding applications, a third source of noise exists, due to 
quantization of the subband signals. This tends to dominate the total noise 
whenever it is present, but its effect is difficult to analyze. We will study this 
in Appendix C. In this chapter we will concentrate only on quantization noise 
due to filter implementation. Such a study is useful in many applications, for 
example, in voice privacy systems (Sec. 4.5.3) and transmultiplexers, where 
subband quantization effects do not dominate.

Chapter Outline

In Sec. 9.2 we present a brief summary of well known techniques for 
roundoff noise analysis. In Sec. 9.3-9.5 we use this to present a roundoff 
noise analysis for multirate filter banks. In Sec. 9.6 we consider limit cycles. 
We return to coefficient quantization effects in Sec. 9.7. It will be seen that 
many filter bank structures exhibit low passband sensitivity to coefficient 
quantization, particularly if the polyphase matrix E(z) is paraunitary.
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Special prerequisites. We review the standard noise analysis tech­
niques in Sec. 9.2. It is, however, assumed that the reader has some famil- 
iarity with fixed-point binary number representation, and random process 
representation of noise waveforms. Thus, we make free use of such terms as 
(a) b-bit fixed point arithmetic, (b) uncorrelated white noise source, (c) noise 
source with variance σ2q, and so on. There exist excellent treatements of this 
material [Oppenheim and Schafer, 1989], [Jackson, 1989], and [Rabiner and 
Gold, 1975]. Appendix B includes a brief review of random process, and we 
will freely use the definitions and properties in that appendix (e.g., uniform 
random variables, wide sense stationary random process, autocorrelation, 
power spectrum, white noise, and so on).

9.2 REVIEW OF STANDARD TECHNIQUES

9.2.1 Quantizers and Noise Models
All signals are represented as fixed point binary fractions, as shown in Fig. 
9.2-1. This is a b-bit binary representation, with s representing the sign bit. 
We say that b is the wordlength. If s = 0 the number is nonnegative, whereas 
with s = 1 the number is nonpositive, and its decimal value depends on 
the convention chosen (e.g., two’s complement convention, sign magnitude 
convention, etc.). All the numbers representable in this form are in the 
range — 1 ≤ x < 1 (with x = — 1 permitted only in some conventions, e.g., 
two’s complement). This is said to be the permissible dynamic range. The 
quantity

Quantizers
A quantizer is a device which takes an arbitrary real number and con- 

verts it into a b-bit fraction using some arithmetic rules. Thus, the quantizer 
input [e.g., w(n) in Fig. 9.1-1(b)] need not be a b-bit fraction, but its out- 
put is. In this process, some error is introduced, and is denoted as q(n)
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is the smallest positive number permitted, and is also the smallest possible 
increment. It is said to be the quantization step or stepsize.

Figure 9.2-1 Format for the b-bit fixed-point binary fraction.



[see (9.1.1) and Fig. 9.1-2]. We say that q(n) is the noise source due to 
the quantizer. If w(n) does not belong to the permitted dynamic range, we 
say that a computational overflow has occured. The quantizer brings the 
number back to the permitted dynamic range by using certain rules (called 
overflow handling rules). So y(n) still belongs to the dynamic range, but the 
error q(n) is large.

Assume that there is no overflow, that is, w(n) belongs to the dynamic 
range. In general w(n) may still have more than b bits in its representation, 
that is, there could be some extra bits to the right of the bth bit in Fig. 
9.2-1. When this is converted to a b bit number, the error q(n) is 'small' and 
is of the order of the quantization step Δ. The exact details depend on the 
type of quantizer, that is, the rule used for quantization. Some rules are:
(a) roundoff arithmetic where y(n) is the quantized number closest to w(n),
(b) magnitude truncation, where the magnitude of quantized number y(n) 
is no larger than that of the unquantized number w(n), and (c) truncation 
arithmetic, where the extra bits to the right of the b bits are merely discarded.
The Noise Model Assumptions

Unless mentioned otherwise, we will assume roundoff arithmetic. In this 
case, we have

We make the further assumption that the sequence q(n) is a white, wide 
sense stationary (WSS) random process. Summarizing, the quantizer noise 
source q(n) is zero-mean white, with variance σ2q.

Multiple noise sources. In most practical structures, there are many 
quantizers. Fig. 9.2-2 shows the example of a cascade form structure (Sec. 
2.1.3) with two quantizers. In such situations, each quantizer is replaced with 
a noise source, as shown by broken lines. We assume that each noise source 
satisfies the above model (i.e., white, etc.). To study the total effect of these 
at the filter output, we assume that any two noise sources are uncorrelated, 
and that each of them in turn is uncorrelated to the input u(n). These 
assumptions will enable us to add the noise variances due to various sources, 
in order to obtain the total output noise variance.

Examples which violate these assumptions are not hard to generate (e.g., 
when the filter input is a sinusoid). However, in a large number of situations, 
the above assumptions have been verified to be reasonable [Barnes, et al., 
1985]. In any case, noise analysis under these assumptions gives a very 
good qualitative idea of the nature of noise propagation. For example, one 
of the useful conclusions obtainable is that, in a direct form structure, the
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(9.2.2)

We will assume that q(n) is a random variable, uniformly distributed in the 
above range. Under this condition, it has zero mean and variance

(9.2.3)



output noise variace increases as the poles get closer to the unit circle [see 
discussions following (9.2.6) later].

Figure 9.2-2 A cascade form structure, with two quantizers.

9.2.2 Noise Gain of a Filter

In Fig. 9.1-2 we associated a noise transfer function G(z) with the noise 
source q(n). This transfer function governs the extent to which q(n) affects 
the output. More generally let there be many quantizers in the structure, 
each modeled by a noise source qk(n). Let Gk(z) denote the transfer function 
from the noise source qk(n) to the filter output. We say that Gk(z) is the 
noise transfer function for qk(n).

Let ek(n) denote the output of Gk(z) in response to the input qk(n). 
Under the above noise model assumptions, ek(n) is a zero mean WSS random 
process with variance

(9.2.5)
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(9.2.4)

where gk(n) is the impulse response of Gk(z). The summation in (9.2.4) is the 
energy of Gk(z). So the output noise variance is the quantizer noise variance 
amplified by the energy of the noise transfer function (which is therefore 
called the noise gain).

Each of the quantizer noise sources qk(n) contributes a noise component 
at the filter output. In view of the uncorrelated assumption the output noise 
e(n) has total variance



Returning to the example of Fig. 9.1-2, the impulse response g(n) of the 
noise transfer function is g(n) = anU(n), so that the noise gain is
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This gain increases as the pole 'a' (which is inside the unit circle) gets closer 
and closer to the unit circle. As an example, if a = 0.99 then the noise gain 
≈ 50. This demonstrates that the noise gain can be quite large indeed.

Effect of increasing the wordlength. If we increase the number of 
bits from b to b + 1, this results in a four fold reduction in the noise variance 
(using (9.2.5)). On a dB scale, this is equivalent to 10 log10 4.0 = 6.02 dB. 
So the output noise variance decreases by about 6 dB per every additional 
bit of internal precision.

9.2.3 Dynamic Range and Scaling
In a practical implementation we have to ensure that the signals do not 
overflow the dynamic range permitted by the number system. In order to 
study this issue, it is useful to find upper bounds on the magnitudes of various 
signals. In such an analysis, the presence of quantizers can be ignored, as 
they do not affect these bounds significantly.

Thus consider Fig. 9.1-1(b), and ignore the quantizer for this discussion. 
If the input is in the range — 1 ≤ u(n) < 1 (consistent with fixed point 
fractional representation), this does not imply that the signal w(n) is in this 
range for all n. It can, however, be shown that w(n) is bounded as

(9.2.7)

where f(n) is the impulse response from u(n) to the node w(n). In our 
example, this impulse response happens to be the same as h(n), that is, 
f(n) = anU(n). So the right hand side of (9.2.7) reduces to 1∕(1 — ∣a∣). For 
example, if a = 0.99, this quantity equals 100. In other words, ∣w(n)∣ can 
get as large as a hundred!

A simple way to ensure that w(n) does not overflow (i.e., does not exceed 
the range — 1 ≤ w(n) < 1), is to insert a multiplier 1/L as shown in Fig. 
9.2-3, with

(9.2.8)

We then say that the structure has been scaled. The price we pay for this 
freedom from overflow is that the output signal level goes down. Since the 
roundoff noise level is unaffected by scaling, the signal to noise ratio is re­
duced. This is an example of interaction between roundoff noise and dynamic 
range in digital filter implementations.



It is in principle possible to reduce the roundoff noise level simply by 
inserting a scale factor at the output node, but this results in reduced signal 
level as well. If we try to restore the signal level by insertion of another mul­
tiplier at the filter input, this will affect the probability of internal overflow. 
So, 'finite word length' will have its effect one way or the other.

Figure 9.2-3 Scaling a first order digital filter.

Scaling a Structure
In practice, digital filter structures are more complicated than Fig. 9.1- 

1. There are several internal nodes, and one has to ensure that none of these 
suffers from computational overflow. Let Fk(z) be the transfer function from 
the filter input to the kth internal node, and let fk(n) be its impulse response. 
We say that Fk(z) is the scaling transfer function for the kth node. If

(9.2.9)

then the kth node [or the transfer function Fk(z)] is scaled to be free from 
overflow. If all nodes satisfy this property, then the entire structure is said 
to be scaled. Scaling can be accomplished by rearrangement of the internal 
structure, which may or may not involve explicit insertion of multipliers (as 
in Fig. 9.2-3).

Which nodes to scale? With certain types of arithmetic conventions 
(e.g., two’s complement), it can be shown [Jackson, 1970] that only those 
nodes which are inputs to multipliers have to be scaled. For example, con­
sider Fig. 9.2-4. Here every multiplier input is a delayed version of the signal 
s(n). So it is sufficient to scale this node and, of course, the output node 
y(n). Even if there is an overflow at any of the other nodes, it will not affect 
the final output y(n). (This has to do with the fact that two’s complement 
arithmetic has similarities to modulo arithmetic).
Types of Scaling

If each of the scaling transfer functions Fk(z) satisfies (9.2.9), we say 
that the strcuture is sum-scaled. The structure is completely free from over- 
flow, but the price paid is in terms of the signal to roundoff noise ratio at the 
filter output. There exist less stringent scaling rules (called ℒp scaling rules) 
which are sufficient under some conditions. We will not go into these details 
(which can be found in [Jackson, 1970] and [Rabiner and Gold, 1975∙]) but
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merely mention a scheme called the ℒ2 scaling policy. In Problem 9.4 we 
cover some of the other scaling rules.

Figure 9.2-4 Pertaining to the choice of nodes to be scaled.

(usually with equality), where fk(n) is the impulse response from the input 
to the kth node to be scaled. This is called ℒ2 scaling because the above 
summation is the (square of) the ℒ2 norm of Fk(z). † If a node xk(n) is scaled 
(i.e., Fk(z) is scaled) in the ℒ2 sense, then it can be shown that ∣xk(n)∣ < 1 
as long as the filter input u(n) has energy bounded by unity, that is,
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ℒ2 scaling. In this scheme, instead of ensuring the condition (9.2.9), 
we ensure that

(9.2.10)

(9.2.11)

Use of ℒ2 scaling. ℒ2 scaling is less stringent than sum-scaling (which 
guarantees complete freedom from overflow), and therefore results in in- 
creased signal to roundoff noise ratio in absence of overflow. However, the 
chances of overflow are higher; note that the condition (9.2.11) is rather un­
realistic. (For example if u(n) is a sinusoid, its energy is infinite.) However, 
ℒ2 scaling is still useful for several reasons.

First, in most practical cases, the sequence fk(n) is significant only over 
a finite duration. If the energy of u(n) over such a duration is properly 
bounded, we can still control the possibility of overflow of xk(n).

Second, if we view the input as a wide sense stationary random process 
(which is sometimes a realistic assumption, at least over short segments of

† For integer p the ℒp norm of F(z) is defined as [∫2π0 ∣F(ejω)∣p(dω/2π)]1/p.



time), we can obtain some useful conclusions. In this case, the energy of 
u(n) is not finite, but only the power spectrum of u(n) is of relevance. It is 
possible to obtain a bound on the variance of xk(n) as follows:

Figure 9.2-5 (a) The direct form FIR structure with quantizers, and (b) the
noise model.

Here the output of every multiply/add operation is quantized, and the 
noise model is shown in Fig. 9.2-5(b). All noise sources qk(n) have the same 
noise transfer function, that is, Gk(z) = 1 for all k. Under the usual (white,
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This variance can in turn be used to bound the probability of overflow at 
the node xk(n) [Jackson, 1970]. If all the scaling transfer functions satisfy 
(9.2.10) with equality, then we can reduce the probability of overflow at all 
the internal nodes to the same value, simply by inserting a common scale 
factor (as we did in Fig. 9.2-3), in front of the input. For the rest of the 
chapter, we consider only ℒ2 scaling.

9.2.4 Some Useful Special Cases
FIR Direct Form Structures

Many of the filter banks we studied are FIR systems, for which noise 
analysis is fairly simple. Consider the FIR direct form structure shown in 
Fig. 9.2-5(a). The transfer function is H(z) = ΣNn-0 h(n)z-n.



uncorrelated) assumptions, the output noise variance is thus (N + 1)σ2q where 
σ2q is the quantizer noise variance (9.2.3). For the case of linear phase FIR 
filters where we require only half as many multiplications (e.g., see Fig. 2.4- 
3), the output noise variance is approximately half the above value.

Since Gk(z) = 1 and since qk(n) are white as well as uncorrelated, 
the output noise e(n) is also white! This is true regardless of the transfer 
function H(z) (which does not affect the noise transfer function). This is 
a somewhat unusual situation, which is not common with IIR filters. For 
example, in Fig. 9.1-2 the noise transfer function G(z) is not constant, and 
the output noise is not white.

A second quantization scheme for the FIR case would be to carry 
higher internal precision and quantize only the output y(n). This scheme 
has less output noise variance (= σ2q only), at the expense of higher internal 
wordlength. The extra internal wordlength depends on the number of multi- 
pliers as well as the multiplier precisions, and complicates things in general. 
We do not consider it here.

Scaling. Since the inputs to multipliers are derived by delaying u(n), 
these are already scaled. The only extra scaling necessary is to ensure that 
the output y(n) does not overflow. This can be done by insertion of a scale 
factor 1/L as we did in Fig. 9.2-3. The value of L depends on the scaling 
policy chosen.

Allpass Cascade form

Consider Fig. 9.2-6(a) which represents a cascade of L first order filters 
Hk(z), each implemented in direct form. Assuming that αk are real, Hk(z) 
are allpass so that the overall filter H(z) is allpass (with real poles only). 
Such real-pole allpass functions find application in power symmetric IIR 
QMF banks, as seen in Sec. 5.3. In that section, a two channel IIR QMF 
bank was introduced with analysis filters

Figure 9.2-6 (a) A cascade of L first order allpass filters, and (b) insertion of
scaling multipliers.

404 Chap. 9. Quantization effects



Complex case. These discussions can be generalized to the case where 
filter coefficients and inputs are complex. In this case we have to define a 
complex quantizer (with b-bit real part and b-bit imaginary part). Under 
proper assumptions, many of the above results can be extended.

Figure 9.2-7 Noise model for the cascaded allpass structure.

9.3 NOISE TRANSMISSION IN MULTIRATE SYSTEMS

The study of noise generation and propagation in multirate systems is fa- 
cilitated if we first note a number of useful properties exhibited by random 
processes in the presence of some familiar building blocks.
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The allpass functions ai(z) have only real poles, and can be implemented 
using the above cascade form.

Scaling. In this structure, the only nodes to be scaled are the inputs to 
the multipliers αk. If we wish to scale these nodes in the ℒ2 sense, then we 
define sk = 1∕√(1 — α2k) and insert 1∕sk at the input of the kth section. We 
also insert sk at the output of the section to ensure that Hk(z) is unaffected. 
Simplifying, we obtain the scaled structure of Fig. 9.2-6(b).

Noise variance. The noise model of the scaled structure is shown in 
Fig. 9.2-7, assuming that a quantizer is inserted in each section (exactly as 
we did in Fig. 9.2-2). The noise transfer function for the noise source qk(n) 
is

(9.2.12)

which is allpass. Under the usual noise model assumptions, the output noise 
component e(n) is therefore zero-mean and white, with total variance

(9.2.13)



Decimators and Expanders
Let x(n) be a wide sense stationary (WSS) random process with mean 

m and variance σ2 > 0. The following properties are easily verified (Problem 
9.5).

1. If x(n) is input to an M-fold decimator, then the output y(n) = x(Mn) 
is also WSS, with mean m and variance σ2. In fact the autocorrelations 
of y(n) and x(n) are related as Ryy(k) = Rxx(Mk) so that the power 
spectrum Syy(ejω) of y(n) is related to the power spectrum Sxx(ejω) of 
the input x(n) in terms of the familiar aliasing relation (4.1.4) (i.e., sim­
ply replace YD(ejω) and X(ejω) in (4.1.4) with Syy(ejω) and Sxx(ejω) 
respectively.)

2. If x(n) is input to an M-fold expander (M > 0), then the output y(n) is 
not WSS. For example, the random variable y(0) [= x(0)] has variance 
σ2, whereas y(1) = 0 (which is a 'random variable' with variance = 0). 
Since the variance is not constant with time, this rules out wide sense 
stationarity.

Expander/Delay-Chain Combination
Consider Fig. 9.3-1 where xk(n),0 ≤ k ≤ M - 1 are WSS random 

processes. The signal y(n) is an interlaced version of xk(n). (This is similar 
to the time-domain multiplexer in Fig. 4.5-4(a)). In general y(n) is not 
WSS. For example, if x0(n) and x1(n) have unequal variances, then y(n) 
has variance changing with time, and it cannot therefore be WSS.

A special example of interest arises when xk(n) are zero-mean, white- 
noise sources with variance σ2 for all k. Assume further that xk(n) and xm(n) 
are uncorrelated for k ≠ m. In this case, the output y(n) is zero-mean and 
white (since y(n0) and y(n1) are uncorrelated for n0 ≠ n1) with variance σ2.

Figure 9.3-1 The time domain multiplexing circuit.

Paraunitary Systems
Some of the filter banks we have studied contain lossless (i.e., stable

406 Chap. 9. Quantization effects



paraunitary) building blocks. For example, consider Fig. 9.3-2 which is 
the polyphase implementation of a synthesis bank (Section 5.5). In many 
examples R(z) is paraunitary. We will derive a result which applicable in 
such situations.

Figure 9.3-2 A synthesis bank in polyphase form.

Let xk(n), 0 ≤ k ≤ M — 1 be WSS random processes. These may, for 
example, represent the noise generated in the analysis bank. Suppose the 
following assumptions are true:

1. Each sequence xk(n) is white.
2. Any two of these sequences are uncorrelated, that is, xk(n0) and xm(n1) 

are uncorrelated unless k = m and n0 = n1.
3. xk(n) have zero mean.
4. All the M sequences xk(n) have equal variance, that is, σ2k = σ2 for all 

k.
We then say that the vector

which is a vector-random process (Section B.5, Appendix B), is WUZE(σ2). 
This is an abbreviation for white, uncorrelated, zero-mean, and equal variance 
σ2. A zero-mean WSS random (vector) process x(n) is WUZE(σ2) if, and 
only if, E[x(m)x†(k)] = σ2δ(m — k)I (Problem 9.6).

Now suppose that R(z) is stable, and R(z)R(z) = dI (i.e., lossless). 
Then the vector
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(9.3.1a)

(9.3.1b)
has all the four properties of x(n). More precisely, y(n) is WUZE(dσ2). 
(This is a consequence of the theorem to be proved below.) In view of this, 
the output signal y(n) [which is a time multiplexed version of yk(n)] is a 
white, zero-mean process, with variance dσ2. We now state and prove a 
more general result, which is useful in the study of filter banks.



♠ Theorem 9.3.1. Let T(z) be a p × r transfer matrix and let TT(z) 
be lossless, that is, stable with T(z)T(z) = dlp. Let x(n) and y(n) denote 
the input and output (vector-)sequences. If x(n) is WUZE(σ2), then the 
output is WUZE(dσ2). ◊

Proof. Let Sxx(ejω) and Syy(ejω) denote the power spectral density 
matrices of the vector WSS processes x(n) and y(n). We then have

9.4 NOISE IN FILTER BANKS
In a complete analysis/synthesis system (as in Fig. 5.4-1), roundoff noise is 
generated both by the analysis bank and the synthesis bank. In addition, 
the noise due to analysis bank propagates through the synthesis bank. We 
therefore have to consider not only the noise generated by individual filters, 
but also the way in which the synthesis bank transmits the noise entering its 
inputs. In transmultiplexers, where the analysis bank follows the synthesis 
bank (Fig. 5.9-1), the reverse situation prevails (Problem 9.7).

The effect of quantization of subband signals will be studied in Appendix 
C. In this section, we will concentrate only on quantization noise due to filter 
implementation. We will study the noise generated by some popular analysis 
banks introduced in Chap. 5 and 6. In the next section, the total noise due 
to analysis and synthesis filters will be considered.

Consider the QMF bank of Fig. 5.4-1, and let the analysis filters Hk(z) 
be FIR with order N. Then each output has noise component which is white, 
with variance (N + 1)σ2q (Sec. 9.2.4). Since the decimated version of white 
noise is white, the noise εk(n) contaminating the decimated signal vk(n) is 
also white. The noise components εk(n) and εm(n) (k ≠ m) are in general
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(9.3.2)

In view of the WUZE property of x(n), its autocorrelation sequence is

(9.3.3)

so that Sxx(ejω) = σ2Ir for all ω. Substituting in (9.3.2), we get Syy(ejω) = 
dσ2Ip. This shows that y(n) is WUZE(dσ2) indeed. ▽ ▽ ▽

Here are some applications of this result in filter-banks. More can be 
found in the next two sections.

1. When p = r, losslessness of TT(z) also implies that of T(z), and we can 
apply this to Fig. 9.3-2 with R(z) = T(z). The special case where T(z) 
is a constant M × M unitary matrix also arises in filter bank theory 
(orthogonal transform coding, Appendix C).

2. Another useful example arises when p = 1 and r = M. In this case T(z) 
is an M channel synthesis bank, with power complementary property. 
If its input is WUZE(σ2), then the output is zero-mean white with 
variance dσ2.



not uncorrelated (unless the filters Hk(ejω) and Hm(ejω) have completely 
non overlapping frequency responses, which is not the case in most filter 
banks; see Problem 9.12). Surprisingly however, in most filter banks, these 
noise components turn out to be uncorrelated for various other reasons (as 
we will elaborate).
Summary of Notations and Assumptions
a) σ2q denotes the b-bit quantizer noise variance (9.2.3), and all noise com­

ponents have zero-mean.
b) Hk(z) denotes the kth analysis filter, and N denotes analysis filter order 

(which equals the synthesis filter order in all cases considered).
c) As in Fig. 5.4-1, vk(n) denotes the M-fold decimated version of the 

output of Hk(z). Also, εk(n) is the noise component affecting vk(n) due 
to roundoff noise in the implementation of the analysis bank. Tn other 
words, vk(n) = vk,ideal(n) + εk(n).

d) All filter coefficients are assumed to be real for simplicity.
♠ Main points of this section. We will justify the following conclu- 

sions pertaining to the noise generated by some of the popular analysis bank 
systems.

Case 1. Two channel FIR system of Fig. 5.1-1(a), with H1(z) = 
H0(-z). This was considered in Sec. 5.2.2 (and listed as Method 1 in Table 
6.7.2). The filter H0(z) is FIR with odd order N, and h0(n) = h0(N — n). 
We assume that this is implemented in polyphase form [Fig. 5.2-2(b)], with 
E0(z) and E1(z) implemented in direct form. Then ε0(n) and ε1(n) can 
be assumed to be white and uncorrelated with each other, and have equal 
variance (N + 1)σ2q.

Case 2. Two-channel FIR perfect reconstruction (PR) system (direct- 
form). (Sec. 5.3.6.) The filters are related by (5.3.28), and the order N 
is odd. Here ε0(n) and ε1(n) can be assumed to be white and uncorrelated 
with each other, with equal variance (N + 1)σ2q.

Case 3. Lattice implementation of the PR QMF bank. (Sec. 6.4). We 
know that the above perfect reconstruction system can be implemented using 
the lattice structure of Fig. 6.4-1. The analyis bank is reproduced in Fig. 
9.4-1 (with quantizers), by setting α = 1 and η = -1 in Fig. 6.4-1. In this 
system ε0(n) and ε1(n) can again be assumed to be white and uncorrelated, 
with equal variance. But now the variance is 0.5(N + 1)σ2q.

Case 4. M channel FIR PR system with paraunitary Ε(z). (Sec. 6.5.) 
Let E(z) be implemented as a cascade of simpler paraunitary building blocks 
(e.g., as in Fig. 6.5-2). Assume that there is no quantization inside a building 
block, and that there are M b-bit quantizers at the output of each building 
block (Fig. 9.4-2). (This can be arranged by employing higher precision 
for all arithmetic inside the building block; the extra precision is finite, 
since there are no loops. The reader can modify the analysis for the case 
where there are more quantizers.). Then, εk(n) can again be assumed to be 
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white (and εk(n) uncorrelated with εℓ(m) for k ≠ ℓ), with equal variance 
(N + 1)σ2q∕M for all k.

Figure 9.4-1 (a) Lattice structure for the analysis bank of the two channel PR
QMF bnak. (b) Details of Rm.

Figure 9.4-2 The anlaysis bank of a FIR PR QMF bank, with paraunitary 
polyphase matrix E(z). The paraunitary matrix is implemented as a cascade of 
simpler building blocks U and Vm(z).

Case 5. Two channel IIR QMF bank with power symmetric analysis 
filters. (Sec. 5.3). We know that this can be implemented as in Fig. 5.2-5 
where a0(z) and a1(z) are unit-magnitude allpass. Each allpass filter can 
be implemented as in Fig. 9.2-7, with slight change of notations. Thus, let 
s0,m and s1,m be the scale factors used to scale the internal nodes. Also let 
ki stand for the order of ai(z). In this case, ε0(n) and ε1(n) can be assumed 
to be white, and have equal variance given by

(9.4.1)
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where

(9.4.2)

However ε0(n) and ε1(n) are not uncorrelated with each other. 
Justifications

Case 1. Consider the polyphase implementation of Fig. 5.2-2(b). Since 
N is odd, the FIR filters E0(z) and E1(z) have (N + 1)∕2 coefficients each. 
So their outputs have noise components which are white, with equal variance 
Kσ2q, with K = 0.5(N +1). Now, the linear phase condition h0(n) = h0(N — 
n) implies that the coefficients of E1(z) are time reversed versions of those 
of E0(z). Inspite of this, the noise components at the outputs of E0(z) and 
E1(z) can be assumed to be uncorrelated because, the samples entering 
E0(z) and E1(z) are even and odd numbered subsets of x(n), respectively. 
The multipliers in E0(z) and E1(z) cannot be shared (as seen in Problem 
5.3), and we cannot obtain a fifty-percent noise reduction (which is normally 
obtainable in linear-phase filters).

The 2 × 2 matrix T which follows E0(z) and E1(z) in Fig. 5.2-2(b) can 
be written as

This satisfies TTT = 2I, and we can invoke Theorem 9.3.1 to conclude 
that the noise components ε0(n) and ε1(n) are white and uncorrelated, with 
variance 2Kσ2q = (N + 1)σ2q.

Case 2. We know that the filter coefficients are related according to 
h1(n) = (-1)nh0(N — n), and since the same input x(n) enters both filters, 
terms of the form x(i)h0(m) are shared by the filter outputs. So we cannot 
claim that the roundoff noise components at the outputs of the filters are 
uncorrelated. However, consider the decimated outputs

(9.4.3)

for some n0, n1, m0 and m1. Since h1(n) = (-1)nh0(N - n), this implies 
m0 = N — m1 and 2n0 - m0 = 2n1 — m1. This in turn means 2m0 = 
2(n0 — n1) + N, which contradicts the fact that N is odd. Summarizing, we 
can assume that v0(n) and v1(n) are uncorrelated. Furthermore, we already 
know (Sec. 9.2.4) that v0(n) and v1(n) are white with variance (N + 1)σ2q.
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We will show that [for arbitrary x(n)] the same product h0(k)x(i) will not 
be shared by the two summations. Suppose this is not true. Then we must 
have

(9.4.4)



Case 4. Since Case 3 follows from Case 4, we now proceed directly 
to Case 4. The analysis bank is shown in Fig. 9.4-2, and there are J + 1 
paraunitary building blocks in cascade. The 0th building block is a constant 
unitary matrix U, whereas the remaining ones are degree-one paraunitary 
systems. This cascade covers the situations in Fig. 9.4-1 as well, if we 
replace U and Vm(z) appropriately. At the output of the mth building 
block, we have the noise source vector em(n), generated by the M quantizers. 
According to our noise model assumptions, each component of this noise 
vector is white with variance σ2q, and any two components are uncorrelated. 
So em(n) is WUZE(σ2q). The transfer matrix from em(n) to the output 
terminal is a cascade of paraunitary systems and is therefore paraunitary. 
As a result, the noise vector em,out(n) which contaminates the output vector 
v(n) = [v0(n) . . . vM-1(n)]T is WUZE(σ2q). Since any two noise vectors
em(n) and eℓ(n) are uncorrelated, the total noise vector contaminating v(n) 
is WUZE((J + 1)σ2q). Using the relation N = MJ + M-1 this can be written 
as WUZE((N + 1)σ2q∕M). Summarizing, the noise components εk(n) at the 
analysis bank output are white and uncorrelated, with variance (N+1)σ2q∕M.

Case 5. The allpass filters ai(z) are products of first order real coef­
ficient allpass filters, and can be implemented as in Fig. 9.2-7. From Sec. 
9.2.4 we therefore conclude that the roundoff noise at the output of ai(z) is 
white with variance βiσ2q, where βi is as in (9.4.2). Using standard assump- 
tions, it follows that the noise components at the two allpass filter outputs 
are uncorrelated. As a result, the noise components at the locations of v0(n) 
and v1(n) are white, with variance (β0 + β1)σ2q.

9.5 FILTER BANK OUTPUT NOISE
In the QMF bank of Fig. 5.4-1, the roundoff noise components εk(n) gener- 
ated by the analysis bank are propagated through the synthesis bank. This 
contributes a noise component ea(n) at the output node [i.e., node labeled 
x(n)]. In addition to this, the roundoff operations in the implementation of 
the synthesis bank contribute a noise component es(n). So the total noise 
component e(n) affecting x(n) can be written as

412 Chap. 9. Quantization effects 

(9.5.1)
In other words, we can write x(n) = xi(n)+e(n) where xi(n) is the filter bank 
output under ideal conditions (i.e., no quantizers). Under normal conditions, 
we can assume that ea(n) and es(n) are uncorrelated, with zero mean. We 
will now study further properties of ea(n) and es(n) for each of the five 
cases listed in Sec. 9.4. In order to compare various structures on a common 
ground, we will adopt some conventions:

9.5.1 Conventions and Assumptions
1. Scaling. We will insert scale factors at appropriate places to satisfy the 

following requirement: signals that are inputs to appropriate computa­



tional building blocks should be scaled in the ℒ2 sense. This requirement 
means that if the filter-bank input x(n) is white with unit variance, then 
the variance at the scaled node is also unity.

2. Whenever necessary, we will insert a scale factor in front of x(n) so 
that there is no discrepancy between x(n) and x(n) (except for possible 
amplitude and/or phase distortions, etc.). For example, in a perfect 
reconstruction system we will have x(n) = cx(n — n0), with c = 1.0.

3. We will neglect the noise generated by the above scale factors, as their 
contribution to total noise is small.
Figure 9.5-1 shows all the QMF banks of interest, with scale factors 

inserted according to these conventions. Quantizers, which are inserted as 
explained in earlier sections, are not shown just to keep the figures simple. 
We now make some observations and leave it to the reader to verify them.

1. Fig. 9.5-1(a). In this system, the inputs to the filters E0(z) and E1(z) 
in the analysis bank (in fact any nodes connected directly to x(n)) are 
automatically scaled (in the ℒ2 sense). The same is approximately 
true of the filters E1(z) and E0(z) in the synthesis bank, under the 
assumption that the analysis filter H0(z) has energy ≈ 0.5. (This holds 
to the extent that ∣H0(ejω)∣ ≈ 1 in the passband and ∣H0(ejω)∣ ≈ 0 
in the stopband). So we do not require any scale factor except the '2' 
inserted in front of x(n), to satisfy convention 2.

2. Fig. 9.5-1(b). Next consider Fig. 9.5-1(b). If we insert the three 
scale factors √2 as shown, then the inputs to Fk(z) are scaled in the ℒ2 
sense, and furthermore convention 2 is satisfied.

3. Fig. 9.5-1 (c). In Fig. 9.5-1(c), E(z) is implemented as in Fig. 6.5-2, 
where U is unitary and Vm(z)Vm(z) = I. We assume U is normalized 
such that U†U = 1. So E(z)E(z) = I. The same comments hold for the 
paraunitary system R(z). As a result we have x(n) = x(n — n0), and 
no scale factors are necessary to satisfy convention 2. Also, the inputs 
to each of the paraunitary building blocks (Vm(z) and U) are scaled in 
the ℒ2 sense automatically.

4. Fig. 9.5-1(d). Finally, in Fig. 9.5-1(d), the allpass filters satisfy 
∣ai(ejω)∣ = 1. Insertion of 1/2 as indicated ensures that the inputs to 
the allpass filters in the synthesis bank are scaled in the ℒ2 sense. In 
addition, each allpass filter (implemented as in Fig. 9.2-7) has its own 
internal scale factors. For this figure, we have X(ejω) = ejφ(ω)X(ejω), 
consistent with the fact that aliasing and amplitude distortion have been 
eliminated.

9.5.2 Output Roundoff Noise e(n)

For each of the above cases, we can compute the output noise variance as 
follows. We will freely use the standard noise model assumptions, as well as 
the results in Sec. 9.2.4 (FIR roundoff noise, and allpass roundoff noise) and 
Sec. 9.3.
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Figure 9.5-1 Examples of QMF banks, with scale factors inserted (a) case 1, 
(b) case 2, (c) case 4 and (d) case 5.

Case 1
Each polyphase component Ek(z) in the synthesis bank, which is FIR 

with length 0.5(N + 1), generates white noise δk(n) with variance 0.5(N + 
1)σ2q. Under normal assumptions, δ0(n) and δ1(n) are uncorrelated. The 
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output noise es(n), which is the interlaced version of δ0(n) and δ1(n) (scaled 
by two) is, therefore, white with variance 2(N + 1)σ2q.

The noises generated by E0(z) and E1(z) in the analysis bank are also 
white and uncorrelated, with variance 0.5(N + 1)σ2q. If ∣H0(ejω)∣ ≈ 1 in the 
passband, then ∣Ek(ejω)∣ are 'approximately' constant (≈ 0.5). We can then 
verify that this contributes a noise component ea(n) ('almost' white) at the 
output of the filter bank, with variance 2(N + 1)σ2q. The total noise e(n) is 
therefore essentially white, with variance 4(N + 1)σ2q.
Case 2

Each synthesis filter Fk(z) is FIR with order N, and its input is the 
output of an expander. So only 0.5(N + 1) multiplication are involved per 
computed output. Thus, the roundoff noise at the outputs of the two synthe- 
sis filters Fk(z) are uncorrelated and white, with variance 0.5(N + 1)σ2q each. 
So the output noise component es(n) is white, with variance 2(N + 1)σ2q.

To study the effect due to analysis filter noise, consider Fig. 9.5-2, which 
is the synthesis bank in polyphase form. The noise entering the paraunitary 
system R(z) from the analysis bank is WUZE(2(N + 1)σ2q). By Theorem
9.3.1 the noise at the output of R(z) is WUZE((N + 1)σ2q). (This is because 
R(z)R(z) = cI, with c = 0.5, which is consistent with ∣Fk(ejω)∣ ≤ 1). So 
the noise component ea(n) is white with variance 2(N + 1)σ2q. Summarizing, 
the total output noise e(n) is white with variance 4(N + 1)σ2q.

Figure 9.5-2 The synthesis bank of the PR QMF system, drawn in polyphase 
form.

Case 4
We will proceed to Case 4, since Case 3 is covered by this. The synthesis 

bank is implemented in a manner similar to Fig. 9.4-2 (i.e., as a cascade of 
paraunitary building blocks). Here E(z)E(z) = R(z)R(z) = I. Proceeding 
as in Sec. 9.4 we conclude that the noise vector at the output of R(z), due to 
roundoff in synthesis bank, is WUZE((N + 1)σ2q∕M). So the noise component 
es(n) which is the interlaced version of these, is white with variance (N + 
1)σ2q∕M.

The noise entering R(z) from the analysis bank is also WUZE((N + 
1)σ2q∕M). Using Theorem 9.3.1 as before, this noise vector propagates to the 
output of R(z) as WUZE((N + 1)σ2q∕M). The interlaced version ea(n) is 
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again white with variance (N + 1)σ2q∕M. So the total noise e(n) is white, 
with variance 2(N + 1)σ2q∕M. For the special case of the two channel lattice 
this reduces to (N + 1)σ2q.
Case 5.

The allpass filters ai(z) in Fig. 9.5-1(d) are implemented in cascade 
form (Fig. 9.2-7), with scale factors si,m. The noise generated in the imple- 
mentation of ai(z) contributes a white noise component at its output, with 
variance βiσ2q, where βi = Σki-1m=0 s2i,m. In the synthesis bank, the noises at 
the outputs of ai(z) get interlaced. Since β0 ≠ β1, the interlaced version 
es(n) is not stationary. However, we will see that the total noise e(n) is 
stationary.

Figure 9.5-3 The power symmetric QMF bank, redrawn for the purpose of 
study.

Recall that the noise components ε0(n) and ε1(n) generated by the anal- 
ysis bank are white but not uncorrelated. In order to study the properties of 
ea(n) it therefore turns out to be convenient to use the equivalent structure 
of Fig. 9.5-3. The noise from a0(z) in the analysis bank enters the filter a1(z) 
in the synthesis bank, and vice versa. So the noise at the output of ai(z) in 
the synthesis bank is a white noise component with variance β1-iσ2q. If these 
are interlaced to obtain ea(n), the result is again non stationary. However, 
the total noise e(n) = ea(n) + es(n) has variance (β0 +β1)σ2q, which is same 
for all n. Summarizing, e(n) is white with variance (β0 + β1)σ2q.

Summary. Table 9.5.1 summarizes the output noise variance for all 
the cases. It is interesting to note that the total noise e(n) at the output of 
the QMF bank is white in each case. For M = 2 the variance for case 4 is 
ony (N + 1)σ2q which is four times smaller than for cases 1 and 2. This has 
to do with the choice of scale factors, and is not a very significant difference. 
It corresponds to about 6.02 dB improvement in noise (which is equivalent 
to one additional bit of internal word length).

9.6 LIMIT CYCLES
Signal quantization in a digital filter usually generates a random error at 
the filter output, as we have seen in the previous sections. Under some 
conditions, however, signal quantization causes periodic oscillations called 
limit cycles. The most well understood type of limit cycles are zero-input 
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limit cycles. As the name implies, these are self sustained oscillations which 
remain after the input u(n) has been turned off.

TABLE 9.5.1 Summary of properties of output noise e(n) in various QMF banks.

Case considered Case 1
2-channel FIR 

linear phase QMF 
(direct form 
polyphase)

Case 2 
2-channel FIR 

PRQMF 
(direct form)

Case 4 
M-channel 

FIR PRQMF 
with paraunitary E(z) 
(cascaded structure 

for E(z))

Case 5 
2-channel 
IIR power 

symmetric QMF

Variance of output 
noise e(n) 4(N + 1)σ2q 4(N + 1)σ2q 2(N + 1)σ2q∕M (β0 + β1)σ2q 

(see text)

In all cases e(n) has zero mean. For cases 2,4 and 5 e(n) is white. 
For case 1, e(n) is 'approximately' white (see text). N denotes filter order, 

and σ2q is the basic quantizer noise variance.

Limit cycles arise because the quantizers, which are nonlinear elements, 
are inserted in feedback loops. Even though the linear system (i.e., structure 
without quantizer) is stable and therefore does not suffer from zero-input 
limit cycles, the system with quantizers can support such oscillations. Two 
types of limit cycles have been distinguished. The first is the granular or 
“roundoff” type, which is due to the “small” error introduced by the quan- 
tizer. The magnitude of this oscillation is proportional to the step size Δ, 
and can be reduced by adding more bits of precision. The second type, called 
overflow oscillations, can arise when the quantizer input exceeds the dynamic 
range. These are “large” oscillations, (with magnitude close to unity!) and 
cannot be reduced by adding more bits of precision. Examples of both types 
can be found in Oppenheim and Schafer [1989].

It is clear that FIR filter structures are free from limit cycles, since they 
have no feedback loops. Limit cycles arise only in IIR structures. In mul­
tirate filter bank systems, the only significant IIR filters we have seen are 
power symmetric filters (Sec. 5.3). These systems can be implemented in 
terms of allpass filters a0(z) and a1(z) as shown in Fig. 5.2-5. In these ap- 
plications, ai(z) are real coefficient filters and furthermore can be factorized 
into first order allpass sections with real coefficients (Sec. 5.3.5). If these 
first order sections are free from limit cycles, then so is the complete struc- 
ture. We are therefore interested in suppressing limit cycles in first order 
real coefficient sections. We will conclude this section by showing how.

First Order Sections

Consider Fig. 9.1-1(b) again, which shows a first order section with a 
quantizer Q. Under zero-input conditions the behavior of the closed loop
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for any y(n — 1) ≠ 0. This means that as n increases, the magnitude of y(n) 
keeps decreasing (at least by Δ each time) until it becomes zero (in a finite 
amount of time).

Summarizing, the first order section of Fig. 9.1-1(b) does not support 
zero-input limit cycles of either type as long as the quantizer is passive and 
∣a∣ < 1.

9.7 COEFFICIENT QUANTIZATION
Detailed presentations of coefficient quantization effects in digital filters can 
be found in a number of references, for example, Oppenheim and Schafer 
[1975], and Rabiner and Gold [1975]. So our presentation is brief, and we 
will discuss only some special issues particularly relevant to multirate filter 
banks. When the multiplier coefficients in a filter structure are quantized, 
the transfer function changes, say from H(z) to Hq(z). This means that the 
magnitude as well as phase responses have changed. In some extreme cases, 
some of the poles, which are close to the unit circle, may move outside, 
resulting in unstable filters. The IIR direct-form structure (demonstrated 
in Fig. 2.1-5 for order N = 2) is known to be very sensitive to coefficient
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system is governed by the equations

(9.6.1)

and
(9.6.2)

Assume ∣a∣ < 1 (i.e., the system without quantizer is stable). We then have

(9.6.3)

unless y(n — 1) = 0. Suppose now that the quantizer has the property

(9.6.4)

for any number x. This is easily accomplished in practice. For example, if 
the quantizer is of the magnitude truncation type, this is satisfied for any x 
within the dynamic range. If x is outside the dynamic range (i.e., overflow 
situation), then (9.6.4) is still satisfied because Q[x] is within the dynamic 
range.

Quantizers satisfying (9.6.4) are said to be passive. With such quantiz­
ers, we have

(9.6.5)
Combining with (9.6.3) we see that ∣y(n)∣ < ∣y(n - 1)∣. But since y(n) is a 
b-bit fraction with step size Δ, this implies

(9.6.6)



quantization, particularly for large N. The effect is less severe for FIR direct 
form structures (Fig. 2.1-3), even though improved structures are available.

Magnitude response sensitivity. For linear phase FIR filter struc- 
tures, the coefficient symmetry (hence linearity of phase) can be preserved in 
spite of quantization (e.g., see Fig. 2.4-3). So only the magnitude response 
∣H(ejω)∣ changes due to quantization. For filters which do not have linear 
phase (e.g., IIR), the phase response also changes, but this is usually not 
of concern since it is not linear anyway. It is therefore important to discuss 
only the sensitivity of the magnitude response ∣H(ejω)∣.

Improved Structures
There exist structures for which the effects of quantization are less se- 

vere. In general cascade form structures (Sec. 2.1.3) are less sensitive to 
quantization. In these structures, quantization of a denominator coefficient 
affects only one complex-conjugate pole pair (or real pole, as the case may 
be). Similar comment holds for zeros. In Sec. 3.4.3 we introduced lat- 
tice structures which have some other advantages. One of these is that the 
transfer function remains stable as long as the quantized lattice coefficients 
km (Fig. 3.4-8) satisfy ∣km∣ < 1. From Sec. 3.6 we know that many IIR 
filters (including elliptic) can be implemented as a sum of two allpass fil­
ters (Fig. 3.6-2). Each allpass filter in turn can be implemented using the 
lattice. Such structures are therefore stable even under quantization. It is 
also known [Gray, Jr., 1980] that lattice structures are free from zero-input 
limit cycles. Other structures with improved finite-wordlength behavior are 
wave digital filters [Fettweis, 1971] and orthogonal filters [Deprettere and 
Dewilde, 1980].

In this section, we will show that a number of filter bank structures 
which we have presented in Chap. 5 and 6 exhibit low passband sensi- 
tivity. This means that the passband response of the quantized system is 
'acceptably close' to the specified response. This is a consequence of a prop- 
erty called structural passivity, which we will elaborate. In two-channel PR 
QMF banks, since the analysis filters are power symmetric, this also implies 
that the stopband response is well-controlled under quantization, provided 
the structure retains power symmetry in spite of quantization.

9.7.1 Structural Passivity

Let mi denote the multiplier coefficients in the structure, and assume -1 < 
mi < 1. (This can always be arranged, since we can write mi = integer 
plus fraction, and eliminate the integer part by using adders.) Suppose 
the structure is such that ∣H(ejω)∣ ≤ 1 for all values of the coefficients 
in the range —1 < mi < 1. (Assume further that the transfer function 
remains stable for —1 < mi < 1.) We then say that the implementation 
is structurally passive (or bounded) [Vaidyanathan and Mitra, 1984]. This 
means, in particular, that the response is bounded by unity even if the 
multipliers are quantized, as long as the quantized value does not exceed
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unity.

Consequence of Structural Passivity
Consider Fig. 9.7-1(a). This represents the ideal (unquantized) response 

of a digital elliptic filter. The magnitude attains a maximum of unity at the 
frequencies θk in the passband, that is, ∣H(ejθk)∣ = 1. If we now quantize a 
coefficient mi in the structure, the response ∣H(ejθk)∣ can only decrease, as 
demonstrated in Fig. 9.7-1(b). In other words, we have

Figure 9.7-1 (a) Example of an elliptic filter response, and (b) demonstrating
the effect of structural passivity.
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(9.7.1)

This means that the sensitivity of the magnitude response with respect to the 
coefficients, evaluated at the nominal coefficient values, is equal to zero. This 
is true with respect to every coefficient, and at every extremal frequency θk 
in the pass band. If there are several extrema in the passband, we can expect 
the sensitivity of ∣H(ejω)∣ with respect to the coefficients mi to be low for all 
frequencies in the passband. (This has also been verified by simulation, as we 
will demonstrate below.) This is the key behind the low passband sensitivity 
of many structures, for example, wave filters and orthogonal filters mentioned 
above.
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9.7.2 Application in QMF Banks
Power Symmetric HR QMF Bank

Consider the power symmetric IIR QMF bank discussed in Sec. 5.3. 
This system can be implemented as in Fig. 5.2-5 where a0(z) and a1(z) 
are unit magnitude allpass filters. In this system each allpass filter can be 
implemented as in Fig. 9.2-7, where the coefficients αi satisfy 0 < αi < 1. 
When these coefficients are quantized, the filters a0(z) and a1(z) still remain 
stable and satisfy ∣ai(ejω)∣ < 1 (as long as ∣αi∣ < 1 continues to hold). Since

(9.7.2)

we have ∣Hi(ejω)∣ ≤ 1, that is, the implementation is structurally passive.
To demonstrate the low sensitivity property, consider the case where 

ai(z) are first order filters so that H0(z) is as in (5.3.18). We now implement 
this system (i.e., Fig. 5.2-5), with the allpass filters ai(z) implemented in 
cascade form (i.e., as in Fig. 9.2-7). Fig. 9.7-2(a) shows ∣H0(ejω)∣ for 
the quantized as well as ideal systems. The quantization level is 6 bits per 
multiplier (i.e., b = 6 in Fig. 9.2-1). For comparison, Fig. 9.7-2(b) shows the 
response of a direct form structure, with multipliers quantized to the same 
level (for convenience all plots are normalized to have a peak value of unity). 
It is clear that the passband response of the quantized structurally-passive 
implementation is far superior to the direct-form structure. It is also worth 
noting that the direct form structure does not preserve the power symmetric 
property under quantization, unlike the structure of Fig. 5.2-5.
FIR Perfect-Reconstruction QMF Lattice

Consider now the two channel QMF lattice of Fig. 6.4-1. The analysis 
filters are determined by the J + 1 angles θm. The scale factor α does not 
affect the sensitivity of the response and can be assumed to be 1∕√2 for the 
purpose of discussion. We know from Sec. 6.4 that the analysis filters are 
power complementary and satisfy ∣Hk(ejω)|2 ≤ 1, regardless of the values of 
the angles θm. This structure therefore exhibits low passband sensitivity.

We now demonstrate this, using the more economic structure of Fig. 
6.4-3(a), and quantizing the coefficients αm. For this we consider a system 
designed using the technique described in Sec. 6.3.2, with filter order N = 
23. Figure 9.7-3(a) shows ∣H0(ejω)∣, for the quantized as well as unquantized 
lattice structures. For the quantized lattice we use 8 bits per coefficient αm. 
For comparison, Fig. 9.7-3(b) shows the response when the impulse response 
coefficients h0(n) are directly quantized (i.e., direct-form implementation). 
From the passband details it is clear that the lattice structure has much 
lower passband sensitivity compared to the direct form, demonstrating the 
effect of structural passivity. Once again, the direct form structure does not 
preserve the power symmetric property, unlike the lattice structure.

Further examples of structurally passive implementations can be found 
in Problem 14.29.



Figure 9.7-2 Magnitude response plots for quantized HR power symmetric 
elliptic filters. (a) allpass-based structure (structurally passive) and (b) direct 
form structure. Broken lines indicate unquantized responses.
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Figure 9.7-3 Magnitude responses for quantized FIR power symmetric filters. 
(a) QMF-lattice structure (structurally passive), and (b) direct form structure. 
Broken lines indicate unquantized responses.
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PROBLEMS

Note. Familiarity with the material in Appendix B will be helpful while solving 
some of the following problems.

9.1. Consider the following lattice structure, where k is real with k2 < 1, and 
k = √1-k2.

From Sec. 3.4 we know that the transfer function H(z) is stable allpass. With 
a quantizer inserted in the feedback loop as shown, draw the noise model, and 
estimate the output noise variance under the usual assumptions.

9.2. Consider again the lattice structure in Fig. P9-1. There are four multipliers, 
two of which have input u(n), and two of which have input x(n). So in order to 
scale the structure, it is sufficient to scale the node x(n). Show that this node 
is in fact already scaled in the ℒ2 sense!

9.3. Consider Fig. 9.2-3, where a multiplier 1/L is inserted to scale the node which 
represents the output of the adder. For sum-scaling, we know we have to choose 
L=1∕(1-∣a∣).
a) For ℒ2 scaling, how would you choose L?
b) Now assume that the input u(n) is a zero-mean white WSS random process 

with unit variance, and let a = 0.99. Estimate the variance of the output 
signal y(n) for the two cases (i) sum-scaling and (ii) ℒ2 scaling.

9.4. Let p be a positive integer. The ℒp norm of a transfer function F(z) is defined 
as
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Figure P9-1

(P9.4a)

Let y(n) be the output of F(z) in response to an input u(n). Let U(ejω) be the 
Fourier Transform of u(n). It can then be shown that

(P9.4b)
for any pair of positive integers p, q such that p-1 + q-1 = 1. Examples are 
(p = 1,q = ∞), (q = 1,p = ∞), and (p = q = 2). If ∥F∥p = 1, we see that 
∣y(n)∣ ≤ ∥U∥q for all n. Under this condition we say that the node y(n) is 
scaled in the ℒp sense. If ∥U∥q ≤ 1 as well, then ∣y(n)∣ ≤ 1, that is, there is no 
overflow at node y(n). (For simplicity, assume that y(n) = ±1 is not considered 
as overflow). Summarizing, ℒp scaling prevents overflow if the input is such 
that ∥U∥q ≤ 1.



a) Show that ∥F∥∞ is equal to the maximum value of ∣F(ejω)∣.
b) In each of the following cases, what kind of ℒp scaling will be appropriate 

(i.e., what p should be chosen) to avoid overflow? (i) u(n) is a sequence 
with energy Σn ∣u(n)∣2 = 1, (ii) u(n) = ejω0n for some real ω0, and (iii) 
u(n) is such that ∣U(ejω)∣ ≤ 1. (Note. In each of the above cases, sum- 
scaling (Sec. 9.2) could also have avoided overflow, but is more stringent 
than necessary.)

9.5. Let x(n) be WSS with autocorrelation Rxx(k), and let y(n) = x(Mn). Show 
that the autocorrelation of y(n) is given by Ryy(k) = Rxx(Mk).

9.6. Let x(n) be a zero-mean WSS process. Show that it is WUZE(σ2) if and only 
if E[x(n)x† (n + i)] = σ2δ(i)I.

9.7. Consider the transmultiplexer structure of Fig. 5.9-1. Assume that the filters 
Hk(z) and Fk(z) are FIR with length N+1 = MK for some K. Let each analysis 
filter Hk(z) have energy 1/M. Let ek(n) denote the roundoff noise component 
affecting the node labeled xk(n). Using the usual fixed-point b-bit roundoff 
noise model, estimate the variance of ek(n). With no further assumptions, can 
you say that ek(n) and eℓ(m) are uncorrelated for k ≠ ℓ?

9.8. Consider the two-stage decimation filter of Fig. 4.4-5(b). (This was the topic of 
Sec. 4.4.2 which should be reviewed at this time.) Here Ng and Ni are the or- 
ders of the FIR filters G(z) and I(z). Using the usual fixed-point roundoff noise 
model of Sec. 9.2, we wish to compute some noise variances, in terms of Ng, 
Ni, the quantizer noise variance σ2q, and the energy of G(ejω). For simplicity, 
ignore the noise reduction obtainable by exploiting linear-phase symmetry.

a) Estimate the variance σ21 of the roundoff noise at the final output, that is, 
output of M2.

b) Instead of the above system suppose we use a single stage decimation filter 
for this problem, that is, Fig. 4.1-7 with M = M1M2. Let N denote the 
order of H(z). Estimate the noise variance σ22 at the output of Μ.

c) In Design example 4.4.2, we started with some specifications, and arrived 
at specific values for M1, M2, Ng, Ni and N. Using these values, find the 
improvement in noise variance due to multistage implementation, i.e., find 
σ22∕σ21. You can make the assumption that the energy of G(ejω) is 0.5, 
which is consistent with the specifications of this design.

9.9. Consider the fractional decimation circuit of Fig. 4.1-10(b). Assume L = 2 
and M = 3, and let H(z) be FIR with order N = 59. For this problem, ignore 
any simplicity offered by linear-phase symmetry. Assume the usual fixed-point 
roundoff noise model of Sec. 9.2.

a) Estimate the roundoff noise variance at the output node [labeled y(n)].
b) Now consider Fig. 4.3-8(d). This represents an efficient polyphase imple- 

mentation of the above fractional decimation circuit. Estimate the round- 
off noise variance at the output node.

9.10. Consider Fig. 8.5-2 which represents the cosine modulated analysis filter bank. 
Here each pair Gk(z), GM+k(z) is power complementary, and is implemented 
using the lattice Fig. 8.5-1. The cosine modulation matrix T is as in (8.4.9). 
(At this time you must review Section 8.4, in particular the meanings of 
A0, A1, C, S, and so on). Assume that (i) each lattice has quantizer inserted 
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similar to Fig. 9.4-1(a), (ii) there are no quantizers inside T, and (iii) there 
are M quantizers for the M outputs of T. Let εk(n) denote the total roundoff 
noise affecting the M outputs of the decimated analysis bank (i.e., outputs of 
T). Using the standard fixed-point roundoff noise model of Sec. 9.2, estimate 
the variance of εk(n).

9.11. Let x(n) be a vector WSS random process with autocorrelation matrix R(k) 
and power spectral density matrix S(ejω). (These were defined in Appendix 
B. Note that if x(n) is M × 1 then R(k) and S(ejω) are M x M matrices.) 
Show that S(ejω) is a positive semidefinite matrix for all ω. (Hint. Somehow 
try to relate this to a scalar WSS process t(n), and use the fact that its power 
spectrum is nonnegative).

9.12. In this problem we consider the joint behavior of two WSS random process 
x(n) and y(n). Assume that they have zero mean.

a) Let the power spectra Sxx(ejω) and Syy(ejω) be non overlapping, i.e., 
Syy(ejω)Sxx(ejω) = 0 for all ω. Show that this does not in general imply 
that the two random processes x(n) and y(n) are uncorrelated.

b) Suppose x(n) and y(n) are jointly WSS. Show then that the condition 
Syy(ejω)Sxx(ejω) = 0 does imply that the two processes are uncorrelated. 
(Hint. The result of Problem 9.11 might help!)

c) Suppose x(n) and y(n) are generated as follows,

Figure P9-12

where u(n) is a WSS process. Show that x(n) and y(n) are joinlty WSS. 
Hence show that if the filters H(ejω) and G(ejω) are nonoverlapping [that 
is, H(ejω)G(ejω) = 0 for all ω], and u(n) has zero-mean, then x(n) and 
y(n) are uncorrelated.

Note. If the zero-mean assumption is not true, the above statements should be 
modified by replacing "uncorrelated" with "orthogonal" everywhere.

9.13. Consider an M channel analysis bank Hk(z), 0 ≤ k ≤ M - 1. Let the polyphase 
matrix E(z) be lossless with E(z)E(z) = I. In Sec. 6.2.2 we showed that this 
implies Σn ∣hk(n)∣2 = 1 for each k, that is, each analysis filter has unit energy. 
Give a second proof of this using Theorem 9.3.1.
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10

10.0 INTRODUCTION
In this chapter we study the interrelation between multirate filter bank the­
ory, and several “neighbouring” topics in signal processing. In Sec. 10.1 
we consider the connection between alias-free (maximally decimated) filter 
banks, block digital filtering, and linear periodically time varying (LPTV) 
systems. We will see that the pseudocirculant matrix defined in Sec. 5.7.2 
unifies these three topics in a nice way. In Sec. 10.2 we study a number 
of unconventional sampling theorems (such as "difference-sampling," and 
nonuniform sampling) using the framework of multirate filter banks. Read­
ers who have looked at Problem 5.13 will recall that Shannon’s well-known 
derivative sampling theorem can be derived based on an analog filter bank 
[Papoulis, 1977b], and [Brown, 1981]. Such a viewpoint not only simpli­
fies the understanding of these sampling techniques, but also opens up new 
digital ways to reconstruct signals from uncoventionally sampled data.

Further applications can be found in Vetterli [1988], where a multirate 
filter bank framework is used for the efficient implementation of FIR and 
IIR filters. Also see Sathe and Vaidyanathan [1993] where the role of pseu- 
docirculat matrices in random process theory is discussed.

10.1 BLOCK FILTERS, LPTV SYSTEMS, AND MULTIRATE
FILTER BANKS

10.1.1 Block Filtering
The processing of a scalar signal in blocks is a common approach in many 
applications. Block processing has been studied by a number of authors [Bur­
rus, 1971], [Mitra and Gnanasekaran, 1978], [Barnes and Shinnaka, 1980], 
and [Clark, et al, 1981]. One example of block processing was indicated in 
Sec. 6.6 (transform-coding and LOT). Block digital filtering, in particular,
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is a technique to implement a scalar filter H(z) in such a way as to increase 
the parallelism in the computations. This finds application in high speed 
digital filtering, that is, where the sampling rate is very high.
Definition of Block Digital Filters

Let x(n) and y(n) denote, respectively, the input and output of the 
scalar filter H(z). Consider two vector sequences xB(n) and yB(n) defined 
by

(10.1.1)

We say that the vector sequences xB(n) and yB(n) are blocked versions of 
(or blocked sequences corresponding to) the scalar sequences x(n) and y(n). 
The block-length (or size) is M.

Now imagine that we have a system which generates the sequence yB(n) 
in response to xB(n). Evidently this is an M-input M-output system. Not 
surprisingly this is an LTI system (Problem 13.24), and can be character­
ized by a M × M transfer matrix H(z). In other words we have YB(z) = 
H(z)XB(z), where

(10.1.2)

The matrix H(z) is called the blocked version of H(z). From its definition 
it is clear that H(z) is completely determined by the scalar system H(z). 
Figure 10.1-1 is a summary of the situation. The “blocking mechanism” can 
be considered to be a serial to parallel converter of data, and the “unblocking 
mechanism” a parallel to serial converter.

Blocked version 
of H(z)

Figure 10.1-1 (a) A scalar transfer function, and (b) its blocked implementation.

Multirate Filter-Bank Notation
Figure 10.1-2 shows a schematic diagram of block digital filtering in 

terms of multirate notation. Here the signals xk(n) are given by xk(n) =
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x(nM+k). Similarly yk(n) = y(nM+k), so that the blocked versions (10.1.1) 
can also be represented as

(10.1.3)

The transfer matrix H(z) in this figure produces yB(n) in response to xB(n), 
and is therefore the blocked version of H(z).

Let Xℓ(z) and Yℓ(z) denote the z-transforms of xℓ(n) and yℓ(n). Then 
the z-transforms of x(n) and y(n) can be expressed as

(10.1.4)

In other words, the components of xB(n) and yB(n) are the polyphase com­
ponenents of x(n) and y(n), respectively.

Figure 10.1-2 Representation of block digital filtering in terms of multirate 
building blocks.

Increased Parallelism Offered by the Block Filter
The structure of Fig. 10.1-2 also shows the “speed advantage” of block- 

ing. The system H(z) is operating at a rate which is M times lower than 
the input rate. So the sampling rate of the input signal x(n) can be M times 
larger than the speed of the basic computational unit. This advantage, which
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depends on the block size M, can be made arbitrarily large by increasing 
M. However, there is a price paid for this: since H(z) is an M × M system, 
it requires larger number of computational units (multipliers and adders) 
than the original scalar system. Summarizing, we have obtained increased 
computational parallelism in the blocked implementation, by increasing the 
number of computational units. As a result we are able to process signals 
which arrive at M times higher rate (than the rate that can normally be 
handled by one computational unit).

Relation to Alias-Free Filter Banks
The decimators and expanders in the representation of Fig. 10.1-2 pro­

duce the alias components X(zWkM), just as in a filter bank. However, 
magically, Y(z) is free from these alias-components because, by definition 
of H(z), the overall system in Fig. 10.1-2 is still a linear time invariant 
system with transfer function H(z). The explanation of this is that, alias 
components are somehow canceled.

Returning now to filter banks, we know that any M-channel maximally 
decimated filter bank (Fig. 5.4-1) can be redrawn as in Fig. 5.5-3(c), where 
P(z) is the product R(z)E(z) of polyphase matrices. The structures of 
Figs. 5.5-3(c) and 10.1-2 are identical (except for the advance operator 
zM-1, which will not affect any significant conclusions.) Since the structure 
of Fig. 10.1-2 is indeed alias-free by definition of H(z), we conclude that 
this structure is equivalent to an M-channel alias-free maximally decimated 
filter bank.

We know from Sec. 5.7.2 that the filter bank is alias-free if, and only 
if, P(z) is a pseudocirculant. This shows that the blocked version H(z) 
of a scalar transfer function H(z) is necessarily a pseudocirculant. The 
pseudocirculant property has been observed implicitly in Barnes and Shin­
naka [1980], and also in Marshall [1982]. It has been further studied in 
Vaidyanathan and Mitra [1988].

Next, how can we determine the elements of H(z)? The pseudocirculant 
property means that all rows are determined by the elements H0,k(z) of the 
0th row. We also know that the transfer function of the alias-free filter bank 
is given by (5.7.13) where Pℓ(z) are the elements of the 0th row of P(z). 
From this we conclude that the scalar filter H(z) is related to the blocked 
version as
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So the elements of the 0th row of H(z) are the Type 1 polyphase components 
(usually denoted Eℓ(z)) of H(z) :

(10.1.6)



Let H(z) = 1 + 2z-1 + 3z-2 + 4z-3. We can rewrite

from which we identify the Type 1 polyphase components (for M = 3) 
as E0(z) = 1 + 4z-1, E1(z) = 2, and E2(z) = 3. So the 3 × 3 blocked 
version is the pseudocirculant

(10.1.8)

Next consider an IIR example; let H(z) = (-a + z-1)∕(1 — az-1). 
This can be written as

so that the Type 1 polyphase components (for M = 2) are E0(z) = 
-a(1 - z-1)∕(l - a2z-1), and E1(z) = (1 - a2)∕(1 - a2z-1). So the 2 × 2 
blocked version is the pseudocirculant

For real a, the scalar IIR filter H(z) is allpass, that is, H(z)H(z) = 
1. How did this allpass property reflect into the blocked version? In 
Problem 10.2 we request the reader to verify the interesting fact that 
H(z)H(z) = I. In other words, H(z) is paraunitary!

More generally, we can summarize the above results as follows.
♠Theorem 10.1.1. On blocked version of a scalar filter. Let

H(z) represent the M × M blocked version of a scalar transfer function 
H(z). Then H(z) is a pseudocirculant, and its 0th row is given by

(10.1.11)

where Eℓ(z) are the Type 1 polyphase components of H(z) [i.e., H(z) = 
ΣM-1ℓ=0 z-ℓEℓ(zM)]. Moreover H(z) is paraunitary if and only if H(z) is 
allpass, that is, H(z)H(z) = c if and only if H(z)H(z) = cI. ◊
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Proof. It only remains to prove the part of the statement involving the 
paraunitary property. With the 0th row of pseudocirculant H(z) given by
(10.1.11),  the kth row (k > 0) is

(10.1.12)

Since Eℓ(z) are the Type 1 polyphase components of H(z), it is easily verified 
(Problem 10.4) that the polyphase components of z-kH(z) are the elements 
of the kth row above. So we can express

(10.1.13)

By writing this for all values of k (0 ≤ k ≤ M - 1) we obtain the matrix 
equation

(10.1.14)

where e(z) = [1 z-1 . . . z-(M-1)]T. Since (10.1.14) holds for all z, it
holds if we replace z with zW-k, where W = e-j2π/M. By doing this for 
k = 0, . . . M — 1, we arrive at M equations which can be collected together 
as follows:

(10.1.15)
where

and W is the M × M DFT matrix. Clearly W and Λ(z) are paraunitary. 
So Q(z) is paraunitary if and only if H(z) is paraunitary. But since Q(z) 
is diagonal with elements H(zW-k), it is paraunitary if and only if H(z) is 
allpass. This completes the proof. ▽ ▽ ▽

Application to alias-free filter banks. For an alias-free filter bank, 
P(z) is pseudocirculant and the distortion function T(z) is given by (5.7.13). 
From the above theorem we conclude that T(z) is allpass (i.e., the filter bank 
is free from amplitude distortion) if and only if P(z) is paraunitary.

10.1.2 Linear Periodically Time Varying (LPTV) Systems
In this text, we have seen linear time varying (LTV) systems on many oc- 
cassions. The decimator and expander, defined in Chap. 4, are examples 
of such systems. The fractional sampling rate changer (Fig. 4.1-10(b)) is
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another such example. In these examples the input and output signals have 
different rates.

For a more sophisticated example, consider the M-channel maximally 
decimated filter bank (Fig. 5.4-1). In Chap. 5 we found that this is an LTV 
system, characterized by the input output relation (5.4.5). This relation 
reduces to X(z) = T(z)X(z), i.e., the filter bank becomes an LTI system, if 
and only if it is alias-free.

Recall that an LTI system is characterized by an impulse response h(n) 
such that the output y(n) is computed by convolution:

Figure 10.1-3 An LTV FIR filter. Here an(m) is a function of the output time 
index n.
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For an LTV system (with input rate = output rate), y(n) is still a linear 
combination of the samples x(n — m) as above, but h(m) is not fixed; it 
depends on the output time index n. The relation is of the form

(10.1.18)

This idea is best understood by drawing a schematic structure, as shown in 
Fig. 10.1-3. Here we have an Nth order FIR filter, whose impulse response 
coefficients are not fixed (as for LTI systems) but varies with output time 
index n.

An LPTV system (with period M) has the further property that an(m) 
is a periodic function (period M) of the output time index n [which is also 
the subscript on a(m) in (10.1.18)]. In other words,

(10.1.19)
Figure 10.1-4 demonstrates an LPTV system with period = 2. Whenever n is 
even, the output is taken to be that of the filter with impulse response a0(m). 
When n is odd, the ouput is taken to be that of a1(m). This behavior can be 
compactly represented using multirate notation as shown in Fig. 10.1-5(a). 
Here the filter An(z) is given by

(10.1.20)



Figure 10.1-5 (a) Representation of an LPTV system in terms of multirate
notations. (b) Explaining the operation.

Relation to Filter Banks
Extending the above discussion, the more general case where the LPTV 

system has period M can similarly be represented by the structure of Fig. 
10.1-6. (This representation is restricted to systems where the input and 
output have equal rates; but the system can be FIR or IIR.) The system
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output y(n) at time n is equal to the output of Ak(z) at time n, where 
k = n mod M.

We can think of this system as a M channel filter bank with analysis 
and synthesis filters

Figure 10.1-6 Representation of an arbitrary (FIR or IIR) LPTV system of 
period M, using multirate building blocks. (Input rate = output rate).

By using the polyphase decomposition on the filters An(z), we gain further 
insight. Thus, let the filters An(z) be represented as

Let E(z) be the Type 1 polyphase component of the analysis bank, and 
R(z) the Type 2 polyphase matrix of synthesis bank. Clearly R(z) = I in 
this case. The quantity E(z), on the other hand depends on Gn,ℓ(z). As a 
demonstration, for M = 3 we can verify that

(10.1.23)

For arbitrary M, the form of E(z) can be written in a similar way (Problem 
10.5). Thus the LPTV system is equivalent to Fig. 10.1-7 where P(z) = 
R(z)E(z).

We know from filter bank theory that this system is alias-free (hence 
time invariant) if and only if P(z) is pseudocirculant. Now let us see what 
happens to Gn,ℓ(z) when P(z) [i.e., E(z)] is pseudocirculant. By insepection 
of (10.1.23) we conclude that under this condition Gn,ℓ(z) is independent of
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(10.1.21)

(10.1.22)



n. This means that An(z) is same for all n in Fig. 10.1-6, so that the original 
LPTV system becomes time invariant! This is consistent with the fact that 
the maximally decimated filter bank is time invariant if and only if it is aliasfree.The main points of this section are summarized in Table 10.1.1.

Figure 10.1-7 Equivalent representation of an arbitrary LPTV system of period 
M (input rate = output rate). The matrix P(z) is a pseudocirculant if and only 
if the LPTV system degenerates into an LTI system.

provided this summation converges [Oppenheim and Schafer, 1989]. Thus 
Xa(s)(jΩ) is obtained by adding to Xa(jΩ) an infinite number of shifted 
copies (images), the shift being in uniform integer multiples of 2π∕T.

Figure 10.2-2 is a demonstration of this effect. In this figure we have 
assumed that xa(t) is σ-BL (defined in Sec. 2.1.4), that is, ∣Xα(jΩ)∣ = 0 for 
∣Ω∣ ≥ σ. From Sec. 2.1.4 we know that if the sampling rate 2π∕T exceeds 
the Nyquist rate Θ = 2σ, then none of the images has an overlap with the
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10.2 UNCONVENTIONAL SAMPLING THEOREMS
Let xa(t) be a continuous-time signal and define

(10.2.1)

where δa(t) is the impulse function defined in Chap. 2. x(s)a(t) is the uni- 
formly sampled version of xa(t), with sample spacing equal to T (Fig. 10.2- 
1). Equivalently, the sampling frequency (or rate) is 2π∕T. The Fourier 
transform of xas)(t) is given by the relation

(10.2.2)



TABLE 10.1.1 Block filtering, LPTV systems, and filter banks.

b) Conversely, if H(z) is pseudocirculant, the structure of Fig. 10.1-2 is an 
LTI system (this being not true for arbitrary H(z)) and H(z) represents 
the blocked version of the scalar transfer function given by (T10.1).

2. Linear periodically time varying systems. A linear periodically time 
varying (LPTV) system with period M (and same input and output rates) 
is characterized by a set of M transfer functions An(z). The system can be 
represented by the structure of Fig. 10.1-6.

a) The output at time n is equal to the output of Ak(z) at time n, where 
k = n mod Μ.

b) An LPTV system with period M (with equal input and output rates) can 
always be represented by the equivalent structure of Fig. 10.1-7, where 
P(z) is an M × M transfer matrix.

c) Conversely, for arbitrary transfer matrix P(z), Fig. 10.1-7 represents an 
LPTV system (with equal input and output rates) of period Μ.

3. Relation to filter banks. An M-channel maximally decimated filter bank 
(Fig. 5.4-1) can always be represented by the structure of Fig. 10.1-7 where 
P(z) is the product R(z)E(z) of the polyphase matrices of the analysis and 
synthesis banks.

a) This representation closely resembles the block implementation of a scalar 
transfer function H(z) (Fig. 10.1-2).

b) The representation also resembles the general representation of an LPTV 
system (with equal input and output rates).

c) The blocked version H(z) of a scalar H(z) is always pseudocirculant; the 
filter bank is alias-free if and only if P(z) in Fig. 10.1-7 is pseudocirculant; 
the LPTV system is actually time invariant if and only if P(z) in Fig. 
10.1-7 is pseudocirculant.

d) Let H(z) be M × M pseudocirculant. Consider the transfer function H(z) 
defined in (T10.1) above. H(z) is allpass if and only if H(z) is paraunitary. 
This means two things: (i) the distortion function T(z) of an alias-free filter 
bank is allpass if and only if P(z) is paraunitary, and (ii) a scalar transfer 
function is allpass if and only if its blocked version is paraunitary.
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1. Block digital filters. Given a scalar transfer function H(z) with input x(n) 
and output y(n), define the vector sequences xB(n) and yB(n) as in (10.1.3). 
Then these are related by an M × M transfer function H(z), called the blocked 
version of H(z). Fig. 10.1-2 shows this block implementation of H(z).

a) The blocked version H(z) is pseudocirculant. The scalar function H(z) 
can be obtained from the 0th row of H(z) as

(T10.1)



Figure 10.2-1 A continuous-time signal xa(t) and the uniformly sampled version 
x(s)a(t).

Figure 10.2-2 Fourier transform of the sampled version x(s)a(t) of a bandlimited 
signal xa(t). Sampling rate = 2π/T.

Figure 10.2-3 (a) Fourier transform of the sampled version x(s)a(t) of a σ-
bandlimited signal xa(t) sampled at Nyquist rate 2σ (i.e. 2π∕T = 2σ). (b) The 
ideal lowpass filter which reconstructs xa(t) from x(s)a(t).

original version Xa(jΩ). In this case we can reconstruct xa(t) from x(s)a(t) 
by removing the images with an ideal lowpass filter (Fig. 10.2-3). This filter 
has impulse response
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(10.2.3)

In the time domain, the recovered signal xa(t) is therefore the convolution of



x(s)a(t) with h(t). This simplifies to the well-known reconstruction formula,

(10.2.4)

which is also called the “interpolation” formula. The Nyquist frequency 
Θ = 2σ is the minimum rate at which xa(t) should be sampled so that it can 
be recovered from these samples.† Sampling at the rate Θ is called Nyquist 
sampling.

The above result is the uniform sampling theorem [Nyquist, 1928], 
[Whittaker, 1929], and [Shannon, 1949]: if we "uniformly sample" the σ- 
BL signal xa(t) at the Nyquist rate Θ, then we do not lose any information, 
and can reconstruct xa(t) from these samples using (10.2.4). It should be 
noticed, however, that (10.2.4) is equivalent to passing x(s)a(t) through an 
ideal lowpass filter (10.2.3). This filter is noncausal and unstable [since h(t) 
is not absolutely integrable]. In practice, we have to live with an approx- 
imation of h(t), and the reconstruction is not exact. If the sampling rate 
2π∕T exceeds the minimum required rate Θ by a significant margin, then the 
images in Fig. 10.2-3 are more widely separated from the main term. So the 
lowpass filter can have a wider transition bandwidth and the reconstruction 
can be done more accurately with a practical filter.
Unconventional Sampling

Instead of sampling the σ-BL signal xa(t) at the Nyquist rate Θ, sup- 
pose we sample xa(t) and its derivative xa(t) at half the Nyquist rate. It 
is possible to recover xa(t) from these two undersampled signals. This was 
actually shown in Problem 5.13, by formulating this as a two-channel ana- 
log QMF bank problem. By using an M-channel analog QMF formulation, 
it is possible to derive other extensions of the sampling theorem. For ex- 
ample, if we sample xa(t) and its M — 1 derivatives at the rate Θ/M, we 
can recover xa(t) from this information (Problem 10.7). As seen from these 
Problems, the reconstruction filters are unrealizable, and should be replaced 
with practical approximations. (To be fair, the lowpass reconstruction filter
(10.2.3) used in the case of uniform sampling is also unrealizable.) In the 
next subsection, we will obtain the discrete-time analog of this result, called 
the difference-sampling theorem. In contrast to the continuous-time case, 
this theorem involves practical (in fact FIR) reconstruction filters.

Another generalization of sampling is the so-called nonuniform sam- 
pling, demonstrated in Fig. 10.2-4. Here the samples are spaced 'too far

† This assumes, of course, that no further information is available about 
xa(t) except that it is σ-BL. If this is not true, then the situation is different. 
For example, if xa(t) is known to be a sinusoid A sin(ω0t + β), then it can be 
recovered from a finite number of samples since we need to extract only three 
pieces of information (A, ω0, and β) from the samples! Similar comment 
holds if xa(t) is known to be a sum of finite number of sinusoids.
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apart' (compared to Nyquist rate Θ) in some regions and 'too close' in some 
regions. Yet, theory has it [Jerri, 1977] that we can recover xa(t) from such 
samples as long as the 'average sampling rate' ≥ Θ. (A special case is the 
situation when only the past values of xa(t) are sampled at the rate 2Θ!) We 
will not prove this general result, as it does not place in evidence practical 
reconstruction techniques. In Sec. 10.2.2 we prove more practical special 
cases, for which reconstruction techniques can be found based on a FIR 
digital filter bank approach.

Figure 10.2-4 Nonuniform sampling of xa(t).

10.2.1 Difference Sampling Theorems for Sequences
We will now discuss difference sampling theorems, which can be considered 
as discrete time counterparts of derivative sampling theorems. We begin 
with an example.

These are the two-fold decimated versions of x(n) and its first-difference. 
Can we recover x(n) from these two undersampled sequences? [Evi­
dently, the number of samples per unit time, counting both the signals 
y0(n) and y1(n), is the same as that for x(n).] The even numbered sam­
ples of x(n) are already available in y0(n). It only remains to see if 
the odd numbered samples can be recovered from y1(n). Now y1(n) has 
samples
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Example 10.2.1
Let x(n) be an arbitrary sequence, and let x1(n) denote its first differ- 
ence, i.e.,

(10.2.5)
Consider the two sequences

(10.2.6)

(10.2.7)

From this it is clear that we can recover all odd-numbered samples of 
x(n) by subtracting out the even-numbered samples from these differ- 
ences.



A more systematic approach will help us to extend this idea to the 
case of higher order differences. For this we view the problem as a two 
channel QMF problem, as shown in Fig. 10.2-5. The analysis filters 
are H0(z) = 1, and H1(z) = 1 — z-1 (representing the first-difference 
operation). The aim is to find synthesis filters F0(z), F1(z) such that we 
have perfect reconstruction. This is an easy problem and is made easier 
by use of the polyphase approach. Thus, we can redraw the system as 
in Fig. 10.2-6, where

(10.2.8)

It is clear that the choice R = E-1 results in perfect recovery, that is, 
x(n) = x(n -1). It is readily verified that the matrix E is its own inverse, 
so we take

(10.2.9)

The synthesis filters are now computed according to

(10.2.10)

This simplifies to F0(z) = 1+z-1 and F1(z) = —1. If these filters are used 
in Fig. 10.2-5, we have perfect reconstruction that is, x(n) = x(n — 1).

Figure 10.2-5 The difference sampling and reconstruction, viewed as a QMF 
bank problem.

The above example can be considered to be the discrete-time equiva­
lent of the derivative sampling theorem discussed above for continuous-time 
signals. (Instead of derivatives, we have differences.) Notice however, that
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the reconstruction scheme is very simple (and realizable), involving only FIR 
filters.

One motivation for thinking about such 'sampling theorems' is demon- 
strated in Fig. 10.2-7, where x(n) is a slowly varying sequence, i.e., the 
adjacent samples differ by a 'very small' amount. Assume that each sample 
x(n) requires 16 bits for its representation. Let us say that the differences 
x(n) — x(n - 1), being very small, require only 8 bits for their representa­
tion. Now instead of 'storing' or 'transmitting' all samples of x(n) with 16 
bits per sample, we can store (two-fold) decimated versions of x(n) (16 bits 
per sample) and the first difference (8 bits per sample). This reduces the 
data rate to an average of 12 bits per sample. This is similar in principle to 
subband coding (Sec. 4.5.2).

Figure 10.2-7 (a) A slowly varying signal x(n), and (b) binary representations
for x(n) and its first difference.

Extension to Higher Order Differences
Can we extend this idea for higher differences? We can define the second 

difference in terms of the first difference x1(n) as x2(n) = x1(n) — x1(n — 1), 
and so on. Thus, let xk(n), 1 ≤ k ≤ M —1 denote the first M — 1 differences of 
the signal x(n). We wish to recover x(n) from the M-fold decimated versions

so that the kth difference operator is the transfer function
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(10.2.11)

[For k = 0 we define x0(n) = x(n), i.e., the original sequence.] Once again, 
this problem can be handled using the filter-bank approach. For this note 
that the kth difference xk(n) has the z-transform

(10.2.12)

(10.2.13)



Thus the difference sampling scheme can be represented by a maximally 
decimated analysis bank (Fig. 10.2-8). If this is redrawn using the polyphase 
notation (Sec. 5.5), the E(z) matrix is a constant given by

(10.2.14)

Figure 10.2-8 The difference sampling and reconstruction, posed as a QMF 
problem.
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The rows of this M × M matrix are coefficients of (1 — z-1)k, which are the 
binomial coefficients with alternating sign. It can be shown (see below) that 
this matrix is its own inverse so that we can take R(z) = E in Fig. 5.5-3(b), 
for perfect reconstruction. In other words, if the synthesis filters are chosen 
as

(10.2.15)

the reconstructed signal is given by x(n) = x(n — M + 1).
Proof that E is its own inverse. By definition, E has the following 

property:
(10.2.16)

where v(x) ≜ [1 x . . . xM-1]T. From this we obtain

(10.2.17)



The matrix indicated as V is an M × M Vandermonde matrix and is non- 
singular if xi are distinct (Appendix A). So it can be canceled in the above 
equation, yielding E2 = I, i.e., E-1 = E. ▽ ▽ ▽

The decimated signals from which we wish to recover x(n) are y0(n) = 
x(3n), y1(n) = x1(3n), y2(n) = x2(3n). The reconstruction is done using 
the synthesis bank

(10.2.20)

so that F0(z) = 1 + z-1 + z-2, F1(z) = — 2 — z-1, and F2(z) = 1.

Note that the synthesis filters are FIR, and that the highest required 
order is equal to M - 1. Compare this with the case of derivative sampling 
[e.g., Problem 5.13(d)] of continuous-time signals, where the synthesis filters 
are unrealizable. To be fair, it should be mentioned that (1 - z-1) is only 
an approximate equivalent of the derivative operation; in fact if we perform 
bilinear transformation of H(s) = s (which is a differentiator), we obtain 
(1 — z-1)∕(1 + z-1), which (is unstable and) represents the exact discrete- 
time equivalent of differentiation.

10.2.2 Nonuniform Sampling Theorems for Sequences
We now explain the concept of nonuniform “sampling” of sequences with 
an example. Consider a σ-BL sequence (i.e., a sequence x(n) such that 
X(ejω) = 0 for σ ≤ ∣ω∣ ≤ π) with σ = 2π∕3. Fig. 10.2-9(a) shows an 
example. In Sec. 4.1.1 we showed how we can decimate such a sequence 
by the noninteger quantity 3/2 to obtain the full band signal Y(ejω) (Fig. 
4.1-10). Fig. 4.1.-11 also shows the two signals x(n) and y(n) in the time 
domain. This can be considered to be uniform decimation by a factor of 3/2, 
since the samples y(n) are still uniformly spaced in time.
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Since this holds for all x, we conclude, in particular, that

(10.2.18)

Example 10.2.2
Consider the case when M = 3. The difference signals are

(10.2.19)



Figure 10.2-9 (a) Fourier transform of a bandlimited sequence, (b) the sequence 
x(n), and (c) a nonuniformly decimated version.

Figure 10.2-10 The nonuniform decimation and reconstruction, posed as a 
QMF problem.

Figure 10.2-11 Demonstration of alias components of X(ejω), which appear in 
nonuniform decimation.

But there is another (simpler) way to 'decimate' x(n) by a factor 3/2, 
which can be described as follows: (i) divide the time axis into intervals of 
length three, (ii) retain the first two samples in each interval, and discard 
the third. This is demonstrated in Fig. 10.2-9. The resulting sequence is
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a nonuniformly decimated version of x(n). Can we recover x(n) from this 
version?

The answer is in the affirmative. We will show that this problem can 
be formulated as a multirate digital filter bank problem. The reconstruction 
of x(n) from the nonuniformly decimated version is equivalent to finding a 
set of synthesis filters for perfect reconstruction. (The analysis filters are 
predetermined and are not under our control; see below). These synthesis 
filters are ideal (unrealizable) filters, but can actually be approximated using 
linear phase FIR filters, as we will demonstrate with practical designs.
Filter Bank Model for Nonuniform Sampling

Consider Fig. 10.2-10 which is a 3-channel maximally decimated filter 
bank, in which only two of the analysis filters are nonzero. More precisely 
we have H0(z) = 1, H1(z) = z-1, and H2(z) = 0. The analysis bank can 
be considered to be a nonuniform decimator, retaining only the samples 
indicated in Fig. 10-2-9(c). Our aim is to find synthesis filters such that 
x(n) = x(n), under the assumption that x(n) is bandlimited to ∣ω∣ < 2π∕3. 
(Without the bandlimited constraint we cannot do this because we have only 
two-thirds of the original number of samples per unit time.)
Solving for Synthesis Filters

First recall that the most general equations for perfect reconstruction 
are given by the AC matrix formulation (Sec. 5.4.3). From this we obtain

(10.2.21)

(10.2.22)

In general we cannot solve for the two filters F0(z), F1(z) to satisfy the 
three conditions (10.2.22). We can, however, make further progress by using 
the bandlimited property of x(n). First, we constrain F0(z) and F1(z) such 
that
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(10.2.23)

(We are discussing only ideal filters for the moment). This eliminates any 
alias components which occupy the region outside the band of X(ejω). It 
only remains to cancel aliasing in the region ∣ω∣ < 2π∕3.

Figure 10.2-11 demonstrates typical plots of X(ejωWk), for k = 0, 1 and 
2. In the frequency region 0 ≤ ω < 4π∕3, the quantity X(ejwW2) is zero,



so that the third equation in (10.2.21) need not be satisfied. So we have to 
choose F0(z) and F1(z) such that

(10.2.24)

for 0 ≤ ω < 2π∕3. Similarly the alias component X(ejωW) is zero in the 
region —4π∕3 < ω ≤ 0 so that the middle equation in (10.2.21) need not be 
considered in this region. So F0(z) and F1(z) have to satisfy

(10.2.25)

for -2π∕3 < ω ≤ 0. Summarizing, we choose F0(z) and F1(z) to satisfy the 
two equations (10.2.24) if 0 ≤ ω < 2π∕3, and the two equations (10.2.25) if 
—2π∕3 < ω ≤ 0. For ω outside either of these regions, we set F0(ejω) = 0, 
and F1(ejω) = 0 as stated earlier.

After solving the above two sets of equations we arrive at the following 
results:

(10.2.26)

and

(10.2.27)

Here c and s are defined as c = cos(2π∕3), s = -sin(2π∕3). Notice that 
the responses F0(ejω) and F1(ejω) are piecewise constants. Essentially, the 
frequency axis has been divided into three regions of equal widths (Fig. 10.2- 
12), and Fk(ejω) takes on a fixed (complex) value in each of these regions. 
We say that Fk(z) is a multilevel filter (Sec. 4.6.5.)
Implementing the Multilevel Synthesis Filters

The above solutions can be expressed neatly in terms of an ideal lowpass 
filter GL(ejω) and an ideal Hilbert transformer GH(ejω) (defined below). 
The ideal lowpass filter is

(10.2.28)

and the ideal Hilbert transformer [Rabiner and Gold, 1975] is

(10.2.29)
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Figure 10.2-12 The interval —π ≤ ω ≤ π is divided into three equal regions. 
Fk(ejω) is constant in each region. Also it has conjugate symmetry with respect 
to zero-frequency.

Figure 10.2-13 Definition of the ideal filters GL(ejω) and GH(ejω).

In practice, we can approximate the zero-phase filters GL(z) and GH(z) 
with real coefficient linear phase FIR filters GL(z) and GH(z) by using the 
McClellan-Parks algorithm as elaborated in Rabiner and Gold [1975]. As- 
suming that GH(z) has order 2K, we have GH(ejω) ≈ e-jωκ × GH(ejω). So 
we can implement the synthesis bank as in Fig. 10.2-14. The extra delay 
z-K in the top branch compensates for the group delay due to GH(z). The 
synthesis filters in this practical structure are

(10.2.31)
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(see Fig. 10.2-13). It is then clear that the above synthesis filters can be 
expressed as

(10.2.30)



This distortion is free from GH(z)! This shows that the approximation error 
involved in the design of the Hilbert transformer does not affect T(z); it 
affects only the extent to which alias-terms have been canceled. The lowpass 
filter GL(z) completely determines the amplitude and phase distortions in 
the reconstructed signal x(n).

Summarizing, the Hilbert transformer GH(z) controls the extent to 
which aliasing has been canceled in the range ∣ω∣ < 2π∕3, whereas the low- 
pass filter GL(z) suppresses aliasing components in the range ∣ω∣ > 2π∕3. 
The passband ripple of GL(z) completely determines the amplitude distor- 
tion in x(n). There is no phase distortion if GL(z) (hence T(z)) has linear 
phase.

Figure 10.2-14 The complete analysis/synthesis system representing nonuni- 
form decimation and reconstruction.

Figure 10.2-15 Defining bandedges for the real coefficient linear phase filters 
GL(z) and GH(z).
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Reconstruction Error Created by Filter Approximation
The practical approximations (10.2.31) to the ideal solution evidently 

result in reconstruction error, so that the filter bank in Fig. 10.2-14 is not 
a perfect reconstruction system. For any maximally decimated filter bank, 
we know that

(10.2.32)
If aliasing terms have been sufficiently attenuated we have X(z) ≈ T(z)X(z), 
and the distortion function T(z) reduces to

(10.2.33)



Design Example 10.2.1

We now demonstrate these ideas with an example. Figure 10.2-15 shows 
the definitions of the bandedges for GL(z) and GH(z), both of which are 
real coefficient linear phase filters. In Fig. 10.2-16(a) we show the mag- 
nitude ∣X(ejω)∣ for our test sequence x(n), which is a real finite length 
sequence of length 71. The plot shows that x(n) is (approximately) ban- 
dlimited to ∣ω∣ < 2π∕3. We will reconstruct x(n) from the nonuniform sub- 
set of samples indicated in Fig. 10.2-9(c), by using the synthesis bank in 
Fig. 10.2-14. GL(z) is taken to be of order 72, and has following features: 
ωp = 0.58π, ωs = 0.70π, and stopband attenuation > 55dB. The Hilbert 
transformer GH(z) has order 50, with θp = 0.04π and θs = 0.96π. The mag­
nitude responses of GL(z) and GH(z) are shown in the figure. With these 
filters used in the structure of Fig. 10.2-14, the quantity ∣X(ejω)∣ for the 
reconstructed signal is shown in Fig. 10.2-16(c), which is in good agreement 
with ∣X(ejω)∣. Since T(z) has linear phase, there is no phase distortion, so 
we conclude that x(n) is indeed a good approximation of x(n).

As explained above, the Hilbert transformer serves to eliminate aliasing 
in the signal band. But a practical Hilbert transformer has to have a transi- 
tion bandwidth around zero-frequency (because GH(1) = 0; see Rabiner and 
Gold [1975]). If this bandwidth around zero-frequency is large, it results in 
poor reconstruction.

Efficieny of Reconstruction

The above reconstruction scheme is not the most efficient technique for 
the purpose, and is meant only to demonstrate the fundamental principles 
underlying the recovery of a signal from nonuniform samples. For more 
efficient (polyphase) techniques, and for further detailed comparison between 
various techniques, the reader is referred to Vaidyanathan and Liu [1990].

Generalizations

Several generalizations of the above approach are available. Thus con- 
sider the system of Fig. 10.2-17. Here we have an M-channel filter bank in 
which only the first L analysis filters are nonzero. And these nonzero filters 
are delay elements of the form z-nk,0 ≤ k ≤ L — 1, with

(10.2.34)

The effect of the analysis bank is merely to retain the subset of samples

(10.2.35)
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Figure 10.2-16 Design example 10.2.1. (a) ∣X(ejω)∣, (b) filter responses, and
(c) ∣X(ejω)∣.
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Figure 10.2-17 Generalization of nonuniform decimation and reconstruction.

This means that the time-index is divided into intervals of length M, and 
L samples are retained in each interval. (The time indices for these L samples 
are equal to — nk modulo M.) The analysis bank, therefore, is a nonuniform 
decimator. If the signal x(n) is bandlimited to the region ∣ω∣ < Lπ∕M, we 
can find the L synthesis filters Fk(z) such that there is perfect recovery of 
x(n) from the nonuniformly decimated version! These synthesis filters, once 
again, turn out to be multilevel filters. (More precisely, if we imagine the 
frequency region 0 ≤ ω < 2π to be divided into M contiguous intervals, then 
Fk(ejω) is a (complex) constant in each interval.) So these are ideal filters 
and must be approximated by practical designs.

A further generalization arises when we consider multiband signals, that 
is, signals that are not bandlimited, but limited to a union of bands in 
the frequency domain. (For example, X(ejω) could be zero everywhere 
except in 0 ≤ ω ≤ 0.1π and 0.4π ≤ ω ≤ 1.3π.) The nonuniform decima- 
tion/reconstruction process works in this case as well. Many of these ideas 
also generalize to the case of two dimensional signals [Vaidyanathan and Liu, 
1990].
Relation to Sampling of a Continuous-Time Signal

The signal x(n), which is bandlimited to Lπ∕M, can be considered to 
be the oversampled version of a continuous-time signal xa(t). Here xa(t) is 
sampled at the rate 2π∕T, which is M∕L times the Nyquist rate Θ. The set 
of nonuniformly decimated samples (10.2.35) can be considered to be a set 
of nonuniformly sampled values of xa(t), (which is a subset of the original 
oversampled values). The nonuniformity is such that the average number 
of samples per unit time is reduced by the factor M∕L, so that it becomes 
equal to the Nyquist rate Θ.

Evidently the nonuniform pattern repeats periodically after every L 
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samples (see Fig. 10.2-9(c)). In this sense, the above results address only a 
special case of nonuniform sampling, namely the case of recurring or periodic 
nonuniformity. It should also be noted that, in our special case, the locations 
of the nonuniformly spaced samples are not permitted to be arbitrary; if 
xa(t1) and xa(t2) are two samples in the nonuniformly spaced system, then 
t1∕t2 is required to be rational.
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PROBLEMS

10.1. Consider the scalar system H(z) = 1∕(1 — az-1). Write down the general form 
of the blocked version for arbitrary block size Μ.

10.2. Verify that the 2 × 2 matrix in (10.1.10) is paraunitary.
10.3. Let P0(z) and P1(z) be M × M pseudocirculants. Prove that the product 

P0(z)P1(z) is pseudocirculant, and that P0(z)P1(z) = P1(z)P0(z). (Hint. A 
pseudocirculant is related to the blocked version of an LTI system.)

10.4. Let Eℓ(z), 0 ≤ ℓ ≤ M — 1 be the Type 1 polyphase components of H(z). Derive 
an expression for the polyphase components of z-kH(z). Assume 0 ≤ k ≤ M —1 
for simplicity.

10.5. Show that the polyphase matrix E(z) for the analysis bank of Fig. 10.1-6 has 
the form (10.1.23) for M = 3, where Gn,ℓ(z) are the polyphase components 
defined in (10.1.22). Also, obtain the form of E(z) for arbitrary Μ.

10.6. A sequence x(n) is said to be bandlimited if X(ejω) = 0 for σ ≤ ∣ω∣ ≤ π 
for some σ < π. Show that x(n) cannot be bandlimited if it is causal (unless 
x(n) = 0 for all n). Hint. Assume x(n) is causal and bandlimited. Construct 
a sequence y(n) from x(n) such that it is also causal, but bandlimited to a 
narrower band. Keep repeating till ...
Another hint. First try with the assumption σ < π∕2 if you wish!

10.7. Consider the following system which is the continuous-time analog of the M- 
channel filter bank.

Figure P10-7

The continuous-time signal xa(t), which we assume to be σ-BL, is passed 
through M analog filters Ha,k(s), and then sampled at the rate 2π∕T1. (The 
sampler is defined precisely as in Problem 5.13.) The rate 2π∕T1 is equal to 
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Θ/M, where Θ ≜ 2σ is the Nyquist rate. Each of the sampled signals is in 
general subject to aliasing since it is not necessarily bandlimited. We assume 
Fa,k(jΩ) = 0 for ∣Ω∣ ≥ σ so that aliasing terms which fall outside the band of 
xa(t) are automatically eliminated.

a) Express Xa(jΩ) in terms of Xa(jΩ) and the filters in the structure.
b) Suppose we are given the set of M analysis filters Ha,k(jΩ), and wish 

to find the M synthesis filters for perfect reconstruction. Show that the 
frequency region —σ ≤ Ω < σ can be divided into M intervals such that in 
each interval we have to solve M equations for the M unknowns Fa,k(jΩ).

c) Consider the special case where Ha,k(s) = sk. This means that the output 
of Ha,k(s) is the kth derivative of xa(t). Show that the M × M matrix 
which should (in principle) be inverted to obtain the M synthesis filters 
for perfect reconstruction is nonsingular. This proves the existence (but 
does not assert realizability!) of these synthesis filters, and gives a proof of 
the generalized derivative sampling theorem. (Hint. Review Vandermonde 
matrices from Appendix A).

10.8. Consider a sequence x(n) with ∣X(ejω)∣ = 0 for 3π∕4 ≤ ∣ω∣ ≤ π. It is clear 
that we can decimate it by 4/3 without losing information. Suppose we wish 
to perform nonuniform decimation as in Sec. 10.2.2. We can do so by using 
the analysis bank shown in Fig. P10-8(a).

Figure P10-8 (a), (b)

We wish to reconstruct x(n) by using the synthesis bank system shown. Assume
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Fk(ejω) = 0 for 3π∕4 ≤ ∣ω∣ ≤ π so that alias components outside the signal 
band are automatically removed.

a) Show how F0(z), F1(z) and F2(z) can be found, in order to provide perfect 
reconstruction. (Divide the frequency region into appropriate number of 
intervals, and solve 3 × 3 equations in each interval. Hint. even though 
there are several sets of 3 × 3 equations, you need to invert only one constant 
matrix, if you do things right). Show that Fk(ejω) can be expressed as

(P10.8a)

where GL1(z), GL2(z) are ideal lowpass filters with response shown in Fig. 
P10-8(b), and GH(z) is an ideal Hilbert transformer. Draw a structure for 
the synthesis bank using the filters GL1(z), GL2(z) and GH(z) as building 
blocks. In practice we would like to replace GL1(z), GL2(z) and GH(z) 
with causaI FIR linear phase approximations GL1(z), GL2(z) and GH(z) 
of orders NL1, NL2 and NH. Show how the expressions given in (P10.8b) 
should be modified to incorporate the group delays of these filters. (As­
sume filter orders are even where necessary.)
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where ak, bk, ck are (possibly complex) constants. Identify the constants 
ak, bk, ck for k = 0, 1, 2.

b) Show that the filters Fk(z) have real-valued impulse response.
c) Show that these filters can be expressed as

(P10.8b)



11

The wavelet transform 

and its relation to 

multirate filter banks

11.0 INTRODUCTION
In this chapter we study the wavelet transform, which has received a great 
deal of attention since the middle eighties. The mathematical aspects of 
wavelet transforms were introduced in Grossmann and Morlet [1984]. The 
topic has since been treated in considerable detail by several authors in the 
mathematics literature [Meyer, 1986], [Daubechies, 1988], [Mallat, 1989a,b], 
and [Strang, 1989], and a number of books have appeared [Coifman, et 
al., 1990], [Chui, 1991], [Daubechies, 1992]. The fundamental papers by 
Daubechies and by Mallat were influential in generating an unprecedented 
amount of activity in this area. Daubechies developed a systematic technique 
for generating finite-duration orthonormal wavelets, and also established the 
connection between continuous-time 'orthonormal wavelets’ and the digital 
filter bank studied in Sec. 5.3.6 (FIR power symmetric filter bank). This 
result on finite-duration orthonormal wavelets triggered considerable interest 
in the mathematics as well as the signal processing communities.

Wavelet transforms are closely related to tree structured digital filter 
banks, and hence to multiresolution analysis described in Sec. 5.8. We know 
that tree structured filter banks give rise to nonuniform filter bandwidths 
(Fig. 5.8-4) and nonuniform decimation ratios in the subbands. These two 
nonuniformities can be considered to be the fundamental ingredients of the 
wavelet transform.

Even before the wavelet transform was formally introduced, such non 
uniform filter banks were already employed in the speech processing litera- 
ture. See Nelson, et al. [1972], Schafer, et al. [1975], and pp. 301-303 of 
the text by Rabiner and Schafer [1978]. Also see McGee and Zhang [1990] 
for the design and use of such filter banks in music. Using nonuniform filter 
banks, one can exploit the decreasing resolution of the human ear at higher
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frequencies [Flanagan, 1972]. This nonuniform nature of the ear also ex- 
plains the evolution of the musical scale. Figure 11.1-1 demonstrates this, 
by showing the locations of the notes c and g in the major diatonic scale, 
for several octaves. On a logarithmic scale, these would appear to be nearly 
equispaced. The notes in between c and g are not shown, but it is clear that 
they become sparser and sparser as the frequency increases.

Figure 11.1-1 Pitch-frequencies corresponding to the keys 'c' and 'g' in a piano. 
These correspond to the major diatonic scale of western music. The spacing is 
very nonuniform, and will appear to be almost uniform on a logarithmic scale.

The literature on wavelet transforms is extensive, but most of it re- 
quires a level of mathematical preparation which is perhaps unsuitable for 
many signal-processing experts. In the signal processing literature, a num­
ber of authors have explored the relation between wavelets and multirate 
filter banks. Tutorial treatments can be found in the magazine articles by 
Rioul and Vetterli [1991], and by Hlawatsch and Boudreaux-Bartels [1992]. 
Further references in the signal processing literature are Evangelista [1989], 
Wornell [1990], Gopinath and Burrus [1991], Vaidyanathan [1991c], Soman 
and Vaidyanathan [1991 and 1992a,b], Tewfik and Kim [1992], Akansu and 
Liu [1991], Akansu, et al. [1992], Wornell and Oppenheim [1992], and Vet- 
terli and Herley [1992]. In this chapter we will develop the basic ideas of 
wavelet transforms in a manner suitable for the signal processing person who 
understands the traditional Fourier transform, and has some familiarity with 
filter banks.

11.1 BACKGROUND AND OUTLINE
The conventional discrete-time Fourier transform pair is given by
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(11.1.1)

(11.1.2)

If x(n) is a single frequency signal,† that is, x(n) = ejω0n then
(11.1.3)

† A signal of the form cos(ω0n + θ) is sometimes referred to as a signal



We say that the transform is completely localized at ω0. In contrast, the time 
domain plot of ejω0n is infinite in extent (in fact its magnitude is unity for 
all n). This is consistent with the uncertainty principle which says (heuris- 
tically) that if x(n) has a 'wide' support, then X(ejω) has 'narrow' support 
in — π ≤ ω < π.

In Sec. 11.2.4 a more quantitative statement of the uncertainty principle 
will be presented. The principle is most easily demonstrated for the Fourier 
transform pair in Fig. 11.1-2. As N increases, the signal x(n) becomes 
less localized, but the main lobe of the Fourier transform gets narrower. As 
N approaches infinity, the transform looks more and more like the impulse 
(Dirac delta) function.

The above localization property of the Fourier transform rejects the 
notion of "frequency that varies with time." But such a notion is often useful. 
For example, as the musician passes from a low to a high note, the 'frequency' 
(more accurately the 'pitch') is said to change in real time. According to 
Fourier transform theory this is meaningless because a single frequency is 
always associated with infinite time duration. If we apply Fourier analysis 
to the signal shown in Fig. 11.1-3(a) (where “frequency” makes an abrupt 
transition), we find that it is composed of an infinite number of frequencies. 
Another example is shown in Fig. 11.1-3(b) (a rising signal). In the regions 
t < 0 and t > 1 we naturally wish to think of this as a 'zero frequency signal’, 
whereas in 0 < t < 1 the signal has high frequency components. For signals of 
the above kind, it is desirable to find a time-frequency representation where 
the notion of ‘frequency changing with time’ can be formally accomodated.

The short-time Fourier transform (or time dependent Fourier trans 
form), abbreviated as STFT, is a tool that fills this need [Gabor, 1946], [Ra­
biner and Schafer, 1978], [Portnoff, 1980], [Oppenheim and Schafer, 1989]. 
Here the signal x(n) is multiplied with a window (typically of finite dura­
tion), and then the Fourier transform computed. The window is then shifted 
in uniform amounts, and the above computation repeated. We will see that

with frequency ω0. However, this is a superposition of two single-frequency 
signals, viz., ejω0n and e-jω0n.
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Figure 11.1-2 A Fourier transform pair, demonstrating the uncertainty princi- 
ple.



the computation of the STFT is equivalent to the implementation of a filter 
bank where all the filters have the same bandwidth, and each filter is followed 
by a decimator. The duration of the window governs the time localization of 
the analysis, the bandwidths of the filters govern the frequency resolution, 
and the decimator governs the stepsize for window movement.

The wavelet transform, which is a more recent advance, generalizes 
the STFT by incorporating two novel features into its definition. First it 
permits nonuniform bandwidths (as in a tree structured filter bank system; 
see Fig. 5.8-4), so that the resolution is higher (i.e., bandwidth smaller) at 
lower frequencies. This makes the "fractional resolution" identical for all 
center-frequencies. Second, the nonuniform bandwidths automatically lead 
us to use different decimators for the different filter outputs. Such nonuni- 
form systems are well-suited for the processing of sound signals, because of 
the decreasing resolution of the human ear at higher frequencies.

The traditional Fourier transform representation (2.1.21) can be re­
garded as an expansion of xa(t) in terms of the basis functions ejΩt. (It 
will be easier to switch our discussion to continuous-time for a while.) The 
basis functions (which are functions of time) are parameterized by the fre- 
quency variable Ω. We will see that the short-time Fourier transform is a 
representation of a signal in terms of a different class of basis functions, 
indexed by two variables, namely time as well as frequency.

The wavelet transform is a further modification of this, which allows 
nonuniform frequency resolution. We will see that, in the wavelet trans- 
formation, the basis functions have a very unusual property, namely, all
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Figure 11.1-3 (a) A signal whose 'frequency' changes abruptly, and (b) a rising 
signal.



the basis functions are generated by dilation and shift of a single function 
φ(t) (called a mother wavelet). Thus, instead of representing xa(t) as a 
linear combination of the functions ejΩt (as does the Fourier transform rep­
resentation), the wavelet transform attempts to represent xa(t) as a linear 
combination of
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where k and ℓ are integers. (This is only an example.) That is,

This double summation should be compared with the traditional Fourier 
transform representation

which is a single integral, in the frequency variabe Ω. In the wavelet expan­
sion, k plays the role of 'frequency' and ℓ plays the role of 'time'. The index 
variables (k,l) are integers, unlike 'Ω' which is a continuous variable in the 
Fourier expansion.

In a manner analogous to the orthonormality of the basis functions 
{ejΩt} in the Fourier representation, we will later discuss orthonormality of 
the basis functions {φkℓ(t)}. As a preview example, the functions in Fig. 
11.5-7 represent an orthonormal basis (the Haar basis) for the set of finite 
energy functions.

Time-frequency representations. The tools we develop in this chap­
ter come under the general class of "time-frequency representations." In 
these representations, the signal is represented in a domain which is a hybrid 
between time and frequency, for example, a time-localized Fourier transform 
with the center of localization shifted uniformly. We will see later that the 
double index "kℓ" in φkℓ(t) above represents time-frequency.

The use of time-frequency representations reflects the philosophy that 
some aspects of a signal are most conveniently represented in the time do- 
main, whereas there are certain other aspects which are best represented in 
terms of frequency. Consider, for example, the two signals shown in Fig. 
11.1-4. Both of these have an underlying periodic waveform p(t), for exam­
ple a musical note of fixed pitch. The envelopes of the signals [e1(t) and 
e2(t)] are, however, different. The first signal has a rapid rise followed by 
a steady state, and then a slow decay. The second envelope has a totally 
different behavior. (The envelope for a given note is typically determined by 
the source, for example, the musical instrument chosen). While it is useful 
to regard the pitch of the note in terms of impulses in the Fourier transform



domain, it is more convenient to describe the envelope in the time domain, 
as directly preceived by the ear.

Chapter Outline

In view of the philosophy outlined above, we will first develop the short-time 
Fourier transform (STFT) and then the wavelet transform. In Sec. 11.2 we 
introduce the discrete time STFT and inverse STFT, and then develop the 
filter bank interpretation. In Sec. 11.2.4 we will briefly summarize the 
main features of the continuous-time STFT. We will show in Sec. 11.3.1 
that (continuous-time) wavelet transforms can be obtained by performing 
two simple modifications to the STFT. This will also place in evidence the 
relation to filter banks.

We then introduce, in Sec. 11.3.3, the discrete-time wavelet transform 
(which cannot be obtained merely by sampling the continuous time version) 
and establish the connection to tree-structured, maximally decimated filter 
banks. The fundamental relation between paraunitary filter banks (Chap. 
6) and the so-called “orthonormal wavelet decomposition” will be developed 
in Sec. 11.4.

In Sec. 11.5 we return to continuous time wavelets, and establish the 
relation between continuous time orthonormal wavelets and discrete time pa­
raunitary filter banks. This section will show how to systematically generate 
finite duration orthonormal basis functions φkℓ(t) for the representation of fi- 
nite energy functions. Finally, in Sec. 11.5.4 we will describe a technique for 
generating orthonormal wavelets with deeper properties, such as regularity.

We will see that the continuous time wavelet functions satisfy some 
very interesting mathematical properties (e.g., self-similarity) which are not 
relevant in the discrete time case. For such reasons, the discrete time coun­
terpart is sometimes not regarded as “wavelets” but merely as “filter banks.” 
In any case, both the continuous- and discrete-time versions share several
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Figure 11.1-4 Two signal pulses, with nearly the same pitch, but different 
envelopes.



common properties (sufficient for many applications), when viewed in terms 
of the frequency domain quantities and subsampling operations.

Notice that our presentation in this chapter has the following order: 
(a) discrete-time STFT, (b) continuous-time STFT, (c) continuous-time 
wavelets, (d) discrete-time wavelets, and (e) connection between continuous 
time wavelets and discrete-time filter banks. We have opted for this order­
ing because there appears to be a natural "flow" between two successive 
items on this list. Historically, however, items (b) and (a) should have been 
switched, as the continuous-time STFT has been known since the middle 
forties [Gabor, 1946].

11.2 THE SHORT-TIME FOURIER TRANSFORM

In Sec. 4.1.2 we introduced the DFT filter bank (Fig. 4.1-16). This system 
merely computes the DFT of M successive samples of the input, and then 
repeats the operation for the next set of M samples. We saw that this 
could be interpreted in terms of a window that slides past the data. This 
could also be interpreted in terms of a bank of bandpass filters with 13 dB 
stopband attenuation. We also generalized this to the case of a uniform 
DFT filter bank (Fig. 4.3-5), with the advantage that the filters could now 
offer sharper cutoff and higher attenuation. These systems are essentially 
implementations of the so called short-time Fourier transform (STFT) to be 
described now.

In short-time Fourier transformation, a signal x(n) is multiplied with 
a window v(n) (typically finite in duration). See Fig. 11.2-1. The Fourier 
transform of the product x(n)v(n) is computed, and then the window v(n) 
is shifted in time, and the Fourier transform of the product computed again. 
This operation results in a separate Fourier transformation for each loca- 
tion m of the center of the window. In other words, we obtain a function 
XSTFT(ejω, m) of two variables ω and m. The frequency variable ω is con­
tinuous, and takes the usual range -π ≤ ω < π. The shift-variable m is 
typically an integer multiple of some fixed integer K. Figure 11.2-2 shows 
a two dimensional plot which represents the idea. These are often called 
spectrograms. See Oppenheim and Schafer [1989] for real-time examples of 
spectrograms. (Also notice the cover picture in that reference!)

Essentially, for any fixed m, the window captures the features of the sig­
nal x(n) in the local region around m. The window therefore helps to localize
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Figure 11.2-1 Pertaining to the short-time Fourier transform.



the time domain data, before obtaining the frequency domain information. 
From the above discussions it is clear that the short time Fourier transform 
can be written mathematically as

If we set v(n) = 1 for all n, this reduces to the traditional Fourier transform 
for any choice of m.

Existence of the STFT. The traditional Fourier transform (11.1.1) 
exists only if the signal x(n) satisfies some subtle mathematical conditions 
[Oppenheim, Willsky and Young, 1983]. In a practical STFT system, how­
ever, v(n) has finite duration, so that the above summation always converges 
(i.e., the STFT exists). Thus many of the subtle mathematical questions 
which are raised in connection with the Fourier transform do not arise in the 
STFT regime.

11.2.1 Interpretation Using Bandpass Filters
For a variety of reasons, it is convenient to interpret the STFT using the 
notion of filter banks. In addition to enhancing insight, this also gives a prac­
tical scheme for implementation. Furthermore this interpretation helps us 
to generalize the STFT to obtain more flexibility (Sec. 11.2.3). Finally, the 
theory of perfect reconstruction filter banks can be used to obtain practical 
“inversion” formulas for STFT.
Traditional Fourier Transform as a Bank of Filters

We will begin by presenting a filter bank interpretation for the tra- 
ditional Fourier transform (11.1.1). The evaluation of X(ejω) at a fixed 
frequency ω0 can be pictorially represented as in Fig. 11.2-3(a). This is a 
cascade of two systems.
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(11.2.1)

Figure 11.2-2 Demonstrating XSTFT(ejω, m) for m = 0, K, 2K . . .



1. The modulator e-jω0n. This performs a frequency-shift. More specif­
ically, it shifts the Fourier transform towards the left by the amount 
ω0, so that the zero-frequency value of S(ejω) is equal to X(ejω0) (Fig. 
11.2-3(b)).

2. The LTI system H(ejω). This has impulse response h(n) = 1 for all n. 
This system is evidently unstable (Sec. 2.1.2), but let us ignore these 
fine details for the moment. Its “frequency response” is

Figure 11.2-3 (a) Representation of Fourier transformation in terms of linear
systems. (b) Frequency domain quantitites, sketched for an arbitrary example.

Summarizing, the process of evaluating X(ejω0) can be looked upon as 
a linear system, which takes the input x(n) and produces a constant output
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where δa(.) is the Dirac delta function which was defined at the begin­
ning of Sec. 2.1. † Thus, H(ejω) is an ideal "lowpass" filter, which 
"passes" only the zero-frequency signal. Every other frequency is com­
pletely suppressed. This filter can be regarded as the limit, as ∆ω → 0, 
of an ideal filter with response 2π∕∆ω for ∣ω∣ ≤ ∆ω∕2 and zero else­
where.
The output y(n) of the system is therefore a zero-frequency signal with 

Y(ejω) = 2πX(ejω0)δa(ω) for -π ≤ ω < π, that is,

† Of course, the Fourier transform H(ejω) repeats periodically with period 
2π, but we will not explicity show it in the formulas.



y(n) whose value is equal to X(ejω0) for all time n. Thus, any sample of y(n) 
can be taken to be the value of X(ejω0). The Fourier transform operator 
which evaluates X(ejω) for all ω is, therefore, a bank of modulators followed 
by filters. This system has an uncountably infinite number of channels.
The STFT as a Bank of Filters

From its definition it is clear that the STFT can be represented as in 
Fig. 11.2-4(a). In this figure, ω0 and m are constants. So y(n) is constant for 
all n, with y(n) = XSTFT(ejω0, m). To gain further insight, let us rearrange 
the definition to obtain

Figure 11.2-4(b) shows this interpretation, where the indices k and m 
have been replaced with n, to be consistent with standard notations (Sec. 
2.1.2). This is a linear system with two parts. The first is an LTI filter 
with impulse response v(-n)ejω0n. This is followed by the modulator e-jω0n 
(linear time varying device). The output y0(n) of this system is now a 
function of n [unlike in Fig. 11.2-4(a)]. For any specific value of n, say n = m, 
this output represents the Fourier transform of x(.) "in the neighbourhood 
of m," because m represents the location of the window v(k) in the time 
domain. For the special case where v(k) = 1 for all k, this output becomes 
a constant [equal to the traditional Fourier transform X(ejω0)] for all n.

Figure 11.2-4 (a) The STFT represented in terms of a linear system and (b) a
rearrangement.

In most applications, v(n) has a lowpass transform V(ejω). So v(—n) 
has the lowpass transform V(e-jω). The modulated version v(-n)ejω0n rep- 
resents a bandpass filter V(e-j(ω-ω0)). See Fig. 11.2-5. The output sequence

466 Chap. 11. Wavelet transforms and filter banks 

(11.2.2)



t0(n) in Fig. 11.2-4(b) is, therefore, the output of a bandpass filter, whose 
passband is centered around ω0. The effect of the modulator e-jω0n is merely 
to re-center this around zero frequency.

For every frequency ω0 the STFT performs the filtering operation of 
Fig. 11.2-4(b) to produce an output sequence XSTFT(ejω0, n). So the STFT 
can be looked upon as a filter bank, with infinite number of filters (one 
'per frequency'). In practice, we are interested in computing the Fourier 
transform at a discrete set of frequencies

(11.2.3)
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Figure 11.2-5 Demonstration of how the STFT works. (a) X(ejω), (b) the 
window-transform and its shifted version, (c) output of LTI filter and (d) tradi- 
tional Fourier transform of XSTFT(ejω0, n).



In this case the STFT reduces to a filter bank with M bandpass filters Hk(z) 
with responses Hk(ejω) = V(e-j(ω-ωk)) (and followed by modulators). This 
is shown in Fig. 11.2-6. The passband of Hk(ejω) is centered around ωk. 
The output signals yk(n) represent the STFT coefficients.

Figure 11.2-6 The STFT operation viewed as a filter bank. (a) V(e-jω) and 
shifted versions, and (b) the filter bank.

The uniform DFT bank. If the frequencies ωk are uniformly spaced, 
then the above system becomes the uniform DFT bank (Sec. 4.1.2). In this 
system the M filters are related as
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(11.2.4)

where W = e-j2π/M. This means that the frequency responses are uniformly 
shifted versions of H0(ejω), i.e.,

(11.2.5)

The unshifted filter is H0(ejω) = V(e-jω). In Fig. 4.3-5 we saw an im­
plementation of this set of filters, in terms of the polyphase components



It is now clear that the uniform DFT bank is a device to compute the short- 
time Fourier transform at uniformly spaced frequencies. In particular if the 
polyphase components are replaced with unity [i.e., Ek(z) = 1 for all k], 
then the system merely computes the DFT of a block of M samples (Fig. 
4.1-16). In this case v(n) is a rectangular window of length Μ.
Choice of v(n), and Time-Frequency Tradeoff

Unlike the Fourier transform, the STFT is not uniquely defined unless 
we specify the window v(n). The fact that v(n) can be chosen by the user 
offers a great deal of flexibility. The choice of v(n) essentially governs the 
tradeoff between 'time localization' and 'frequency resolution' as explained 
next.

The signal y0(m) can be considered to represent the change or 'evolu­
tion' of the Fourier transform of x(n), evaluated around frequency ω0. Thus 
y0(m) represents the local information, around time m (since m represents 
the location of the window v(k) in the time domain) around frequency ω0. It 
is clear that as V(ejω) becomes narrower, the bandpass filters in Fig. 11.2- 
6(b) get narrower, and yk(n) gets closer to X(ejωk). This means that the 
information in the frequency domain is becoming more and more localized. 
However, as V(ejω) gets narrower, the window v(n) gets wider (uncertainity 
principle) so that the localization of information in the time domain is com­
promised. Fig. 11.2-7 demonstrates the tradeoff between time localization 
and frequency resolution.

The fact that time localization and frequency resolution are conflicting 
requirements has given rise to interesting theoretical questions. For example, 
what is the choice of window that will give the best frequency resolution 
for a given time localization? To answer this question, one has to define 
the term “best” using a mathematical measure. To take a specific case, 
suppose we constrain v(n) to be a symmetric window of finite length N + 1. 
What is the best choice of the coefficients v(n) so that the energy of V(ejω) 
is most concentrated in a specified region ∣ω∣ ≤ a? This problem was in 
fact addressed in Sec. 3.2.2, where we found the solution to be the prolate 
spheroidal sequence, obtainable from an eigenvector of a positive definite 
matrix. See Sec. 11.2.4 for another measure of “best localization.”
Time-Frequency Representation, and Decimation

It is often stated that XSTFT(ejω, m) is a time-frequency representation, 
because it is a function of time m as well as frequency ω. If the passband 
width of V(ejω) [hence that of V(e-jω)] is narrow, then the signal y0(n) in 
Fig. 11.2-4(b) is a narrowband lowpass signal. This means that y0(n) varies 
slowly with the time index n. An extreme case is when V(ejω) is an impulse 
(traditional Fourier transform) so that y0(n) = X(ejω0) for all n.
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Figure 11.2-7 Demonstrating the tradeoff between time localization and fre- 
quency resolution. (a) Wide window v(n); poor time localization and good fre- 
quency resolution. (b) Narrow window v(n); good time localization and poor 
frequency resolution.

The slowly-varying nature of XSTFT(ejω, n), [i.e., y0(n) in Fig. 11.2- 
4(b)] can be exploited to decimate it, thereby resulting in a more economical 
time-frequency representation. If the decimation ratio is M, then this is 
equivalent to moving the window v(k) by M samples at a time. (That is, M 
is the 'step size' for window movement). If y0(n) were not varying at all (as 
with traditional Fourier transform), then we would have to retain only one 
sample, and its value is X(ejω0).

Figure 11.2-8 shows a decimated STFT system, where the modulators 
have been moved past the decimators. Since the filters have equal band- 
width, the decimation ratios nk can be taken to be equal. With nk = M 
this represents a maximally decimated analysis bank. In a more general sys- 
tem nk could be different for different k, and moreover Hk(z) may not be 
derived from one prototype by modulation. Such a system, however, does 
not represent the STFT obtainable by moving a single window v(k) across 
the data x(n). When we introduce the wavelet transforms in Sec. 11.3, we 
will admit such generalized systems.

The time-frequency representation offers a whole family of tradeoffs 
('time localization' versus 'frequency resolution' tradeoff) between the two 
extremes, viz., x(n) (time domain representation), and X(ejω) (frequency 
domain representation). The filter bank system performs an operation anal- 
ogous to Fourier transformation, yet the outputs of the transform are time 
varying. After performing the maximal decimation, the time-frequency rep­
resentation has the same number of samples per unit time as does x(n). 
There is no redundancy in the representation.
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The time-frequency grid. Figure 11.2-9 demonstrates a grid in the 
two-dimensional time-frequency plane. The vertical lines represent the 'fre­
quencies' where the STFT is computed (i.e., center frequencies of the filters). 
The horizontal lines represent the sample locations in the time domain, for 
the decimated filter outputs. The intersections of the lines represent the 
location of a sample of XSTFT(ejωk, m). This grid represents uniform sam­
pling of both 'frequency' ω and 'time' n. The fact that the time spacing is 
M corresponds to the fact that the window is moved in steps of M units at a 
time. The frequency spacing (spacing between center frequencies of adjacent 
filters) is 2π/M because there are M filters of identical bandwidths.

Figure 11.2-8 An analysis bank with decimators and modulators. The signal 
yk(nkn) represents the decimated version of XSTFT(ejωk, n) where ωk is the center 
frequency of Hk(ejω). Usually nk = M for all k.
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Figure 11.2-9 The two-dimensional time-frequency grid for evaluating the short- 
time Fourier transform.



11.2.2 Inversion of the STFT

Starting from the definition (11.2.1) it is easy to derive a number of inversion 
formulas that recover x(n) from XSTFT(ejω, m). As XSTFT(ejω, m) is the 
traditional Fourier transform of x(n)v(n - m), it is clear that

(11.2.9)

provided Σm ∣v(m)∣2 = 1. To prove this we mererly substitute (11.2.1) into 
the RHS of (11.2.9), which then reduces to x(n) Σm (v(m)∣2. There are some 
subtleties about the formula, which we mention here. Problem 11.3 covers 
details.

1. If Σm |v(m)∣2 ≠ 1 but finite, we can divide the right side of (11.2.9) 
by Σm ∣v(m)∣2 and obtain the inversion. However, if the window v(n) 
has infinite energy (as in the important special case of v(m) = 1), this 
inversion formula cannot be applied.

2. Suppose we replace v*(n — m) in (11.2.9) with w*(n — m) where w(n) 
is an arbitrary sequence with the restriction that Σn v(n)w*(n) = 1. 
Then the inversion formula still works!

3. The function G(ejω, m) satisfying

(11.2.10)

is not unique. For example, suppose z0 is a zero of the z-transform 
Σkv*(k)z-k. Then G(ejω, m) ≜ XSTFT(ejω, m) + zm0 satisfies (11.2.10) 
for the same sequence x(n). This is unlike the case of traditional Fourier 
transform, where (11.1.2) is not satisfied if we replace X(ejω) with some- 
thing else.
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For example if we set n = m we obtain the STFT inversion formula

(11.2.8)

so that we can recover x(m) for all m as long as v(0) ≠ 0. [If v(0) = 0, pick 
some other value of m in (11.2.7)]. Notice that it is not necessary to know 
v(n) for all n, in order to recover x(n) from its STFT.

A second inversion formula is given by



(11.2.12)

If the synthesis filters Fk(z) are such that x(n) = x(n), we can say that 
(11.2.12) is the representation of x(n) in terms of the decimated STFT co­
efficients yk(nkm) just as (11.1.2) is the representation of x(n) in terms of 
the traditional Fourier transform 'coefficients' X(ejω). While (11.1.2) is an 
integral in terms of the single variable ω, the new representation is a double 
summation (in the integer variables k and m.) The reconstruction is stable 
if the filters Fk(z) are stable.

ExampIe 11.2.1: Reconstructing x(n) from STFT Coefficients
Assume that there are no decimators, that is, the STFT is as in Fig. 
11.2-6. Let the window v(n) satisfy the Nyquist property, viz., v(Mn) = 
0 for n ≠ 0. Then, the M filters Hk(z) defined in (11.2.4) satisfy the 
property Σk=0M-1 Hk(z) = c0 for constant c0 ≠ 0 (Sec. 4.6.1). This means
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Filter Bank Interpretation of the Inverse Transform
It is valuable to express the inverse transform using filter bank notation. 

Recall that Fig. 11.2-6(b) offers a practical means of implementing the 
STFT. Viewed like this, the STFT is a transformation of a one dimensional 
sequence x(n) into a two dimensional sequence yk(m) (i.e., function of two 
integer variables k and m). The number and locations of the frequencies 
ωk might appear to be arbitrary, and so might the shapes of the filters. In 
fact they are somewhat arbitrary, subject primarily to the requirement that 
the signal x(n) be reconstructible from the STFT coefficients yk(n) with 
reasonable accuracy in reasonable amount of time. It turns out that, as 
long as the filters Hk(z) are chosen properly, we can find stable synthesis 
filters Fk(z) to recover x(n) perfectly. On the other hand, inversion of the 
traditional Fourier transformation (11.1.1) requires the computation of an 
integral.

With the STFT implemented as in Fig. 11.2-8, the reconstruction is 
done by using a synthesis bank as shown in Fig. 11.2-10. Typically nk = M 
for all k, but we will use nk for generality. The z-transform of x(n) is given 
by

(11.2.11)

In the time domain this is equivalent to



that we can reconstruct x(n) from the STFT coefficients yk(n) simply 
by adding them after demodulation, that is,

for some constant c1.

Figure 11.2-10 The synthesis bank used to reconstruct x(n) from its STFT 
coefficients. Usually nk = M for all k.

11.2.3 Generalizations of the STFT
We know that we can recover an arbitrary signal x(n) from its (decimated) 
STFT coefficients, provided we can design a synthesis bank with perfect 
reconstruction (PR) property. However, since the analysis filters are derived 
from a single prototype by modulation, the PR requirement will in turn 
restrict the coefficients of v(n) severely (Example 5.7.2).

If we relax the requirement that all analysis filters be derived from 
one prototype v(n), we can obtain more flexibility. For this we generalize 
the STFT idea by viewing any analysis filter bank as a generalized Fourier 
transformer. The outputs of the filters are narrowband signals, and represent 
the localized Fourier transform as described above. This generalized system, 
however, is not derivable from a traditional single sliding window system 
as in Fig. 11.2-1, i.e., the simple description (11.2.1) does not hold. These 
are more appropriately called “spectrum analyzers” rather than short time 
Fourier transformers. From Chap. 5-8 we know that there exist many 
techniques to perfectly reconstruct x(n) from the (possibly decimated) filter 
outputs.

We will say that the quantities
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(11.2.14)



in Fig. 11.2-8 are the generalized STFT coefficients of the signal x(n). The 
transform domain is characterized by two integer variables k and n. The 
STFT pair can be written as

The decimators nk should be chosen to be inversely proportional to the 
passband widths of the filters Hk(z). If these bandwidths are equal, then 
nk = M for all k. Notice that the modulators and demodulators have not 
been included in the definition for simplicity; they cancel each other anyway, 
and do not provide further insights. We can regard (11.2.15) and (11.2.16) 
as the generalized STFT pair or the "spectrum analyzer/synthesizer pair". 
It is also called the "filter-bank transform pair." For the special case where 
the analysis filters are as in (11.2.5) with H0(z) = V(z-1), this reduces to 
the traditional STFT which is computed from a single window v(n).
Comments.

1. The above STFT/inverse STFT definition assumes that the filters Hk(z) 
and Fk(z) are such that the filter bank system (Fig. 11.2-8 followed by 
Fig. 11.2-10) has perfect reconstruction property. It is easy to ensure 
that Hk(z) are stable. If Fk(z) are also stable, we have a stable recon- 
struction scheme for performing the inverse transform.

2. Nonuniqueness. In Fig. 11.2-6(b), suppose α is a zero of all the analysis 
filters, that is, Hk(α) = 0 for all k. This means that if we replace x(n) 
with x(n) + αn, the STFT coefficients do not change. In other words, 
the sequence x(n) producing the transform domain coefficients is not 
unique. Such a situation is easily avoided in practice. For example, in 
a perfect reconstruction system this situation will not arise. (Because, 
it would imply that the input x(n) = αn produces zero output).

Basis Functions and Orthonormality
Consider the conventional Fourier transform representation (11.1.2). 

Here x(n) is a linear combination of the sequences ejωn, and the set {ejωn} 
is said to be a basis for the space of sequences representable as in (11.1.2). 
The basis functions ejωn, are orthonormal in following sense:

(11.2.17)
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(11.2.15)

and

(11.2.16)



In other words, the above summation should be zero except for the case 
where k1 = k2 and m1 = m2 (and reduces to unity in that case). How 
should we design the filters Fk(z) in order to ensure this? We will return 
to this very interesting issue in Sec. 11.4, and show that the paraunitary 
property of the polyphase matrix (Chap. 6) is sufficient!

Relation between hk(n) and fk(n). In the traditional Fourier trans- 
form pair, the basis function ejωn appears in (11.1.2) whereas its conjugate 
appears in (11.1.1). Inspection of the STFT pair reveals no obvious analogy 
of this relation. The only requirement is that the functions hk(nkn - m) and 
fk(n — nkm) be related in such a way as to ensure perfect reconstruction. 
We will return to this later, and show that if the basis functions are or­
thonormal then fk(n) = h*k(-n). This is very similar to the relation between 
analysis and synthesis filters in a paraunitary perfect reconstruction system 
(Sec. 6.2.1).

Table 11.2.1 provides a summary of the discrete-time STFT.

11.2.4 The Continuous-Time Case

Historically, the STFT idea was first developed for the continuous-time case 
even though our presentation here started with the discrete case. In 1946 
Dennis Gabor † considered windowed versions of the continuous-time Fourier 
transform. Gabor used a Gaussian window, that is, a function of the form 
v(t) = v(0)e-bt2, b > 0. The corresponding continuous-time STFT is called 
the Gabor transform [Gabor, 1946]. Notice that this window does not have 
finite duration.

† He received the Nobel Prize in 1971 for contributions to the principles 
of holography.

476 Chap. 11. Wavelet transforms and filter banks

that is, the "inner-product" of ejω1n and ejω2n is equal to zero unless ω1 = 
ω2.

By the above analogy we see that the quantities

(11.2.18)

play the role of “basis functions” in (11.2.16). Notice that this is a doubly 
indexed family of functions. The first index is the filter number k, and the 
second index determines the time shift. Such basis functions will be called 
the "filter-bank like basis".

It is of interest to impose the orthonormality property on the basis 
functions {ηkm(n)}. This property means that



TABLE 11.2.1 Short-Time Fourier Transform (STFT), discrete-time.

Here are the key equations governing the discrete-time traditional and 
short-time Fourier transforms. Note that the subscript on ηω(n) is the real- 
valued continuous variable ω. For the STFT, there are two subscripts, as 
in ηω,m(n) and ηkm(n). In the former, ω is a real (continuous) variable. In 
the latter, k is integer-valued (center-frequency number or filter number). 
The double subscripts arise because the transform domain is time-frequency 
rather than frequency, as would be the case for the traditional Fourier trans- 
form. Read the text, particularly in the neighbourhood of the following 
equations, to fully appreciate assumptions and conditions.

Traditional Discrete-time Fourier Transform

It is assumed that the filter bank with analysis filters hk(n), synthesis filters 
fk(n) and decimation ratios nk (Fig. 11.2-8, 11.2-10) has perfect reconstruc­
tion (x(n) = x(n)). For orthonormal basis, fk(n) = h*k(-n).
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(transform) (11.1.1)

(inverse transform) (11.1.2)

Discrete-Time STFT

(STFT) (11.2.1)

(inverse STFT) (11.2.8)

(inverse STFT)

(11.2.9)

Generalized Discrete-Time STFT (Filter-Bank Transformer)

(STFT), (11.2.15)

(inverse STFT). (11.2.16)



Because of the close resemblance to the discrete-time case, we only 
summarize the main points. Given a signal x(t) we define the STFT as

(11.2.20)

where v(t) is an appropriate window function, typically with lowpass Fourier 
transform V(jΩ). (Proper choice of v(t) ensures existence of the integral). 
Once again we can find an inversion formula similar to (11.2.8), and obtain 

which works as long as v(0) ≠ 0. The inverse transform analogous to (11.2.9) 
is given by the double integral 

and this is associated with similar subtleties as itemized after (11.2.9).
Choice of “Best Window” to Optimize Localization

We know that if the window v(t) is 'narrow' in the time domain, its 
Fourier transform is 'broad' and vice versa. This means that there is a 
tradeoff between time localization and frequency resolution. To make this 
idea more precise, the rms (root-mean squared) duration of a signal is intro- 
duced in the literature ([Gabor, 1946], [Papoulis, 1977a]. Thus consider the 
two nonnegative quantities Dt and Df defined by

(11.2.23)

where E is the window energy, that is, E = ∫ v2(t)dt. (For this discussion 
v(t) is real.) We say that Dt is the rms time domain duration and Df 
the rms frequency domain duration of v(t). Figure 11.2-11 shows the rms 
duration Dt for a number of signals (the reader is requested to verify these 
in Problem 11.5). It is interesting that a triangular waveform has a smaller 
rms duration than a rectangular waveform, even though they have identical 
'traditional duration'! This is because the factor t2 in the definition of D2t 
increases the penalty on nonzero values of v(t), as t increases.

Uncertainty principle. It turns out that the product DtDf cannot be 
arbitrarily small. Here is a quantitative statement of uncertainty principle: 
DtDf ≥ 0.5, with equality if and only if v(t) = Ae-αt2, α > 0 (Problem 
11.6). Thus the optimal window is a Gaussian waveform, and its 'traditional' 
duration is infinite.
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(11.2.21)

(inv. STFT),

(11.2.22)



Figure 11.2-11 RMS duration of some typical signals. (a) Rectangular win- 
dow, (b) one-sided rectangular window, (c) triangular window, and (d) Gaussian 
window.

Defining h(t) = v(-t), we see that the integral above is a convolution of x(t) 
with the filter having impulse response
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Filter Bank Interpretation
To obtain further insight we rewrite the STFT for fixed frequency Ωk

as

(11.2.24)

Thus
(11.2.26)



Figure 11.2-12 shows this “filtering” interpretation. We have replaced τ 
with t everywhere to conform with traditional notations. The output yk(t) 
represents the STFT of x(t), evaluated with window v(t), at the frequency 
Ωk. Assuming v(—t) is narrowband lowpass, the output of the filter in the 
figure is narrowband bandpass, centered at Ωk. So the signal yk(τ) is nar- 
rowband lowpass, that is, it is "slowly varing in r." It represents an estimate 
of the Fourier transform of x(t) 'localized around time r' and around the 
frequency Ωk. With the system of Fig. 11.2-12 repeated for several values 
of Ωk, the complete system is equivalent to a bank of bandpass filters (Fig.
11.2-13).  All filter responses are shifted versions of the prototype response 
H(jΩ). Finally, if v(t) = 1 for all t, then yk(t) is constant for all t, that is, 
yk(t) = X(jΩk) (traditional Fourier transform).

Figure 11.2-12 The continuous-time STFT as an LTI filter followed by mod­
ulator. For each frequency of interest Ωk, we have one such filter, resulting in a 
filter bank.

Figure 11.2-13 Performing the STFT at a discrete set of frequencies is equiv­
alent to the use of a bank of bandpass filters.

Uniformly Sampled Version of the STFT

Since yk(t) is narrowband lowpass, we can sample it with appropriate 
sampling period, say T, to obtain XSTFT(jΩk, nT). See Fig. 11.2-14. (With 
nonideal filters, aliasing due to sampling is unavoidable, and must somehow 
be canceled later). One special choice of Ωk is particularly illuminating, viz., 
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Essentially, X(k,n) is a uniformly sampled version of the two-dimensional 
function XSTFT(jΩ, r). The set of sample points described by (kΩ0, nT) is 
called the Gabor lattice (or Von Neumann lattice in quantum mechanics 
literature; [Von Neumann, 1955]). The question now is, can we reconstruct 
x(t) from this sampled transform? If the product Ω0T is sufficiently small, 
the answer is in the affirmative. It is shown in the literature (also see Problem 
11.4) that if Ω0T = 2π, the function x(t) can indeed be written explicitly in 
terms of the samples X(k,n). However, the reconstruction procedure itself is 
unstable; one requires the condition Ω0T < 2π for stability. See Daubechies 
[1990] for elaboration on this point.

Figure 11.2-14 Sampled version of the continuous-time STFT.

The fact that we can reconstruct x(t) from the two dimensional sampled 
version might occassion an initial surprise, since we have not assumed any 
bandlimited property of x(t). Consider, however, the situation where we 
increase Ω0 for a fixed value of the product Ω0T < 2π. In the extreme 
case where Ω0 → ∞, we have T → 0. This is equivalent to having a single 
filter with infinite bandwidth, whose output is x(t) itself; this output is 
sampled with samples spaced infinitesimally close together. In other words, 
the transformed version is essentially x(t) itself!

11.3 THE WAVELET TRANSFORM
While the short-time Fourier transform is a convenient generalization of 
the Fourier transform, it still has some disadvantages. To appreciate this,
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Ωk = kΩ0, for integer k and fixed Ω0. In this case we have

(11.2.27)



consider Fig. 11.3-1 which shows two cases. For the first case x(t) is a 
high-frequency signal, and many cycles are captured by the window. For 
the second, x(t) is of low frequency, so that very few cycles are within the 
window. Thus the accuracy of the estimate of the Fourier transform is poor 
at low frequencies, and improves as the frequency increases. This can also 
be seen from the fact that the bandpass filters in Fig. 11.2-13 have equal 
bandwidths, rather than bandwidth increasing with center-frequency.

Figure 11.3-1 The windowed function x(t)v(t) for (a) high-frequency signal 
x(t), and (b) low-frequency signal x(t).

Another issue is revealed by considering the rising signal of Fig. 11.1- 
3(b). We see that if the window is narrow, it helps to localize the rising 
portion very well, as compared to a wide window. With a narrow window, 
however, the information in the steady part of the signal changes very slowly. 
It will be appropriate here to have a window whose width adjusts itself 
with 'frequency'. This can be accomplished by using a filter bank where 
the lowpass filter has a narrower bandwidth (wider time-width) than the 
bandpass and highpass filters.

One (conceptual) way to do this is to replace the window v(t) with a 
function of both frequency and time, so that the time domain plot of the 
window gets wider (i.e., bandwidth gets narrower) as frequency decreases. In 
this way, the window captures nearly the same number of zero-crossings for 
any sinusoidal input with arbitrary frequency. Furthermore, as the window 
gets wider, it is also desirable to have wider step sizes for moving the window 
(equivalently larger decimation ratio nk in Fig. 11.2-8).

These goals are nicely accomplished by the wavelet transform. We begin 
by developing the continuous-time wavelet transform which is conceptually 
easier.

11.3.1 Passing from STFT to Wavelets
Step 1. Nonuniform filter banks

The bandpass filters in Fig. 11.2-6 have equal bandwidth because they
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are obtained by modulation of a single filter. As a first step, we give up this 
modulation scheme, and obtain the filters hk(t) as

Equivalently, in the frequency domain,

(11.3.1)

Thus all the responses are obtained by frequency-scaling of a prototype re- 
sponse H(jΩ). This is unlike the case of STFT, where all filters were obtained 
by frequency-shift of a prototype.

The scale factor a-k/2 in (11.3.1) is meant to ensure that the energy 
∫∞-∞ ∣hk(t)∣2dt is independent of k. This can be regarded as a normalizing 
convention or height convention.

ExampIe 11.3.1
Assuming that H(jΩ) is bandpass with cutoff frequencies α and β, we 
obtain the responses shown in Fig. 11.3-2(a). Note that H0(jΩ) = 
H(jΩ). We have assumed a = 2, and β = 2α. The bandedges of adjacent 
filters overlap, as indicated. The passband gets narrower as the center 
frequency decreases. Quantitatively, we define the center frequency to 
be the geometric mean of the two cutoff edges, that is,
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(11.3.2)

(11.3.3)

These are nonuniformly located, and appear to be uniform if the fre- 
quency axis is represented on a logarithmic scale. Notice that H(jΩ) is 
bandpass rather than highpass. One often restricts k to be nonnegative, 
so that there are no filters to the right of the bandpass filter H0(jΩ). 
This is acceptable if the input signal has no information beyond this 
filter, that is, if it is bandlimited. From Fig. 11.3-2(a) we see that the 
ratio

(11.3.4)

is independent of the filter number k.† Notice a slight change in conven­
tion here: as k increases, the center frequency decreases. This happens 
to be more convenient.

† In the language of electrical filter theory [Sedra and Brackett, 1978], 
such a system is often said to be a 'constant Q' system. The quantity 'Q' 
(Quality factor) is usually defined as (center-frequency/bandwidth), i.e., the 
reciprocal of (11.3.4).



Nonuniform bandwidths as in the above example are very useful for 
the analysis of sound signals. See, for example, [Nelson, et al., 1972], 
and pp. 301-303 of Rabiner and Schafer [1978]. This is because of 
the decreasing frequency-resolution of the human ear with increasing 
frequency [Flanagan, 1972].

Figure 11.3-2 (a) Frequency responses obtained by the scaling process (11.3.2)
with a = 2. (b) Analysis bank representation of discrete wavelet transform. (c) 
Synthesis bank which would reconstruct x(t) from the set of wavelet coefficients 
XDWT(k, n). In this figure, the signal XDWT(k, n) indicates a continuous-time 
impulse train Σ∞n=-∞ XDWT(k, n)δ(t — 2knT).
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With the filters redefined as in (11.3.1), the filter outputs can be ob- 
tained by modifying the right hand side of (11.2.26) with

(11.3.5)

This is the first of the two modifications of the STFT, which will lead to 
wavelet transforms.
Step 2. Nonuniform decimation

Since the bandwidth of Hk(jΩ) is smaller for large k, we can sample 
its output at a correspondingly lower rate. Equivalently, viewed in the time 
domain, the width of hk(t) is larger so that we can afford to move the window 
by a larger step size. We will do this by replacing the continuous variable r 
with nakT in (11.3.5), where n is an integer. This means that the step size 
for window movement is akT and it increases with k, that is, increases as 
the center-frequency Ωk (hence bandwidth) of the filter decreases. Thus the 
quantity h[a-k(r - t)] in (11.3.5) is now replaced with

We have omitted the inconsequential factor e-jΩkτ which appeared earlier 
in (11.3.5). The above integral represents the convolution between x(t) and 
hk(t), evaluated at a discrete set of points nakT. In other words, the output 
of the convolution (a continuous-time function) is sampled with spacing akT. 
Fig. 11.3-2(b) is a schematic of this for a = 2. The kth sampler merely retains 
the samples at the locations (2kT)n, where n =integer.

The subscript DWT above stands for discrete wavelet transform. Also, 
the dependence on a and h(t) is not explicitly indicated in the notation 
XDWT(k, n).

Time-frequency grid. Figure 11.3-3 shows the time-frequency dia- 
grams for the STFT and the wavelet transform, and this summarizes the 
fundamental difference between these two. In the former, the frequency 
spacing and time spacing are uniform. In the latter, the frequency spacing
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(11.3.6)

Summarizing, we are computing

(11.3.7a)

i.e.,

(11.3.7b)



Figure 11.3-3 Fundamental differences between the STFT and the wavelet 
transform. (a) In the STFT, time and frequency axes are typically uniformly 
divided. (b) In the wavelet transform, the frequency samples are spaced closer 
together at lower frequencies, and the corresponding time samples are spaced 
wider apart.
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is smaller at lower frequencies, and the corresponding time-spacing is larger. 
Notice that 'frequency' spacing refers to the spacing between adjacent filters, 
and time-spacing refers to the sampling period used for the filtered outputs. 
The wavelet transform is not explicitly implemented by a moving window 
because there is in reality no unique window here. The system is in essence 
a filter bank, and is somewhat analogous to a family of windows (wider for 
low frequencies, etc.) as explained above.
General Definition of the Wavelet Transform

Equation (11.3.7a) is a special case of the more general definition of the 
continuous wavelet transformation (CWT) given in the literature, viz.,

(11.3.8)

where p and q are real-valued continuous variables. This reduces to (11.3.7a) 
if we identify

(11.3.9)

This choice is equivalent to evaluating (11.3.8) at a discrete set of points in 
the (p,q) plane, hence the name DWT for (11.3.7). DWT is different from 
discrete-time wavelet transforms (DTWT) to be discussed in Sec. 11.3.3. 
Quantities such as XCWT(p, q) and XDWT(k, n) are also called wavelet co­
efficients.

The CWT is a mapping of the function x(t) into a two dimensional 
function XCWT(p, q) of the continuous variables p,q. The DWT is a map- 
ping of x(t) (t being still continuous-time) into a two dimensional sequence 
XDWT(k, n). The computation of XDWT(k, n) is equivalent to the implemen­
tation of the bank of filters Hk(jΩ), followed by sampling of their outputs 
at rates proportional to the filter bandwidths.

11.3.2 Inversion of the Wavelet Transform
The “inverse wavelet transform”, if it exists, reconstructs the signal x(t) 
from the wavelet coefficients. A direct inversion formula for (11.3.8) can be 
found in Daubechies [1990].

We will consider only the discretized case. Whether we can reconstruct 
x(t) from the discretized version XDWT(k, n) depends on the prototype filter 
h(t), and the discretizing parameters a and T which completely characterize 
the transformation. If the inverse transform exists, it has the appearance

(11.3.10)

where ψkn(t) are the basis functions.
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Filter Bank Interpretation of Inversion
Suppose the wavelet coefficients XDWT(k, n) are generated using the 

analysis bank in Fig. 11.3-2(b). The reconstruction of x(t) from these co­
efficients can be visualized as a problem of designing the synthesis filters 
Fk(jΩ) shown in Fig. 11.3-2(c). If the analysis/synthesis system has the 
perfect reconstruction property, then the recovery is perfect.

We have to be careful with the interpretation of Fig. 11.3-2(c). Since 
XDWT(k, n) is a sequence, the signal which is input to the continuous-time 
filter Fk(jΩ) is actually an impulse train of the form
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(11.3.11)

The output of the synthesis filter bank is therefore

(11.3.12a)

Since the synthesis filters Fk(jΩ) have to retain only the frequency region 
passed by the analysis filters, it is reasonable that they be all generated from 
a fixed prototype synthesis filter f(t), similar to (11.3.1). That is

(11.3.12b)
Substituting this into the preceding equation, and assuming perfect recon­
struction, we get

(11.3.12c)

Thus

(11.3.12d)

where we have defined
(11.3.12e)

Thus, Eqn. (11.3.12c) expresses x(t) as a linear combination of a set of basis 
functions ψkn(t) which are obtained by dilations (i.e., t → a-kt) and shifts 
(i.e., t → t — nakT) of a single wavelet function ψ(t) or mother wavelet. The 
DWT coefficients XDWT(k, n) are the weights of these basis functions.

Using the relations ψ(t) = f(t) and fk(t) = a-k/2f(a-kt), we can ex- 
press each basis function ψkn(t) in terms of the filter fk(t). Thus,

(11.3.12f)



which is a shifted version of the synthesis filter fk(t).
Orthonormal Basis

Of particular interest is the case where {ψkn(t)} is a set of orthonormal 
functions. Such functions satisfy

Using Parseval's theorem, this becomes

By using the orthonormality property in (11.3.10) we obtain

(11.3.13a)

(11.3.13b)

(11.3.13c)

(11.3.14a)

This is very similar to the relation (6.2.6) for the perfect reconstruction 
paraunitary QMF banks! (We could let c = 1 and L = 0 in (6.2.6) without 
affecting any significant conclusions of Sec. 6.2).

Table 11.3.1 summarizes the definition and the main features of the 
wavelet transform.
Completeness, uniqueness, and so forth

Given an arbitrary function x(t), suppose we compute XDWT(k, n) us- 
ing (11.3.7a). Can we then express x(t) as in (11.3.10)? That is, can we 
invert the transformation? The answer depends on ψ(t), and the discretiza­
tion parameters T and a. If this is possible for a specified class of functions 
{x(t)}, then the wavelet basis {ψkn(t)} is said to be complete over this class. 
In Sec. 11.5 we will see how to generate a complete orthonormal basis for 
the class of finite energy functions.

Another practical requirement in addition to completeness is that, the 
transformation and reconstruction formulas (11.3.7a) and (11.3.10) should be 
'stable' so that the computations do not "blow up." In the next section where 
we study discrete time wavelets, we will see that the issues of completeness 
and stability are much easier to address.
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Comparing with (11.3.7a) we conclude

In particular, ψ00(t) = ψ(t) = h*(-t). But we have ψ(t) = f(t) so that, in 
the orthonormal case, f(t) = h*(-t). Thus,

(11.3.14b)



Discrete Wavelet Transform, DWT (stiff continuous-time)

Obtained by setting p = ak, q = akTn, f(t) = h(-t) in (11.3.8), for 
integer k, n. (We can take T = 1 for simplicity.)
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TABLE 11.3.1 The continuous-time wavelet transform

Traditional Continuous-Time Fourier Transform

(2.1.20)

(2.1.21)

Wavelet transform, general

(11.3.8)

(11.3.7a)

(inverse DWT).

(11.3.12c)
The inversion formula assumes that the filter bank of Fig. 11.3-2 has the 
perfect reconstruction property, with the filters chosen as

Thus, the functions h(t) and f(t) in (11.3.7a) and (11.3.12c) play the role of 
prototype filters in a filter bank where all the filters are derived by dilation 
of a single filter. The basis functions in (11.3.12c) are dilated (t → a-kt) 
and shifted (t → t — nakT) versions of f(t), that is,

(11.3.12d)

where ψ(t) = f(t) = wavelet function or mother wavelet.
Continued →



Table 11.3.1 continued

Special case of orthonormal basis functions

(11.3.13a)

Under this condition,

(11.3.13c)

(11.3.12c)

Again, ψ00(t) = f(t) = ψ(t) = wavelet function.

Filter Bank Properties in the Orthonormal Case
1. Synthesis filters for perfect reconstruction: fk(t) = h*k(-1).
2. Relation between prototype filters: f(t) = h*(-t).

11.3.3 Discrete-Time Wavelet Transforms

We now extend the wavelet transformation to the case of discrete-time sig- 
nals. The starting point again is a set of filters with frequency responses 
having an appearance similar to Fig. 11.3-2(a). In the continuous-time case 
these filters were related as in (11.3.1). If we attempt to mimic this by 
replacing t with the discrete-time index n, the quantity a-kn does not in 
general remain an integer. Let us, therefore, try to imitate the frequency 
domain relation (11.3.2) rather than the time domain relation.

Consider the example a = 2. The equivalent of (11.3.2) for digital filters 
would be

(11.3.15)

that is, Hk(z) = H(z2k) where k is a nonnegative integer. For highpass 
H(ejω), the responses of Hk(ejω) for k = 1 and k = 2 are shown in Fig. 11.3-
4. This shows that in general Hk(z) is a multiband (rather than bandpass) 
filter, and further modification is required to obtain bandpass responses. For 
this we cascade Hk(z) with appropriate filters. Thus, let G(z) be a lowpass 
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filter with response as in Fig. 11.3-5(a). Then the responses of

(11.3.16)

Figure 11.3-4 Magnitude response plots of (a) H(z), (b) H(z2), and (c) H(z4).

Figure 11.3-5 Magnitude responses of (a) lowpass G(z), and (b) combinations
of H(z) and G(z).
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are as shown in Fig. 11.3-5(b). These resemble Fig. 11.3-2(a) (except for 
the heights, which can be adjusted to make all the filter energies equal; see 
Fig. 11.3-8 later). The plots are shown only for 0 ≤ ω < π as we assume, for 
simplicity, magnitude symmetry with respect to π. The filters are bandpass, 
with center frequencies

(11.3.17)

Figure 11.3-6 (a) A 3-level binary tree-structured QMF bank and (b) the
equivalent four-channel system.

for appropriate c, and passband widths BWk = 2-kπ∕2 (measured only in 
the range [0,π]). Thus, the ratio BWk∣ωk is independent of k.

From our experience with QMF banks (Sec. 5.8) we already know that 
filters of the form (11.3.16) can be generated with the help of a binary tree 
structure. Fig. 11.3-6 shows a three-level tree structure along with the 
equivalent nontree form, which has four filters. More generally if the tree 
has L levels, the number of channels is M = L + 1. The signals xk(n) can be 
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decimated by the amounts shown, in order to obtain a maximally decimated 
system precisely as in a QMF bank. The decimation ratios are also consistent 
with the bandwidths of the signals xk(n). As in any multirate system with 
nonideal filters, decimation introduces aliasing. By using the techniques of 
Chap. 5 this can be canceled with an appropriate synthesis bank.

Figure 1.1.3-7 (a) The synthesis bank corresponding to Fig. 11.3-6 and (b)
equivalent four-channel system.

Defining the Discrete-Time Wavelet Transform
In the z-domain we have Xk(z) = Hk(z)X(z) so that

(11.3.18)

The decimated signals yk(n) are the wavelet coefficients, and the wavelet
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transform is given by

(11.3.22a)

(11.3.22b)
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(11.3.19)

This is analogous to the situation in Fig. 11.2-8 where we obtained the 
STFT coefficients using a multirate filter bank. Equation (11.3.19) is the 
discrete-time wavelet transform (DTWT).

The inverse transform. The inversion of the above transform can 
be performed by designing an appropriate synthesis bank. Consider the 
synthesis filter bank of Fig. 11.3-7(a). This is equivalent to Fig. 11.3-7(b) 
with filters expressible entirely in terms of Gs(z) and Hs(z). For example,

(11.3.20)

and so on. We know from Sec. 5.8 that if the filters G(z), H(z), Gs(z) 
and Hs(z) are appropriately designed, the tree structured system produces 
perfect reconstruction, that is, x(n) = x(n). Under this condition we can 
express

(11.3.21)
In Eqn. (4.1.22) we showed how to express the output of an interpolation 
filter in the time domain. Using similar principles, the above expression for 
inverse DTWT can be written in the time domain as

that is,



Here ηkm(n) are the wavelet basis functions, and the weights yk(m) are the 
wavelet coefficients of x(n) with respect to the above basis. Notice that 
ηk0(n) = fk(n) = synthesis filters. The basis function ηkm(n) is the impulse 
response fk(n) shifted by an appropriate amount.
Relation to Multiresolution Components

Refer to the analysis/synthesis system in Figs. 11.3-6 and 11.3-7. As- 
suming that H3(z) and F3(z) are good lowpass filters, the signal v3(n) is 
a lowpass filtered version of x(n). (This is only approximately so, because 
of aliasing and imaging caused by the decimation and interpolation opera- 
tions). The signal v2(n), on the other hand is a bandpass filtered version, 
and adds finer high frequency details. Thus, we can regard v3(n) to be a low- 
pass (i.e., smoothed) approximation of x(n), whereas the sum v3(n) + v2(n) 
is a 'higher resolution' approximation. By adding the component v1(n) we 
get a further refined approximation. Finally when v0(n) (the finest 'detail 
signal') is added, we obtain perfect recovery of x(n). The tree structure (or 
wavelet decomposition) can therefore be used to transmit information (e.g., 
a picture in video conferencing) in various installments, with successively 
improved fine details.
Some Practical Requirements

1. Stability. In practice we require the filters Hk(z) and Fk(z) to be stable 
(equivalently H(z), G(z), Hs(z) and Gs(z) stable). This ensures that 
the procedure (11.3.19) to construct the wavelet coefficients, as well as 
the inversion procedure (11.3.22b) are stable.

2. Orthonormality. It is also desirable to have an orthonormal set of basis 
functions ηkm(n). This means
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(11.3.23)

By using this in (11.3.22) we verify that orthonormality implies

(11.3.24)

By comparing (11.3.19), (11.3.22a), and (11.3.24) we can eliminate 
ηkm(n) and obtain the relation

(11.3.25)

Thus, the analysis and synthesis filters are related as above when the 
basis is orthonormal. This is similar to the relation between filters in 
a paraunitary PR QMF bank! (Sec. 6.2). In the next section, we



will present the precise relation between paraunitary QMF banks and 
orthonormal wavelets.

3. Height conventions. The increasing heights in Fig. 11.3-8 are chosen 
such that the energies of the filters are equal. This, however, is only 
a convention. It should be realized that the output yk(n) of the filter 
Hk(z) is an estimate of X(ejωk) (with no scale-factor discrepancies) only 
if the heights of ∣Hk(ejω)∣ in their passbands are inversely proportional 
to the bandwidths (i.e., heights are c,2c,4c, . . .). See Problem 11.1. This 
requirement is not consistent with Fig. 11.3-8 (where the heights are 
c,√2c,2c...). In this chapter, conventions for heights will be flexible, 
depending on the particular context.

Figure 11.3-8 Typical appearances of magnitude responses of filters in the 
3-level tree.

11.3.4 Summary
The STFT

The short time Fourier transform system is reproduced in Fig. 11.3- 
9. This is an M channel filter bank with equal-bandwidth filters having 
equispaced center frequencies. All the filters are generated from a prototype 
H0(z) as in (11.2.5). Ek(z) are the polyphase components of this prototype 
as shown by (11.2.6). The system can be viewed as the sliding window 
system (Fig. 11.2-1) with H0(ejω) = V(e-jω).

The quantity ∣xk(n)∣ represents the estimate of the magnitude of the 
transform of x(i), around the center-frequency of Hk(ejω), with the data 
x(i) 'localized' around time n (which is the window position). As shown in 
earlier figures, each of the outputs xk(n) can be decimated by a factor ≤ Μ. 
For any fixed n, the set of values

i.e.,  the vector [x0(n) . . . xM-1(n)]T, provides a 'snapshot' of the magni­
tude of the Fourier transform of x(i), localized around time n. The snapshot 
is delivered as a uniformly sampled version (in the frequency domain). The 
figure demonstrates this sampling for n = —1, 3, and 7. In this demonstra­
tion, we see that the signal changes slowly from lowpass to highpass. Thus, 
the STFT keeps track of the evolution of the Fourier transform. As shown in

Sec. 11.3 The wavelet transform 497

(11.3.26)



the figure the set of filters can be either sharp-cutoff, or highly overlapping. 
The latter happens, for example, when Ek(z) = 1 for all k; this corresponds 
to the computation of DFT of blocks of the input.

Figure 11.3-9 Uniform DFT filter banks as short-time Fourier transformers. 
For each window position n, we obtain a 'snapshot' of localized Fourier transform.

The Discrete-Time Wavelet Transform
The wavelet system (nonuniform filter bank) is reproduced in Fig. 11.3- 

10. This is an M-channel filter bank with nonuniform bandwidths for the 
filters. All the filters are generated from a tree structure as in Fig. 11.3-6.
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The system cannot be viewed as the sliding window system, but one can 
imagine that there is an underlying window whose width is adjusted accord- 
ing to frequency. The outputs of the filters (bandpass signals) are modulated 
to obtain xk(n) which are lowpass signals, with increasing bandwidths as k 
decreases.

Figure 11.3-10 Summarizing the operation of a wavelet filter bank.

Figure 11.3-10 also shows the responses of the nonuniformly spaced 
filters. The quantity xk(n) represents the estimate of the transform of 
x(i), around the center-frequency of Hk(ejω), with the data x(i) “localized” 
around time n. Even though all the signals xk(n) are lowpass, their band- 
widths are different. Thus x1(n) varies "more slowly" than x0(n), and so 
forth. So the signals are decimated by unequal amounts (in fact by a factor 
inversely proportional to the filter bandwidth).

For any fixed n, the set of values
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(11.3.27)

provides a 'snapshot' of the nonuniformly sampled version of the Fourier 
transform of x(i), localized around n. (This assumes that the heights of the



filters are inversely proportional to the bandwidths, see Problem 11.1). The 
figure demonstrates this for n = -1,3, and 7.
General Comments

1. If the analysis/synthesis system (i.e., Fig. 11.3-6 followed by Fig. 11.3- 
7) has the perfect reconstruction property x(n) = x(n), then (11.3.22b) 
represents the expansion of x(n) in terms of the wavelet basis functions 
ηkm(n). If (11.3.23) holds, then the basis is orthonormal.

2. FIR wavelet basis. If the filters Hs(z) and Gs(z) are FIR, then the basis 
functions ηkm(n) are finite-length sequences.

3. When the QMF system satisfies the perfect reconstruction property, 
the basis is complete in the sense that any x(n) can be expressed in 
this manner. Since we know that there exist FIR perfect reconstruction 
systems, this shows how to obtain a complete FIR wavelet basis (though 
x(n) may not be FIR).

4. The disk-partition diagram. Figure 11.3-11(a) explains how the fre- 
quency domain is partitioned when performing the wavelet analysis. 
For simplicity we have shown only the upper half of the unit circle in 
the z-plane. (If the filters have real coefficients, the lower half need not 
be shown). The first level of the tree partitions the half-circle into two 
quarter circles. The second level splits the low-frequency quarter circle 
into two equal halfs. This process is repeated L times in an L-level tree. 
For comparison, Fig. 11.3-11(b) shows the frequency partition for the 
case of uniform bandwidth filter banks, (e.g., STFT). Here the circle 
is divided into wedges of equal size. In both methods, the output of 
each filter is decimated in inverse proportion to the angular width of 
the wedge.

Figure 11.3-11 The disk partitioning diagram. (a) Wavelet transform, and (b) 
short-time Fourier transform.

11.4 DISCRETE-TIME ORTHONORMAL WAVELETS
From the previous sections we know that we can obtain a wavelet decompo­
sition of a sequence x(n) by using a tree structured perfect reconstruction
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QMF bank of Figs. 11.3-6, 11.3-7. The coefficients fk(n) of the synthesis 
filters Fk(z) govern the basis functions (see eqn. (11.3.22a)) whereas the 
decimated outputs yk(n) are the wavelet coefficients. Since the perfect re­
construction property holds for any x(n), the expansion (11.3.22a) holds for 
any x(n).

♠ Main points of this section. We will show that if the filters Gs(z) 
and Hs(z) in the synthesis bank have the paraunitary property, then the 
basis functions {ηkm(n)} are orthonormal. Our development is in two steps. 
In Sec. 11.4.1 we will prove this result for a one-level tree (i.e., just a two 
channel QMF bank). in Sec. 11.4.2 this will be extended to an arbitrary 
number of levels. Finally in Sec. 11.4.3 a similar result will be proved for an 
M channel system with identical decimation ratio in all channels.

11.4.1 Two Channel Paraunitary QMF Banks
The fundamental building block in Figs. 11.3-6, 11.3-7 is the two-channel 
QMF bank reproduced in Fig. 11.4-1. Here H0(z) and H1(z) are typically 
lowpass and highpass, respectively, like G(z) and H(z) in Fig. 11.3-5. [In 
Fig. 11.3-6(a) we used the notations G(z) and H(z) instead of H0(z) and 
H1(z) in order to avoid confusion with Fig. 11.3-6(b)]. Here the two filters 
have equal bandwidth. We can think of this system as a simple special case 
of wavelet decomposition. Thus the wavelet coefficients are

Figure 11.4-1 The two-channel QMF bank.
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(11.4.1)

Assuming that the synthesis bank gives perfect reconstruction, we can ex- 
press x(n) as

(11.4.2)

The wavelet bases ηkm(m) are indicated. These are stable if Fk(z) are stable, 
and FIR if Fk(z) are FIR.



Orthonormality of Wavelet Basis
The wavelet basis is said to be orthonormal if (11.3.23) holds. Substi- 

tuting for ηkm(n) from (11.4.2), this can be rewritten as

This means that fk(n) is orthogonal to the even-shifted versions of fℓ(n). 
Now the left side of this equation is the cross-correlation between fk(n) and 
fℓ(n) evaluated for even-lag 2m (Problem 2.14). Since the z-transform of 
the cross-correlation function is Fk(z)Fℓ(z), we can rewrite (11.4.4) in the 
z-domain as follows:

We can rewrite (11.4.5) as

(11.4.8)

where
(11.4.9)

Thus orthonormality of the wavelet basis is equivalent to the paraunitary 
condition (11.4.8). Notice, in particular, that this implies the power com­
plementary property ∣F0(ejω)∣2 + ∣F1(ejω)∣2 = 2.

502 Chap. 11. Wavelet transforms and filter banks

(11.4.3)

that is, after a change of variables as

(11.4.4)

(11.4.5)

As explained in Sec. 4.1, the notation A(z)∣ is an abbreviation which 

indicates decimation by M, for example,

(11.4.6)

(11.4.7)

that is,



Paraunitariness of R(z) and Wavelet Orthonormality
Recall (Sec. 5.5) that the two synthesis filters F0(z) and F1(z) can be 

expressed in terms of their 2 × 2 polyphase matrix R(z) in the form

(11.4.10a)

Using this relation, we can express the matrix F(z) as

(11.4.10b)

The above equation implies

(11.4.11)

Thus, the discrete-time wavelet orthonormality condition holds if and only 
if

Under this condition we showed that if the remaining filters are chosen ac- 
cording to

1. H1(z) = —z-NH0(-z), where N = order of H0(z), and
2. F0(z) = H0(z) and F1(z) = H1(z),

then we have perfect reconstruction, with x(n) = x(n). In Sec. 6.3.2 we saw 
that the above choice of filters ensures that the polyphase matrices E(z) 
and R(z) are paraunitary. This, therefore, ensures that the wavelet basis is 
orthonormal! Summarizing, the procedure to obtain a finite duration (FIR) 
orthonormal wavelet basis is as follows.

1. Design the Nth order FIR power symmetric filter H0(z). This is done 
either by starting from a zero-phase half band filter and computing a 
spectral factor H0(z) (Sec. 5.3.6), or equivalently by optimizing the 
lattice structure of Fig. 6.4-1. (Sec. 6.4.3).

2. Define the second analysis filter H1(z) and the synthesis filters F0(z) 
and F1(z) as above. Then the polyphase matrix R(z) satisfies the pa- 
raunitary condition R(z)R(z) = I. Notice that the synthesis filters are 
noncausal, but this is consistent with the delay-free reconstruction.
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(11.4.12)
which of course is the well-known (normalized-) paraunitary condition (Sec. 
6.1.1)!
Designs Which Satisfy Orthonormality

In Sec. 5.3.6 we introduced an FIR perfect reconstruction QMF bank 
(invented independently in Smith and Barnwell [1984] and Mintzer [1985]). 
In this system, the FIR filter H0(z) is power symmetric, that is, satisfies



3. Define the wavelet basis as indicated in (11.4.2). Then the wavelet 
orthonormality condition is satisfied.

4. The analysis/synthesis system has the perfect reconstruction property, 
that is, x(n) = x(n). So, (11.4.2) holds, and represents the expansion of 
the arbitrary input sequence x(n) in terms of the orthonormal wavelet 
basis functions ηkm(n).
Completeness. Since any FIR power symmetric filter can be generated 

using the lattice mentioned in Step 1, any two-channel FIR orthonormal 
basis can be generated using this lattice.

11.4.2 Orthonormal Wavelets from
Tree-Structured Paraunitary QMF Banks
Now consider an L-level tree-structured QMF bank (as demonstrated in 
Figs. 11.3-6, 11.3-7 for L = 3). The wavelet basis functions ηkm(n) are 
indicated in (11.3.22a) in terms of the filter coefficients fk(i). We now show 
that these basis functions are orthonormal if each of the two channel systems 
[Gs(z), Hs(z)] has polyphase matrix R(z) satisfying R(z)R(z) = I.

Figure 11.4-2 (a) Two of the L + 1 branches in the synthesis bank of an L-level
tree; (b) adding the (L + 1)th level; and (c) redrawing the three branches.
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From the previous section we know this to be true for L = 1. For 
arbitrary L we use an inductive reasoning. The tree structure with L levels 
has L+1 branches. Fig. 11.4-2(a) shows two of these branches, with nk ≥ nℓ. 
Suppose we add another level to the tree. This adds a new branch, and 
modifies the existing branches as shown in Fig. 11.4-2(b). Assuming that

1. the wavelet bases are orthonormal for the L-level tree, and that
2. the new set of filters [Gs(z), Hs(z)] has polyphase matrix R(z) satisfying 

R(z)R(z) = I,
we prove that the wavelet bases for the (L + 1)-level tree are orthonormal.

From Sec. 6.3.1 recall that the paraunitary relation R(z)R(z) = I is 
equivalent to the conditions

Sec. 11.4 Discrete-time orthonormal wavelets 505

(11.4.13)

Instead of saying that R(z) is paraunitary, we will often say that the filter 
pair [Gs(z), Hs(z)] is paraunitary (i.e., (11.4.13) holds).
Expressing Wavelet Orthonormality in z-Domain

Orthonormality of wavelets for the L-level tree implies

(11.4.14)

After a change of variables this can be rearranged as

(11.4.15)

using 2nk ≥ 2nℓ (see Problem 11.13).
The summation on the left hand side of (11.4.15) is the cross-correlation 

between fk(n) and fℓ(n), evaluated at lags 2nℓm. Since the z-transform of 
the cross-correlation sequence is Fk(z)Fℓ(z), we can rephrase the above as

(11.4.16)

This is therefore another way of saying that the wavelet basis obtained from 
the L-level tree is orthonormal.

The inductive reasoning. The three branches of the (L + 1)-level 
tree, shown in Fig. 11.4-2(b), can be redrawn as in Fig. 11.4-2(c) where

(11.4.17)



(11.4.18)
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By using the identity

(Problem 11.9), we can prove that (11.4.13) and (11.4.16) imply

(11.4.19)
which is sufficient to prove that the wavelet basis generated at the (L + 1)th 
level remains orthonormal! The above reasoning does not assume that the 
pair [Gs(z), Hs(z)] has to be the same for all levels of the tree. Notice finally 
that the FIR nature of the filters Gs(z), Hs(z) ensures that the wavelet basis 
functions are FIR as well. The FIR nature also means, in particular, that 
the wavelet transformation as well as the inverse transformation are stable. 
Summarizing, we have proved:

♠ Theorem 11.4.1. Wavelet orthonormality. Consider the L-level 
tree structure demonstrated in Figs. 11.3-6 and 11.3-7 for L = 3. Let the 
filters G(z), H(z), Gs(z), and Hs(z) be such that this is a perfect reconstruc­
tion system, that is, x(n) = x(n) so that x(n) has the wavelet expansion 
(11.3.22a), where M = L + 1. Let R(z) be the 2 × 2 polyphase matrix of 
[Gs(z), Hs(z)]. Then the discrete-time wavelet basis {ηkm(n)} is orthonor­
mal if and only if R(z) is paraunitary, that is, if and only if [Gs(z), Hs(z)] 
forms a paraunitary pair. ◊

Unit energy property. Equation (11.4.15) implies, in particular, that 
Σn |fk(n)∣2 = 1, that is, all the filters have unit energy. This is consistent 
with the increasing heights shown in Fig. 11.3-8. Note that the unit energy 
property holds regardless of the quality of the frequency responses (e.g., 
stopband attenuation, sharpness of cutoff, etc.), and is a direct consequence 
of the paraunitary property of the pair [Gs(z), Hs(z)].

Use of lattice structure. As a converse, it can be shown that essentially 
all orthonormal wavelet bases can be generated using the lattice. See [Soman 
and Vaidyanathan, 1993] for precise statements.
Design example 11.4.1: STFT and Wavelet Filter Banks

A. Generalized STFT with orthonormal basis. Consider a four-channel 
maximally decimated filter bank system, designed using the tree structure 
of Fig. 5.8-1. For simplicity we take the filters at various levels to be the 
same, that is,

We design this to be a perfect reconstruction system by designing G(z) to 
be a causal Nth order FIR power symmetric filter (Sec. 5.3.6) and taking 
the remaining filters to be



Gs(z) and Hs(z) are noncausal FIR filters. Assuming that G(z) has been 
properly scaled, the power symmetric property implies
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which in turn ensures x(n) = x(n). The above choice of filters ensures the 
paraunitary condition R(z)R(z) = I.

For our demonstration we take G(z) to be a 23rd order filter, designed as 
in Sec. 6.3.2. Fig. 11.4-3(a) shows the responses of Gs(z)∕√2 and Hs(z)∕√2. 
Fig. 11.4-3(b) shows the responses of the four analysis filters Hk(z). These 
filters have equal passband bandwidths. Note that ∣Gs(ejω)∣ = ∣G(ejω)∣ and 
∣Hs(ejω)∣ = ∣H(ejω)∣. Also ∣Fk(ejω)∣ = ∣Hk(ejω)∣ for each k, according to 
the construction of these filters. Unlike in traditional STFT, the filters are 
not obtained by modulation of a prototype, hence the name “generalized” 
STFT.

B. Wavelet filter bank with orthonormal basis. We take a three level 
tree as in Fig. 11.3-6. Let G(z),H(z), Gs(z) and Hs(z) be as above so 
that we again have a perfect reconstruction system. The responses of the 
four analysis filters are now as in Fig. 11.4-3(c). In these plots, we have 
normalized ∣Hk(ejω)∣max to be unity for convenience. Notice again that 
∣Fk(ejω)∣ = ∣Hk(ejω)∣ according to construction.

Since R(z) is paraunitary, the basis functions for the above generalized 
STFT as well as the wavelet filter bank are orthonormal.

11.4.3 Orthonormal Wavelets From
M-channel Uniform-Decimation Paraunitary QMF Banks
We now generalize the result of Sec. 11.4.1 for the case of an M channel 
maximally decimated QMF bank with uniform decimation ratio for all chan­
nels (Fig. 5.4-1). If this system has the perfect reconstruction property, then 
x(n) = x(n) so that we can express x(n) as

(11.4.20)

We have used the notation yk(n), instead of vk(n) as in Fig. 5.4-1, to be 
consistent with the rest of this chapter. We can regard yk(m) as the wavelet 
coefficients of x(n) with respect to the wavelet basis defined by ηkm(n) in­
dicated above. Note that ηk0(n) = fk(n), whereas ηkm(n) for arbitrary m is 
obtained by shifting fk(n) by multiples of Μ.

In the binary tree structure (Sec. 11.3.3) the bandwidths of the filters 
become smaller and smaller as the center frequency decreases (Fig. 11.3- 
8). But in the QMF bank under consideration the analysis filters typically 
tend to have equal bandwidths because the channels have equal decimation



Figure 11.4-3 Design example 11.4-1. Magnitude responses of various filters. 
(a) Gs(z), G(z), Hs(z) and H(z), (b) STFT filters and (c) wavelet filters.
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ratio M. This system is therefore closer to traditional (uniform bandwidth) 
spectrum analyzers rather than wavelet transformers.

Review of perfect reconstruction. Recall that the above QMF 
bank can always be redrawn as in Fig. 5.5-3(b), where E(z) and R(z) are 
the M × M polyphase matrices defined in Sec. 5.5. We also know that if 
E(z) is FIR and paraunitary then the choice of synthesis filters according 
to fk(n) = h*k(-n) gives rise to an FIR perfect reconstruction system. In 
this case, the expansion (11.4.20) holds. The above choice of synthesis filters 
implies, in particular, that R(z) is also paraunitary.
Paraunitariness of R(z) Implies Wavelet Orthonormality

We now show that the discrete time wavelet basis functions {ηkm(n)} 
are orthonormal if, and only if, R(z)R(z) = I.

Proof. Proceeding as in the previous subsection, we see that orthonor­
mality of the basis implies

Notice that this implies, in particular, that all filters have unit energy [re- 
gardless of the quality of the responses Fk(ejω)]. The above equation can be 
re-expressed in the z-domain as

with W = e-j2π/M. This can be expressed compactly by defining

(11.4.24)

Condition (11.4.23) can be expressed in terms of F(z) as

(11.4.25)
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(11.4.21)

(wavelet orthonormality condition). (11.4.22)

Using the z-domain expression for decimation (Sec. 4.1) this becomes

(11.4.23)

In a manner analogous to (11.4.10b), we can show (Problem 11.10) that F(z) 
is related to the M × M polyphase matrix R(z) according to



Here Γ and Λ(z) are diagonal matrices with [Γ]ii = e-j2πi/M, [Λ(z)]ii = 
z-(M-1-i) and W is the M × M DFT matrix. Using this we can show 
that the condition F(z)F(z) = MI is equivalent to R(z)R(z) = I. Thus the 
wavelet basis functions are orthonormal if, and only if, the matrix R(z) is 
normalized paraunitary. ▽ ▽ ▽

This is an important result. From Sec. 6.4 and 6.5 we know how to 
generate the complete class of paraunitary matrices (of given degree and 
size). Using this we can, therefore, generate all discrete-time finite duration 
orthonormal wavelets.

11.4.4 Generalizations

The tree structured system of Fig. 11.3-6 can be generalized in several ways. 
First, instead of splitting a signal into two bands at a time, we can split into 
several bands. Second, signals such as y0(n) which are not split any further 
can themselves be decomposed into further subbands. In this way we obtain 
a very general tree structure. By modifying the synthesis bank appropriately, 
we can retain the perfect reconstruction property. The wavelet expansion 
equation (11.3.22a) can be modified for this case. This is called the wavelet 
packet expansion and was introduced in Coifman et al. [1990]. It can be 
shown that the paraunitary property of the filters ensures orthonormality of 
the basis functions of this expansion [Soman and Vaidyanathan, 1992].

The maximally decimated filter bank with arbitrary decimators nk in 
the subbands (Fig. P5-32, Chap. 5 Problems section) is clearly a generaliza­
tion of the filter banks discussed above. In this case, the transform domain 
coefficients are given by (11.2.15) and the inverse transform by (11.2.16). 
This is called the generalized STFT pair, the “filter bank transform” pair, 
or the “general discrete-time wavelet transform pair.” Some of the proper- 
ties of this system are summarized in Table 11.4.1. The nonuniform filter 
bank has been studied in a number of references, for example, Hoang and 
Vaidyanathan [1989], Kovačević and Vetterli [1991a], Nayebi et. al. [1991a], 
and Soman and Vaidyanathan [1993]. Also see Problem 11.22

11.5 CONTINUOUS-TIME ORTHONORMAL WAVELET BASIS

Consider the wavelet decomposition (11.3.7a) for a continuous time signal 
x(t). Since k and n are integers, this is the discrete-wavelet transform (DWT) 
(but not discrete-time, as t is continuous). The case where a = 2 is commonly 
known as the diadic (or binary) wavelet decomposition. We will consider this 
special case, and further assume T = 1. For this case we show how, under 
certain conditions, an orthonormal basis can be generated starting from the 
discrete-time QMF bank.

For the discrete-time case (Figs. 11.3-6, 11.3-7) all the synthesis filters 
Fk(z) (hence the wavelet basis functions ηkm(n)) were constructed in terms 
of the basic filters Gs(z) and Hs(z). In a similar way we wish to construct 
a continuous-time wavelet basis starting from two basic functions. For this
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TABLE 11.4.1 The discrete-time wavelet transform (DTWT)

The most general form is a nonuniform maximally decimated perfect re- 
construction filter bank (Fig. P5-32, in Chap. 5 Problems section). Here 
Σi 1∕ni = 1 (maximal decimation). Let ni = integers for simplicity.
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(11.2.15)

(11.2.16)

This is identical to the generalized STFT, i.e., the 'filter bank' transform.

Orthonormal basis
1. Definition: Σ∞n=-∞ ηkm(n)η*ℓi(n) = δ(k - ℓ)δ(m - i).
2. Equivalently ∑n fk(n)f*m(n + nk,mp) = δ(k - m)δ(p). That is,

∣Fk(z)Fm(z)∣↓ηk,m = δ(k - m). Here nk,m = gcd (nk, nm) (Problem 
11.22).

3. Perfect reconstruction condition: fk(n) = h*k(-n).
4. Paraunitariness. A nonuniform filter bank can be converted into an 

equivalent uniform system with larger number of channels. If the larger 
system is paraunitary, the original system is orthonormal.

Special cases
1. Uniform filter bank. Here nk = M for all k. (Uniform bandwidth filters.) 

Now orthonormality is equivalent to the paraunitary property of the 
M × M polyphase matrix R(z).

2. Octave filter bank. Here nk = 2k+1 for 0 ≤ k ≤ M — 2 and nM-1 = 
nM-2. Typical frequency responses have octave spacing and bandwidth, 
as in Fig. 11.3-8. Can be designed using the binary tree structure (Fig. 
11.3-6, 11.3-7). [Gs(z), Hs(z)] need not be the same at all levels of the 
tree. Orthonormality can be achieved by forcing [Gs(z), Hs(z)] to be 
paraunitary at each level [i.e., forcing (11.4.13)]. Equivalently,

a) ∣Gs(ejω)∣2 + ∣Hs(ejω)∣2 = 2 and
b) Ha(z) = z-NGs(-z) for some odd N.

3. Wave packets. If the binary tree (Fig. 11.3-6, 11.3-7) is replaced with a 
more general version (with maximal decimation at each level), we obtain 
wavelet packets. The basis functions are orthonormal if the filter bank 
at each level has the paraunitary property.



We denote the inverse Fourier tranforms of Φ(ω) and Ψ(ω) as φ(t) and 
ψ(t) respectively. These are functions of the continuous time variable t, 
since Φ(ω) and Ψ(ω) are not periodic in ω.† The function ψ(t) (called the 
wavelet function) will play a crucial role in our discussions. The function 
φ(t) (called the scaling function) will enter many equations involving ψ(t) 
[e.g., (11.5.15b) and (11.5.18b)].

To demonstrate how the infinite products work, assume that Gs(ejω) 
and Hs(ejω) are ideal lowpass and highpass filters with cutoff π∕2. Fig. 11.5- 
1 shows a number of stretched (or dilated) versions of Gs(ejω). From these 
we can judge that the infinite products Φ(ω) and Ψ(ω) are lowpass and 
bandpass as shown in Fig. 11.5-2.

♠ Main points of this section. Our aim is to generate wavelet basis 
functions ψkℓ(t) by dilations and shifts of the wavelet function ψ(t), that is,

† For convenience we continue to use ω rather than Ω in this section, even 
though φ(t) and ψ(t) are continuous-time functions.
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we introduce the two infinite products

(11.5.1a)

(11.5.1b)

where

(11.5.2)

(11.5.3)

1. We will see that if Gs(z) and Hs(z) are FIR, then φ(t) and ψ(t) are 
of finite duration. Thus, for each finite k and ℓ the function ψkℓ(t) has 
finite duration.

2. Suppose Gs(z) and Hs(z) are FIR and form a paraunitary pair, that is, 
their polyphase matrix R(z) is paraunitary (i.e., (11.4.13) holds). Under 
some further mild conditions (to be made precise in Theorem 11.5.1), 
we will see that the set of functions {ψkℓ(t)} is orthonormal. In fact, 
the set {ψkℓ(t)} can be used to represent any finite energy function x(t) 
in the form (11.3.10). That is, {ψkℓ(t)} is complete over the so-called 
L2(R) class of functions.

3. In general, the function ψ(t) obtained from the digital filters Gs(z) 
and Hs(z) as above is not "smooth". We will see that by constraining



Figure 11.5-1 Various dilated versions of the basic filters, which take part in 
the infinite product.

Figure 11.5-2 The magnitudes of Φ(ω) and Ψ(ω) when Gs(ejω) and Hs(ejω) 
are ideal filters as in Fig. 11.5-1.
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Gs(ejω) to have multiple zeros at ω = π, the function ψ(t) can be made 
“smooth” or “regular.” We will also see how to design the Nth order FIR 
filter Gs(z) in such a way that Gs(z) has "as many zeros as possible" at 
ω = π, under the additional constraint that [Gs(z), Hs(z)] be a paraunitary 
pair. This maximizes “regularity” under the FIR orthonormal constraint.

The goal of this section is to provide a detailed derivation of the above 
results. We will also consider several illustrative examples to demonstrate 
these ideas. Some of the deeper mathematical issues (such as "complete­
ness") will not be proved, but references will be provided.

11.5.1 Study of the Functions Φ(ω) and Ψ(ω)
As a first step towards the above goal, we now study some of the key proper- 
ties of the infinite products Φ(ω) and Ψ(ω). We begin with some examples.

Example 11.5.1: Infinite Products
Convergence of infinite products is tricky [Apostol, 1974]. Let S = 
Π∞m=1 sm. If there is an ε > 0 such that ∣sm∣ < 1 — ε for all m exceeding 
some integer m0, then this product vanishes. On the other hand if 
∣sm∣ > 1 + ε for all m > m0, the product does not converge to a finite 
value at all.

There do exist infinite products that converge to finite nonzero val- 
ues. For example, let sm = abm, with ∣b∣ < 1. Then

The above result is clearly finite. Readers who do not feel comfortable 
with the transition from infinite products to infinite sums in (11.5.4) 
must see Problem 11.14. For theorems on convergence of infinite prod- 
ucts, see [Apostol, 1974] and pp. 11-12 of Gradshteyn and Ryzhik [1980].

As a second example, let sm = cos(2-mω). We will show that the 
product converges:

(11.5.5)

Note that ∣ cos(2-mω)∣ < 1 for almost all ω, and yet the product con- 
verges to a nonzero value for almost all ω. This does not violate the 
statement in the preceding paragraph because there is no ε > 0 such 
that | cos(2-mω)∣ < 1 - ε for all m greater than some m0.

A simple proof of (11.5.5) is as follows: by using the identity cos α = 
(sin 2α)∕(2 sin α) we can simplify the partial product of the first K fac­
tors as
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(11.5.4)



As K → ∞ we have sin(ω∕2K) → ω∕2K, so that

indeed. Thus, the partial product converges to (sin ω∕ω) pointwise, for 
each ω.

To obtain a 'system theoretic feeling' for the identity (11.5.5), recall 
that a product in the ω-domain translates to a convolution in the time 
domain. The inverse transform of cos(ω∕2) is a sum of two impulses, 
and that of cos(ω∕4) is a sum of two impulses placed closer together, 
and so on [Fig. 11.5-3(a)]. If these impulse trains are convolved, we 
obtain the rectangular window function [Fig. 11.5-3(b)] which indeed is 
the inverse transform of (sin ω∕ω).

Figure 11.5-3 (a) Impulse functions whose Fourier transforms have the form
cos(ω∕2m) and (b) results of convolution of an infinite number of these.
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Convergence of the Infinite Products
Consider the partial products

The infinite products Φ(ω) and Ψ(ω) are, by definition, limits of these partial 
products as L → ∞. Since Gs(ejω) and Hs(ejω) have period 2π, ΦL(2Lω) 
and ΨL(2Lω) have period 2π. In other words, the partial products ΦL(ω) 
and ΨL(ω) have period 2L+1π, and the infinite products Φ(ω) and Ψ(ω) 
are nonperiodic. The inverse transforms therefore represent continuous-time 
functions φ(t) and ψ(t). Notice that the quantities

(11.5.7)

are related to the synthesis filters FL(z) and FL-1(z) of the L-level tree 
structure (Fig. 11.3-7) as follows:

(11.5.8)

Types of convergence. It is said that ΨL(ω) converges to Ψ(ω) point­
wise, if for any ω in the range — 2Lπ ≤ ω < 2Lπ, the quantity ∣ΨL(ω)-Ψ(ω)∣ 
tends to zero as L → ∞. We say that ΨL(ω) converges to Ψ(ω) in the mean 
square sense if ∫2Lπ-2Lπ |ΨL(ω) — Ψ(ω)∣2dω tends to zero as L → ∞. Finally 
the convergence is said to be 'uniform' in an interval if some deeper require- 
ments are satisfied [Kreyszig, 1972]. In this chapter, 'convergence' stands 
for pointwise convergence.

As mentioned above, pointwise convergence is not always guaranteed. 
However, if ∣Gs(ω)∣∕√2 ≤ 1 for all ω, then we have pointwise convergence. 
To see this note that when ∣Gs(ω)∣∕√2 ≤ 1 we have
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(11.5.6a)

(11.5.6b)

(11.5.6c)
with

(11.5.9)



Thus |ΦL(ω)| is a monotone nonincreasing sequence in L, with a lower bound 
equal to zero. As a result, ΦL(ω) converges pointwise to a limit. The 
infinite-product Φ(ω) denotes this limiting function. Similar comments hold 
for Ψ(ω). Notice, in particular, that if [Gs(z), Hs(z)] is a paraunitary pair 
satisfying (11.4.13), we have

Example 11.5.2
Let Gs(ejω) and Hs(ejω) be ideal lowpass and highpass filters with cutoff 
π∕2. From Fig. 11.5-2 we know that Φ(ω) and Ψ(ω) are ideal lowpass 
and bandpass filters respectively. Their impulse responses are

Example 11.5.3.
Next assume that Gs(z) and Hs(z) are FIR with
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(11.5.10)

so that ∣Gs(ejω)∣∕√2 ≤ 1 indeed, and pointwise convergence holds.

(11.5.11)

(11.5.12)

Then

(11.5.13)

By using these in the definitions of Φ(ω) and Ψ(ω) and applying the 
identity (11.5.5), we obtain

(11.5.14)

The inverse transforms ψ(t) and φ(t) are shown in Fig. 11.5-4. These 
are also causal because of our causal choice of Gs(z) and Hs(z). We will 
use the above function ψ(t) later to generate the so-called Haar-basis of 
wavelets (Example 11.5.5).



Figure 11.5-4 Example 11.5-3. The functions φ(t) and ψ(t) which result from 
the choice of Gs(z) and Hs(z) as in (11.5.12).

Time Domain Interpretation of the Infinite Products
From the definition (11.5.1) we see that Φ(ω) and Ψ(ω) can be expressed 

as
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(11.5.15a)

(11.5.15b)

The above products can be expressed as convolutions in the time domain. 
To do this, note that the inverse transform of Gs(ejω), viewed as a function 
of continuous time argument t, can be written as an impulse train:

(11.5.16)

Coupled with the fact that the inverse transform of ½F(ω∕2) is f(2t), we see 
that

(11.5.17)

where * denotes convolution. Simplifying this we obtain the recursion

(11.5.18a)

Summarizing, the infinite product (11.5.1a) is equivalent to the above recur- 
sive relation, where gs(n) is related to Gs(z) as in (11.5.2). Similarly, from 
(11.5.15b) we obtain the recursion

(11.5.18b)



Usually we take the filters Gs(z) and Hs(z) to be FIR, so that (11.5.18a) 
and (11.5.18b) are finite summations. For example if Gs(z) and Hs(z) are 
as in (11.5.12), the summations have only two terms. In this case φ(t) and 
ψ(t) are as in Fig. 11.5-4, and the above recursions are easily verified.

Self-similarity. Figure 11.5-5 demonstrates the recursion (11.5.18a) 
for N = 3. Part (a) shows an example of φ(t). Part (b) shows the shifted 
and scaled versions √2gs(n)φ(2t - n). Since N = 3, there are four curves, 
and these add up to φ(t) for all t. Notice that in the region 0 ≤ t ≤ 0.5, 
the signal φ(t) is identical to a scaled version of φ(2t), which indicates the 
self-similar behavior of φ(t). Similar comments holds for 2.5 ≤ t ≤ 3.0. It 
should be noticed that there is no simple equivalent of this elegant property, 
for the case of discrete-time wavelets.

Figure 11.5-5 Demonstrating how a function is formed from superposition of 
shifted versions of a compressed version.

Figure 11.5-6 Various compressed versions of Ψ(ω). These are used to generate 
an orthonormal basis of wavelets.

Generation of the Wavelet Basis
Suppose Ψ(ω) is a bandpass response (e.g., approximating the one in
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Fig. 11.5-2). Then the functions 2k/2Ψ(2kω) are bandpass with center fre- 
quencies as well as bandwidths reduced by the factor 2k (e.g., see Fig. 11.5- 
6). (The scale factor 2k/2 serves to keep the energy of the filter same for all 
k.) Let these functions be used in the filter bank arrangement of Fig. 11.3- 
2(c), that is, Fk(jω) = 2k/2Ψ(2kω). If this system has perfect reconstruction, 
then the reconstructed signal is
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(11.5.19)

Thus, the wavelet basis functions are

(11.5.20)
where k and ℓ are integers. The basis functions have Fourier transforms

(11.5.21)
If x(t) is appropriately bandlimited, we can restrict k to be nonnegative.

For appropriate choice of the FIR filters Gs(z) and Hs(z), the functions 
ψkℓ(t) can be made orthonormal. The following examples will demonstrate 
this. We will see later that the orthonormality property can be induced by 
designing (Gs(z), Hs(z)] to be a paraunitary pair.

Example 11.5.4
Recall that when Gs(ejω) and Hs(ejω) are ideal filters (as in Fig. 11.5- 
1), Ψ(ω) is the ideal bandpass filter shown in Fig. 11.5-2. The quantities 
Ψ(2kω) do not overlap for two different values of k (Fig. 11.5-6). From 
this it is clear (use Parseval's relation) that the functions ψ(2-k1t) and 
ψ(2-k2t) are orthogonal for k1 ≠ k2. As a further step, it is easy to verify 
that any two functions ψkℓ(t) and ψmn(t) are orthonormal (Problem 
11.15).

Example 11.5.5: The Haar Basis
In the previous example, orthonormality was easy to see by considering 
the frequency domain, whereas a time domain approach is more suited 
in some cases. We know that if Gs(z) and Hs(z) are as in (11.5.12), ψ(t) 
is the function shown in Fig. 11.5-4. Some of the wavelet basis functions 
ψkℓ(t) are sketched in Fig. 11.5-7, and are evidently orthonormal. These 
are called the Haar basis functions.

It is easily verified that any two members of the family {ψkℓ(t)} 
are orthonormal. It can be shown (see references in [Daubechies, 1988]) 
that these functions form a basis for the class of all real finite energy 
functions [commonly called the class L2(R)].



Figure 11.5-7 Example 11.5.5. Some of the basis functions belonging to the 
Haar basis.

Basis Functions with Finite Duration
We now show that if Gs(z) and Hs(z) are FIR, the functions φ(t), ψ(t), 

and ψkℓ(t) have finite duration. The infinite products in (11.5.1), are equiv­
alent to infinite convolutions in the time domain. The inverse transform 
of Gs(ejω), viewed as a function of the continuous variable t, can be ex­
pressed as the impulse-train function (11.5.16). The same comment holds 
for Hs(ejω). Using this we obtain

(11.5.22)
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where * indicates convolution. Assume that Gs(z) and Hs(z) are causal FIR 
with order N, that is,

Thus, φ(t) and ψ(t) are causal functions with duration N. The wavelet basis 
functions ψkℓ(t) are therefore of finite duration 2kN.

11.5.2 Generating Orthonormal Wavelets
From Example 11.5.4 we know that if the filters Gs(ejω) and Hs(ejω) are 
ideal then the wavelet basis ψkℓ(t) is orthonormal. We also know from 
Example 11.5.5, that non ideal filters Gs(z) and Hs(z) can sometimes be 
used to get an orthonormal basis. In Sec. 11.5.3 we will derive a more 
general result, viz., if [Gs(z), Hs(z)] is a paraunitary pair then {ψkℓ(t)} is 
an orthonormal family, subject to some further mild conditions (Theorem 
11.5.1). In this section we will prove a preliminary result required for this 
purpose.

Recall that the orthonormality of the wavelet basis is defined by the 
equation

Using (11.5.21) and making appropriate change of variables, this becomes

(11.5.27)

where i = k2 — k1.
Our aim is to establish the connection between the above orthonormality 

and the paraunitary property of [Gs(z), Hs(z)]. Recall that [Gs(z), Hs(z)] is
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(11.5.23)

The region where the inverse transform of Gs(ej2-mω) can be nonzero is 
given by 0 ≤ t ≤ 2-mN. As m increases, this quantity has smaller and 
smaller duration, and the impulses are squeezed tighter. The convolution of 
infinite number of these will result in a function whose duration is

(11.5.24)

(11.5.25)

In view of Parseval's relation, this is equivalent to

(11.5.26)



a paraunitary pair if (11.4.13) holds. This condition means that if we define 
the polyphase matrix R(z) according to

for all integers L > 0, where ΨL(ω) is the partial product defined earlier. 
In the next section we will derive further conditions under which we can let 
L → ∞ and obtain (11.5.27) from this.
Proof that Paraunitary Property Implies (11.5.29)

For convenience we first make a change of variables and rewrite (11.5.29) 
as

(11.5.30)
Case when i > 0. From the definition of ΨL(ω) we have (11.5.8), and 

we can rewrite (11.5.30) as

(11.5.31)

where FL(z) and FL-1(z) are the top two filters in the L-level tree-structured 
synthesis bank (Sec. 11.3). Here A(z) is a discrete-time transfer function 
whose details are irrelevant for the proof.

If the pair [Gs(z), Hs(z)] satisfies (11.4.13), the L-level tree structure 
generates orthonormal wavelets (Sec. 11.4.2). This implies, in particular,
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(11.5.28)

then R(z) is paraunitary, i.e., R(z)R(z) = I. In Sec. 11.4 we already used 
the paraunitary property to derive discrete-time orthonormal wavelets.

We will now show that the above paraunitariness implies the relation

(11.5.29)

(11.5.32)

that is,
(11.5.33)

In other words, the inverse transform of FL-1(z)FL(z)A(z2L) is zero at lo­
cations of the form 2Lm, where m = integer. This proves (11.5.31).



In other words, if we evaluate the inverse transform of FL-1(z)FL-1(z) at 
the locations 2Ln, the result is zero for n ≠ 0 and unity for n = 0. This 
establishes (11.5.34) indeed. ▽▽▽

Summarizing, we have proved that the paraunitary property of the filter 
bank [Gs(z), Hs(z)] implies the orthonormality (11.5.29) for finite L. It has 
been shown [Mallat, 1989b] that this also implies (11.5.27) (i.e., it holds for 
L → ∞) as long as Gs(ejω) ≠ 0 in ∣ω∣ ≤ π∕2. This is only a mild requirement, 
since a lowpass filter in a QMF bank usually satisfies this. In Sec. 11.5.3 we 
will deal with the details of Mallat's conditions, and state the result more 
formally (Lemma 11.5.1 and Theorem 11.5.1).

Class of functions covered by the basis. Notice that ψkℓ(t) has 
finite duration since Gs(z) and Hs(z) are FIR. The finite duration orthonor­
mal wavelet basis ψkℓ(t) generated in the above manner can be used to rep- 
resent any finite energy signal x(t) as in (11.3.10). See Daubechies [1988], 
Mallat [1989a,b], and references therein. Real signals with finite energy are 
said to belong to the class L2(R). So, we say that {ψkℓ(t)} is complete over 
L2(R). With further restrictions on the FIR filters Gs(z), the basis can be 
used to represent a wider class of functions, as elaborated in the above ref­
erences. Proofs of these 'completeness statements' are beyond the scope of 
this chapter.
Design Example 11.5.1

Consider again the filters G(z) and H(z) used in Design example 11.4.1. 
With Gs(z) = G(z) and Hs(z) = H(z), the magnitude responses are as in 
Fig. 11.4-3(a). Since [Gs(z), Hs(z)] is paraunitary, we can use these filters to 
obtain the orthonormal wavelet basis described above. Figure 11.5-8 shows 
the functions φ(t) and ψ(t) as well as their Fourier transform magnitudes, 
verifying that they are lowpass and bandpass, respectively. Since the order 
of Gs(z) is N = 23, the durations of φ(t) and ψ(t) are also 23 as seen from 
the plots.

11.5.3 Orthonormality as L Approaches Infinity
The fact that (11.5.29) holds for all L is not sufficient to imply the orthonor­
mality condition (11.5.27) of the continuous time wavelets, as demonstrated 
in the following example, shown to the author by Ingrid Daubechies.
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Case when i = 0. Now (11.5.30) reduces to

(11.5.34)

But FL-1(z) satisfies (11.4.16), that is,

(11.5.35)
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Figure 11.5-8 Design example 11.5.1. Continued →



Figure 11.5-8 Design example 11.5.1. The functions φ(t) and ψ(t), obtained 
by starting from Gs(z) and Hs(z). The magnitudes of Gs(ejω) and Hs(ejω) are 
as in Fig. 11.4-3(a).

This is a modification of the Haar basis example, with z replaced by z3. 
It can be verified that the polyphase matrix R(z) is still paraunitary 
[i.e., (11.4.13) holds]. The functions Ψ(ω) and Φ(ω) are obtained by 
replacing ω with 3ω in (11.5.14). The inverse transforms φ(t) and ψ(t) 
are shown in Fig. 11.5-9. From the plots of Fig. 11.5-9 we can verify, in 
particular, that ψ00(t) and ψ02(t) are not mutually orthogonal.

We will now derive the conditions under which the paraunitary property 
of [Gs(z), Hs(z)] implies the orthonormality condition (11.5.27).

Case when i = 0. Eqn. (11.5.27) reduces to

(11.5.37)

for all integers n. We will express this in terms of Φ(ω) for convenience of fu- 
ture discussion. The functions Φ(ω) and Ψ(ω) are expressible as in (11.5.15).
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Example 11.5.6
Consider the filter bank with filters

(11.5.36)



Using this and the power complementary relation (11.5.10) (induced by pa- 
raunitariness), it can be shown that

(11.5.38)

Figure 11.5-9 Example 11.5.6. Generation of basis functions using Gs(z) = 
(1 + z-3)∕√2, Hs(z) = (1 - z-3)∕√2. (a) Scaling function φ(t), (b) ψ(t) and 
ψ00(t) and (c) Ψ02(t).

for all integers n. This equation has an interesting time domain interpreta­
tion. Thus, define rφ(r) to be the deterministic autocorrelation function
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By using this we can verify that (11.5.37) is satisfied if

(11.5.39)

(11.5.40)

(as we did in Problem 2.14). Then, ∣Φ(ω)∣2 is the Fourier transform of rφ(r). 
So (11.5.39) is equivalent to

for all integers n. (11.5.41)



That is, if we 'sample' the function rφ(r) with sampling period T = 1, the 
result is the unit pulse function δ(n). In other words, rφ(r) has periodic 
zero-crossings, at (nonzero) integer values of the argument τ. This is the 
continuous-time analog of the Nyquist(l) property (Sec. 4.6.1), and we say 
that rφ(r) is a Nyquist(1) function.

Using this interpretation and the standard expression (2.1.22) for the 
Fourier transform of a sampled signal, we can re-express (11.5.39) as

Summarizing, the equations (11.5.39), (11.5.41) and (11.5.42) describe the 
same condition. If this condition is satisfied then (11.5.27) holds for i = 0.

Case when i ≠ 0. Now (11.5.27) can be rewritten as

(11.5.43)

By using the definitions of the partial products (11.5.6), we can simplify this 
to the equivalent form

for all integers n.

Interchanging the integral with the summation, we can rewrite this as

for all integers n. (11.5.47)

But we have already shown this to be true in the paraunitary case [set L = 1 
and i ≠ 0 in (11.5.29)]. Summarizing, we have proved the following result.
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(11.5.42)

(11.5.44)
Using the fact that Ψ1(ω) and Ψi+1(2iω) have a common period of 4π, this 
can be rewritten as

(11.5.45)

for all integers n.

(11.5.46)
If rφ(τ) is Nyquist(1) that is, if (11.5.42) holds, then this is equivalent to



♠ Lemma 11.5.1. Continuous time orthonormal wavelets. Let 
Ψ(ω) and Φ(ω) be defined as in (11.5.1) where Gs(z) and Hs(z) satisfy the 
paraunitary conditions (11.4.13) [i.e., the polyphase matrix R(z) is parau­
nitary]. If the scaling function φ(t) is such that its autocorrelation rφ(r) is 
Nyquist(1), [i.e., if any one of (11.5.39), (11.5.41) or (11.5.42) holds], then 
the wavelet basis functions ψkℓ(t) ≜ 2-k/2ψ(2-kt — ℓ) are orthonormal. ◊

Example 11.5.7
Consider the Haar basis example again. The function φ(t) is as in Fig. 
11.5-4, and its autocorrelation is a triangular waveform [Fig. 11.5-10(a)], 
which is zero for ∣r∣ ≥ 1. So the Nyqusit(1) property is automatically 
satisfied, and the wavelet basis ψkℓ(t) is orthonormal as seen earlier.

For Example 11.5.6 on the other hand, the function ψ(t) [Fig. 11.5- 
9(a)] has the triangular autocorrelation rφ(r), shown in Fig. 11.5-10(b). 
This does not satisfy the Nyquist(1) condition [e.g., rφ1) ≠ 0]. So we 
do not expect the basis functions ψkℓ(t) to be orthonormal. Thus, as 
demonstrated earlier, ψ00(t) and ψ02(t) are not orthonormal.
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Figure 11.5-10 The autocorrealtion rφ(t) of φ(t), generated from (a) G,(z) =
(1 + z-1)∕√2 and (b) Gs(z) = (1 + z-3)∕√2.

Satisfying the Nyquist(1) Condition
The natural question now is this: how should we design Gs(z) so that 

the above Nyquist(1) condition is satisfied? The answer to this has been 
provided by Mallat. We will state this in a slightly modified form here: if 
[Gs(z), Hs(z)] is a FIR paraunitary pair [i.e., if (11.4.13) holds] and if the 
following two conditions hold:

1. ∣Gs(ej0)∣ = √2 and
2. Gs(ejω) ≠ 0 for ∣ω∣ ≤ π∕2,

then the Nyquist(1) property (11.5.42) is indeed satisfied. The proof is 
beyond the scope of this chapter, and can be found in Mallat [1989b]. Note 
that the second condition is trivially satisfied in most QMF designs.

To demonstrate this result, consider again the Haar-basis (example 
11.5.3). We have ∣Gs(ejω)∣ = √2∣ cos(ω∕2)∣, and the above two conditions



are satisfied; so the Nyquist(1) condition holds, and the basis ψkℓ(t) is or- 
thonormal. In example 11.5.6, however, we have ∣Gs(ejω)∣ = √2∣ cos(3ω∕2)∣, 
so that Gs(e±jπ/3) = 0. This violates the second condition above. The 
Nyquist(1) property is not satisfied in this case, and the basis ψkℓ(t) is not 
orthonormal as demonstrated earlier.

We can summarize the main points of the preceding discussions as fol- 
lows.

♠ Theorem 11.5.1. Generating continuous-time finite duration 
orthonormal wavelets. Suppose Ψ(ω) and Φ(ω) are defined as in (11.5.1).

1. If Gs(z) and Hs(z) are causal FIR filters of order N, then φ(t) and ψ(t) 
are causal with duration equal to N. So the functions defined according 
to ψkℓ(t) ≜ 2-k/2ψ(2-kt — ℓ) have finite duration.

2. Suppose the FIR filter pair [Gs(z), Hs(z)] is paraunitary i.e., (11.4.13)
holds (i.e., the polyphase matrix R(z) is paraunitary). If in addition 
∣Gs(ej0)∣ = √2 and Gsejω) ≠ 0 for ∣ω∣ ≤ π∕2, the wavelet basis func- 
tions ψkℓ(t) are orthonormal. ◊

Deeper Significance of the Nyquist(1) Condition (11.5.42)
Let R(z) denote the z-transform of the sampled autocorrelation function 

rφ(nT) with T = 1, that is, R(z) = Σn rφ(n)z-n. It can be shown (Problem 
11.19) that R(z) satisfies the equation
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(11.5.48)

In other words if we substitute S(z) = R(z) into the left side of (11.5.48), it 
reduces to R(z). In the paraunitary case, we have Gs(z)Gs(z)∣↓2 = 1 so that 

the function S(z) = constant is a solution to (11.5.48). If it turns out that 
the only solution to (11.5.48) is a constant, then this implies in particular 
that R(z) is a constant, i.e., that rφ(r) is Nyquist(1).

11.5.4 Regularity Considerations

In Fig. 11.5T1 we show the response ∣Gs(ejω)∣ and the corresponding 
wavelet function ψ(t) generated from the filter pair [Gs(z), Hs(z)], for two 
cases. In both the examples, Gs(z) and Hs(z) are fifth order FIR filters, 
designed to satisfy the conditions of Theorem 11.5.1. So the basis functions 
ψkℓ(t) are orthonormal.

We see that ψ(t) is much more 'smooth' or 'regular' in part (a) than in 
part (b) of the figure. Qualitatively speaking, the latter function has strong 
'high-frequency' components, so that it is less 'regular'. Smoothness of ψ(t) 
can be obtained if Gs(ejω) has a sufficient number of zeros (say K zeros) at 
ω = π (i.e., z = —1). In this case Gs(ej2-mω) has K zeros at each of the



frequencies

Using this it can be shown (Problem 11.23) that Ψ(ω) has K zeros at each of 
the frequencies 4πn, for n = 1, 2, 3 . . . If Ψ(ω) is plotted with a logarithmic 
scale for the frequency axis (Bode plot), these zero locations get more and 
more crowded as the frequency increases.

Figure 11.5-11 Two examples of plots of ∣Gs(ejω)∣ and ψ(t). (a) ψ(t) looks 
regular or smooth and (b) ψ(t) does not look smooth.

The smoothness or regularity of ψ(t) improves with the number of ze­
ros of Gs(ejω) at ω = π. For a more quantitative statement of this, see 
Daubechies [1988] where the author defines regularity in terms of the asymp- 
totic decrease of the product (11.5.1) as ω increases, and relates this decrease 
to the number of zeros of Gs(ejω) at ω = π.

Let Gs(z) and Hs(z) be FIR with order N. For orthonormality of ψkℓ(t), 
the filters have to satisfy (11.4.13). In particular, Gs(z)Gs(z)∣↓2 = 1, which
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(11.5.49)



means that Gs(z)Gs(z) is a half-band filter. In other words, Gs(z) should 
be a spectral factor of the half-band filter F(z) ≜ Gs(z)Gs(z). Subject to this 
constraint we will show that, no more than (N + 1)∕2 zeros of Gs(z) can be 
located at ω = π. We will also show how to find the coefficients of Gs(z) 
such that it has (N + 1)∕2 zeros at ω = π. These results are based on the 
theory of maximally flat FIR filters, developed in [Herrmann, 1971].

Maximally Flat FIR Filters

In Chapter 3 we outlined a number of techniques for FIR filter design, 
but left out maximally flat (linear-phase) FIR filters. These are the FIR 
counterparts, in some sense, of IIR Butterworth filters. If we design a max­
imally flat FIR half band filter and take Gs(z) to be one of its spectral 
factors, then the function ψ(t) designed as in the previous section has a 
much smoother plot, as pointed out by Daubechies.

Meaning of maximal flatness. Refer to Fig. 11.5-12, which shows 
the response F(ejω) of a zero-phase lowpass filter F(z), with F(ejπ) = 0. 
Suppose the derivative dF(ejω)∕dω has N0 zeros at ω = 0 and Nπ zeros 
at ω = π. We say that the (degree of) flatness is N0 at ω = 0 and Nπ at 
ω = π. Let Nd be the largest possible number of zeros of the derivative in 
the range 0 ≤ ω ≤ π. [This number is determined by the order of F(z).] If 
Nd = N0 + Nπ, we say that F(ejω) is maximally flat. This means that, for 
a given flatness at ω = 0, the flatness at ω = π has been maximized (or vice 
versa). Notice that unlike an IIR Butterworth filter, the flatness need not 
be the same at ω = 0 and π.

Closed form expression for the filter coefficients. We now show 
how to find the coefficients of maximally flat FIR filters. We discuss the prob­
lem in terms of a polynomial P(y), and then make the change of variables 
y → sin2(ω∕2) to obtain the filter response F(ejω). Here P(y) = ΣNn=0pnyn 
(i.e., polynomial with order N). Let P(0) = 2, and let K - 1 denote the 
degree of flatness at y = 1 (Fig. 11.5-13). This means P(y) has K zeros 
at y = 1. Let the degree of flatness at y = 0 be L — 1. Thus the derivative 
dP(y)∕dy has K + L — 2 zeros. Maximal flatness implies that dP(y)∕dy has 
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no other zeros, so that the order of P(y) is

Figure 11.5-13 The maximally flat polynomial.

Our aim now is to find the L unknowns qℓ by imposing the following L 
constraints on P(y) :

(11.5.55)

In view of (11.5.53), only the term with n = 0 survives, and we obtain

(11.5.56)
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(11.5.50)

Since P(y) has K zeros at y = 1, we can write

(11.5.51)

where Q(y) is a polynomial with order L-1, that is,

(11.5.52)

(11.5.53)

where P(n)(0) denotes the nth derivative evaluated at y = 0. The process is 
enormously simplified by rewriting (11.5.51) as

(11.5.54)

By applying Leibnitz’s rule for the derivative of a product (e.g., see p. 147 
of Apostol [1961]), we obtain



Since qℓ = (Q(ℓ)(0)/ℓ!), we finally obtain

(11.5.57)

Summarizing, this function P(y) represents the polynomial with smallest 
order (= K + L - 1) having the following properties: (a) P(0) = 2, P(1) = 0, 
(b) degree of flatness L - 1 at y = 0, and (c) degree of flatness K - 1 at 
y = 1. Substituting y = sin2(ω∕2), we obtain the zero-phase maximally flat 
FIR filter

(11.5.59)

The filter F(z) has order 2N = 2(K + L — 1). The transfer function F(z) is 
verified to be (Problem 11.18)

(11.5.60)

The filter indicated as F(z) does not have zeros on the unit circle. Its purpose 
is to provide the passband flatness.

Wavelets with Regularity, from Half-band Maximally Flat Filters
The effect of relative values of K and L is clearly demonstrated in Fig. 

11.5-14. For fixed order 2(K+L-1), increase of K results in wider stopband.
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so that

(11.5.58)

Figure 11.5-14 Effect of changing K, for fixed order 2(K + L — 1).



(See below for proof.) In other words, F(z) is a half band filter.
Design procedure. With F(z) so chosen if we define Gs(z) to be 

a spectral factor of F(z) and take Hs(z) in the usual manner, that is, 
Hs(z) = — z-NGs(-z), the paraunitary conditions (11.4.13) are satisfied. 
Furthermore Gs(ejω) ≠ 0 for ∣ω∣ ≤ π∕2 so that the conditions of Theorem 
11.5.1 are satisfied. if the function Ψ(ω) is now constructed as in (11.5.1b), 
then {ψkℓ(t)} is a set of finite duration orthonormal functions with maxi- 
mum regularity. Notice that even though Gs(z) is a spectral factor of F(z), 
only a spectral factor S(z) of the function F(z) [indicated in (11.5.60)] has 
to be computed. We then have
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If K = L, we obtain a response with symmetry around π∕2. More precisely, 
in this case we have

(11.5.61)

(11.5.62)

Proof that (11.5.61) holds when K = L. When K = L, the polyno­
mial P(y) has flatness K — 1 at each of the points y = 0 and y = 1. Defining 
R(y) = P(1 — y), we see that this polynomial has the same flatness at these 
two points, but satisfies R(0) = 0 and R(1) = 2. Thus P(y) + R(y) = 2 at 
y = 0 as well as y = 1. This sum has the same flatness K — 1 at y = 0 and 
y = 1, i.e., its derivative has a total of 2K - 2 zeros if we count the points 
y = 0 and y = 1. Since the order of P(y) + R(y) is 2K - 1, the derivative 
cannot have any further zeros in 0 < y < 1. This shows that P(y) + R(y) = 2 
for all y. Substituting y = sin2(ω∕2), this gives F(ejω) + F(-ejω) = 2 which 
is equivalent to (11.5.61). ▽ ▽ ▽

From the above discussion it is also clear that the maximum possible 
number of zeros of Gs(ejω) at the frequency ω = π is given by K = (N+1)∕2.

Order estimation. In traditional signal processing applications, max­
imally flat FIR filters are not used as commonly as equiripple filters. This 
is because, for a given set of specifications (Fig. 3.1-1), the filter order is 
much higher. For example if we let 2δ1 = δ2 = 0.05, then the filter order for 
a given transition width ∆f is estimated to be [Kaiser, 1979]

(11.5.63)

The order grows as 1∕(∆f)2, and not as as in the equiripple case!
Design Example 11.5.2: Wavelet Regularity

Let K = L = 3 so that the maximally flat filter F(z) has order 2(K + 
L — 1) = 10. The spectral factor Gs(z) has order N = 5, with three zeros



at ω = π (since K = 3). The response ∣Gs(ejω)∣∕√2 for this example was 
shown in Fig. 11.5-11(a), along with the function ψ(t) derived from this 
filter.

Table 11.5.1 provides a summary of the key concepts and equations, 
pertaining to the generation of continuous time wavelets.

11.6 CONCLUDING REMARKS
Wavelets were thoroughly studied in the mathematics literature only after 
the mid 1980s. Most of the analysis was confined to the continuous time case, 
which has a wider scope for deeper mathematial issues. Discrete time wavelet 
transforms, on the other hand, are equivalent to tree structured digital filter 
banks, and can be understood with the help of elementary signal processing 
theory, and a fair amount of matrix theory.

Even before the development of wavelets and paraunitary filter banks, 
nonuniform filter banks have been used in speech processing literature [Nel­
son, et al., 1972], [Schafer, et al., 1975]. The motivation at that time was 
that, nonuniform bandwidths could be used to exploit the nonuniform fre- 
quency resolution of the human ear [Flanagan, 1972]. The more recent 
results on wavelets in the mathematical and signal processing literature en- 
hance our understanding, and enable us to perform orthonormal decompo­
sition.

As we saw in this chapter, discrete time orthonormal wavelet transforms 
are very easy to implement, simply by designing a two channel paraunitary 
QMF bank and then building the tree structure. If we use the cascaded 
lattice structure (Sec. 6.4), then the paraunitary property is retained in 
spite of multiplier quantization. This means that both the perfect recon- 
struction and the wavelet orthonormality properties can be retained in spite 
of multiplier quantization. Furthermore, the lattice structure generates the 
complete class of FIR orthonormal basis functions.

It does not appear to be appropriate to obtain discrete time wavelets by 
discretizing the continuous time version. Such an approach would typically 
result in the loss of many of the desirable properties such as orthonormality 
and perfect reconstruction. Furthermore, as we found in Sec. 11.5, continous 
time wavelets are often generated by starting from discrete time filter banks 
anyway.

Thus, if the wavelet application is already in the digital domain, it is 
really not necessary to understand the deeper results [e.g., the fundamental 
functions φ(t),ψ(t), self similarity, and so forth] developed in Sec. 11.5. In 
this case it is sufficient to understand the results of Sec. 11.4; the nonuniform 
nature of the digital filter responses (as well as the nonuniform decimation) 
already provides the nonuniform time-frequency grid [Fig. 11.3-3(b)], which 
is the key to many of the advantages of wavelet transformation.

Symmetric wavelet basis. In Chap. 7 we saw that two-channel FIR 
perfect reconstruction QMF banks cannot simultaneously have linear phase 
and paraunitary properties, unless the filters have fairly trivial forms. As a
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TABLE 11.5.1 Generation of continuous-time wavelet basis

Definition of the infinite products:

(11.5.1a)

(11.5.18)

If Gs(z) and Hs(z) are causal FIR (order N), the functions ψ(t) and φ(t) 
are causal, and of finite duration N.

Definition of the basis functions: ψkℓ(t) = 2-k∕2ψ(2-kt — ℓ)

Orthonormality
Suppose Gs(z) and Hs(z) are causal and FIR, satisfying:

1. ∣Gs(ejω)∣2 + ∣Hsejω)∣2 = 2
2. Hs(z) = z-NGs(-z) for some odd N.

Equivalently,
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(11.5.1b)

where Gs(z) = ∑ngs(n)z-n and Hs(z) = Σnhs(n)z-n. Then

(11.5.15)

Equivalently

(11.4.13)

In other words, [Gs(z), Hs(z)] is an FIR paraunitary pair, i.e., the polyphase 
matrix R(z) satisfies R(z)R(z) = I. If we further have

∣Gs(ej0)∣ = √2, and Gs(ejω) ≠ 0, ∣ω∣ ≤ π∕2, 
then {ψkℓ(t)} forms an orthonormal set. In particular, each function ψkℓ(t) 
has unit energy. The Haar basis (Example 11.5.5) is a familiar example of 
this. Also see Lemma 11.5.1 and Theorem 11.5.1.

Regularity. If the above Gs(z) is designed to be a spectral factor of 
a maximally flat FIR half-band filter F(z) [i.e., F(z) as in (11.5.60) with 
K = L] then ψ(t) exhibits very smooth behavior. See Fig. 11.5-11 for 
demonstration. Thus {ψkℓ(t)} are regular, orthonormal, and of finite dura- 
tion for finite k.



result, if we confine the orthonormal wavelet basis functions ηkm(n) in Sec.
11.4.2 to have linear phase, then the functions Fk(z) are severely restricted. 
If we give up the paraunitary property (hence wavelet orthonormality), it is 
possible to design linear phase perfect reconstruction systems (i.e., symmet- 
ric wavelet basis functions) with greater flexibility of coefficients. This was 
demonstrated in Chap. 7. Further discussion of symmetric nonorthonormal 
wavelets can be found in Vetterli and Herley [1992]. For the case of sym­
metric orthonormal wavelets, see [Soman, Vaidyanathan and Nguyen, 1992]. 
For the case of nonbinary tree strutures (as used in wavelet packets) the 
simultaneous imposition of paraunitary and linear phase properties does not 
severely restrict the filter responses, and it is possible to obtain nontrivial, 
symmetric, orthonormal wavelet basis functions. Also see Problem 11.17.
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PROBLEMS

11.1. Consider the following system where H(ejω) is an ideal filter, with center fre­
quency ω0.

Let c > 0 be the height of the passband response. Assume that the Fourier 
transform X(ejω) is constant in the passband of the filter. We know that y(n) 
is a slowly varying signal for small Δω (slower for smaller Δω).

a) Find an expression for y(n).
b) For what value of n is ∣y(n)∣ maximum?
c) Let ∣y(n)∣ be maximum for n = n0. Suppose we wish to have X(ejω0) = 

y(n0). Show then that c = 2π∕Δω.
This shows that, in order for the outputs of a filter bank to deliver a snap-shot 
of the (time-varying) Fourier transform, the filter heights should be inversely 
proportional to the bandwidths.

11.2. Consider the STFT system in (11.2.2) where v(n) is of finite duration N. Sup- 
pose we implement this as a uniform DFT system (11.2.5), where H0(z) is as 
in (11.2.6). If we wish to have an FIR inversion system, show that v(n) cannot 
have more than M nonzero coefficients.

11.3. Consider the discrete-time STFT and its inverse given in (11.2.1) and (11.2.9) 
respectively.

a) Show that if the relation (11.2.1) is used in (11.2.9) this results in x(n) = 
x(n)Σm ∣v(m)∣2.

b) Let z0 be a zero of Σk v*(k)z-k. Show that if we substitute zm0 in place of 
XSTFT(ejω, m) on the right hand side of (11.2.9), it reduces to zero. This 
shows that if XSTFT(ejω, m) satisfies the inverse relation (11.2.9), then so 
does XSTFT(ejω, m) + czm0 for any constant c.

11.4. Consider the sampled STFT given in (11.2.27). Here the STFT is evaluated on 
a two-dimensional grid with samples located at Ω = kΩ0 and τ = nT. Define 
the quantities

(P11.4a)

(P11.4b)
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(P11.4c)
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Assume that the sample spacings Ω0 and T are related as Ω0T = 2π.
a) Verify that Y(τ, Ω) is periodic in r with period T, and periodic in Ω with 

period Ω0. Also verify that X1(τ, Ω) and V1(τ, Ω) are periodic in Ω with 
period Ω0.

b) Assuming that summations and integrals can be interchanged when nec- 
essary, show that

(P11.4d)

Thus, given the sampled STFT X(k, n) and the window v(t), we can recover 
x(t) as follows:

a) Compute Y(r, Ω) for 0 ≤ r < T and 0 ≤ Ω < Ω0.
b) Compute V1(r, Ω) for 0 ≤ r < T and 0 ≤ Ω < Ω0.
c) Using (P11.4d), compute X1(r, Ω) for 0 ≤ r < T and 0 ≤ Ω < Ω0. (This 

assumes V1(r, Ω) ≠ 0 in this range).
d) Find x(r + mT) by using inverse Fourier transform relation corresponding 

to (P1l.4b). This gives x(r + mT) for any integer m and for any τ in the 
range 0 ≤ r < T. So x(t) can be recovered for any t.

11.5. For the signals given in Fig. 11.2-11 (a), (b), and (c), verify the indicated 
expressions for the RMS duration Dt.

11.6. Recall the RMS durations defined in (11.2.23). We now show DtDf ≥ 0.5. For 
simplicity, assume x(t) is a real function of the real variable t. Let X(jΩ) denote 
its Fourier transform. For the purpose of this problem, it is useful to review 
Cauchy-Schwartz inequality [Appendix C, Problem C.7(c)]. All integrals are 
in the range —∞ to ∞. Assume that all relevant integrals exist, and that x(t) 
has 'sufficient decay' so that tx2(t) → 0 as t → ±∞.

a) Prove the inequality

(P11.6)

b) Using the fact that jΩX(jΩ) is the Fourier transform of dx(t)∕dt, prove 
that the right hand side of the above inequality is equal to E2D2tD2f, where 
E = f x2(t)dt.

c) Show that ∫ tx(t)([dx(t)/dt]/dt)dt = —0.5E. (Use integration by parts, i.e., ∫ udv = 
uv — ∫ vdu.)

d) Combine these results to prove DtDf ≥ 0.5. From Cauchy-Schwartz in- 
equality we know that equality occurs if and only if tx(t) = cdx(t)∕dt for 
some constant c. By integrating this, show that DtDf = 0.5 if and only 
if x(t) = Ae-αt2 for some real A and α > 0. In other words, x(t) is a 
Gaussian pulse.

11.7. The continuous-time Fourier transform pair is given by (2.1.20) and (2.1.21). 
From this one can verify the Fourier transform relations: (i) dx(t)∕dt → 
jΩX(jΩ), and (ii) tx(t) → jdX(jΩ)∕dΩ. Now suppose x(t) = e-t2/(2σ2). (Note 
that the subscripts a have been dropped for simplicity.)



a) Using the above Fourier transform properties, show that X(jΩ) satisfies 
the differential equation [dX(jΩ)∕dΩ] = —σ2ΩX(jΩ).

b) By appropriate integration show that X(jΩ) = ce-σ2Ω2/2.
c) By using the following facts:

11.10. Show that the Type 2 polyphase matrix R(z) of a synthesis bank is related to 
the filter matrix (11.4.24) according to (11.4.25).

11.11. Consider the synthesis bank shown below.

Figure P11-11

We know how to associate a polyphase matrix R(z) with this system. Verify 
that R(z) satisfies R(z)R(z) = I. From Sec. 11.4.1 we know how to generate 
an orthonormal set of discrete-time wavelet basis functions ηkm(n) from this 
filter bank. List the four sequences ηkm(n) for k = 0, 1, and m = 0, 1. Verify 
that these are indeed orthonormal.

11.12. Consider the two-level tree structured synthesis bank shown in Fig. P11-12.
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show that c = σ√2π. Thus X(jΩ) = σ√2πe-σ2Ω2/2, a well-known result.

11.8. Let x(t) = e-t2/(2σ2) where σ > 0. We know from Problem 11.7 that X(jΩ) = 
σ√2πe-σ2Ω2/2. Denote the RMS time duration by Dt(σ).

a) Show that the RMS frequency duration is given by

(P11.8)

b) By using the fact that Dt(σ)Df(σ) = 0.5 for Gaussian x(t), show that 
Dt(σ) = σ∕√2.

11.9. Let A(z) and B(z) be rational transfer functions, and let m1 and m2 be positive 
integers. Show that

(P11.9)



Let Gs(z) = c(1 + z-1) and Hs(z) = c(1 — z-1), where c is some positive 
constant. From Sec. 11.3.3 we know how to generate discrete-time wavelet 
basis functions ηkm(n) from this filter bank.

Figure P11-12

a) List the six sequences ηkm(n) for k = 0, 1, and 2, and m = 0, 1.
b) Pick any two sequences from the above list as you wish, and verify that 

they are orthonormal for appropriate choice of c.
11.13. Show that the condition (11.4.14) can be rewritten as (11.4.15). Clearly explain 

where the inequality 2nk ≥ 2nℓ is used in this rewriting.
11.14. Consider the infinite product Π∞m=1abm, where ∣b∣ < 1. We show that this

converges to the quantity S = ab/(1-b). Note that, since ∣b∣ < 1, we can write 
S = a(Σ∞m=1 bm). Define the partial product SL = ΠLm-1 abm. Show that SL —
S = S × (a-bL+1/(1-b) — 1). Hence show that SL → S as L → ∞.

11.15. Let Gs(ejω/2) and Hs(ejω/2) be as in Fig. 11.5-1. Then Ψ(ω) is the ideal 
bandpass function shown in Fig. 11.5-2. Prove then that the wavelet basis 
functions φkℓ(t) [defined in (11.5.3)] form an orthonormal set. [Hint. It might 
help to note that ∫02π ejωndω = 2πδ(n).]

11.16. Consider the Harr basis generated in Example 11.5.5. Sketch φ3,0(t). Also 
sketch the functions ψ1,ℓ(t) for 0 ≤ ℓ ≤ 3, and verify that these are orthogonal 
to ψ3,0(t).

11.17. In Sec. 11.5 we generated the functions φ(t) and ψ(t) starting from the discrete- 
time transfer functions Gs(z) and Hs(z). Suppose the filters Gs(z) and Hs(z) 
are as in (11.5.23), that is, causal FIR. From Chap. 7 we know that Gs(z) and 
Hs(z) cannot have linear phase unless we give up the paraunitary property 
of the polyphase matrix. (The only exception to this gives trivial frequency 
responses, as seen in Chap. 7). In Chap. 7 we also found that we can obtain 
two-channel FIR perfect reconstruction systems with linear phase analysis and 
synthesis filters if we give up the paraunitary property. Under this condition, 
the functions φ(t) and φ(t) exhibit some kind of symmetry, which you prove 
in this problem. We say that a function f (t) is symmetric if f(t) = f (2t0 — t) 
for some finite t0 [antisymmetric if f (t) = —f (2t0 - t)] and t0 is said to be the 
center of symmetry.

a) Assume gs(n) = gs(N — n) and hs(n) = -hs(N — n) (which implies lin­
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ear phase in the real coefficient case). Does φ(t) exhibit symmetry or 
antisymmetry? If so, what is the center of symmetry or antisymmetry?

b) Repeat part (a) with ψ(t) instead of φ(t).
By using the FIR perfect reconstruction QMF bank with the above synthesis 
filters, it is possible to obtain the so-called bi-orthonormal symmetric wavelet 
functions with finite duration. For further details, see Vetterli and Herley 
[1992], and Soman, Vaidyanathan and Nguyen [1992].

11.18. Starting from the frequency response (11.5.59), verify that the transfer function 
F(z) is indeed given by (11.5.60).

11.19. Let rφ(r) be the autocorrelation function of the scaling function φ(t), defined 
as in (11.5.40). Define the z-transform R(z) = Σnrφ(n)z-n. It can then be 
shown that R(z) satisfies

Figure P11-20

11.21. Consider the maximally decimated filter bank of Fig. 5.4-1, with a wide sense 
stationary input x(n). Suppose the analysis bank is FIR and paraunitary (i.e.,
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(P11.19)

a) Verify the above equation for the function φ(t) in Fig. 11.5-4. Repeat the 
same for Fig. 11.5-9.

b) More generally, give a proof of (P11.19).
11.20. Consider the functions Φ(ω) and Ψ(ω) defined in Sec. 11.5, and assume that 

[Gs(z), Hs(z)] is a paraunitary pair. Show then that
∣Ψ(ω)∣2 + ∣Ψ(2ω)∣2 + ∣Ψ(4ω)∣2 + . . . + |Ψ(2Lω)|2 + |Φ(2Lω)|2 = ∣Φ(ω∕2)∣2,

for any integer L ≥ 0. This is pictorially demonstrated as shown in Fig. P11-20. 
if the “squeezed” bandpass filters generated from ∣Ψ(ω)∣2 and the 'squeezed' 
lowpass filter [Φ(2Lω)|2 are added, the result is precisely the stretched lowpass 
filter ∣Φ(ω∕2)∣2 (The figure assumes magnitude symmetry with respect to ω = 
0.)



the polyphase matrix E(z) (Fig. 5.5-3(b)) is paraunitary). Let x(n) be zero- 
mean and white. Show that the decimated subband output signals yk(n) are 
uncorrelated, i.e., E[yk(n)y*m(i)] = 0 for k ≠ m. (For consistency, we have used 
yk(n) in place of the notation vk(n) used in Fig. 5.+ 1.) Show also that all 
signals yk(n) are white, with equal variance for all k. (Note. These properties 
would not, in general, be true if E(z) were not paraunitary.)

11.22. Most general, nonuniform, orthonormal, discrete-time wavelets. In Problem 
5.32 we introduced the filter bank with nonuniform integer decimators nk. 
Assume that this system is maximally decimated, that is, Σ1∕nk = 1. Let 
yk(n), 0 ≤ k ≤ M-1 be the decimated subband outputs. Assuming perfect 
reconstruction (i.e., x(n) = x(n)) show that we can express x(n) in terms of 
the synthesis filters as
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Thus, x(n) has been expanded in terms of the basis functions ηkm(n) = fk(n — 
nkm), and yk(m) can be regarded as the generalized wavelet coefficients.

a) Recall that the basis ηkm(n) is orthonormal if the synthesis filters satisfy 
(11.2.19). Show that this orthonormality condition can be rewritten as

(P11.22b)

where gk1k2 is the greatest common divisor (gcd) of nk1 and nk2.
b) How would you extend the result of Problem 11.21 to this nonuniform 

orthonormal case?
11.23. Assume that Gs(ejω) has K zeros at the frequency ω = π, and that the in- 

finite product defining Ψ(ω) converges. Show that Ψ(ω) has K zeros at each 
frequency of the form 4πn, n = positive integer.



12

Multidimensional

Multirate Systems

12.0 INTRODUCTION

In this chapter we extend the basic concepts of multirate signal processing 
to the case of multidimensional (MD) signals, for example, two dimensional 
(2D) signals, and three dimensional (3D) signals. An example of a 2D signal 
is an image, whose intensity is a function of two variables (horizontal and 
vertical coordinates) [Jain, 1989]. A popular example of a 3D signal is an 
image which varies in time (such as a movie), “time” being the third di­
mension. An example of a 4D signal is the temperature at a point in space, 
as a function of time. Multidimensional multirate systems find applications 
in image coding [Woods, 1991], sampling format conversion between various 
video standards, and high-definition television systems, to mention a few.

Some of the earliest contributions to multidimensional filter banks were 
due to Vetterli [1984], Woods and O'Neil [1986], and Wackershruther [1986a]. 
The idea of “sampling” a multidimensional signal is fundamental to many 
of our discussions here. This is a nontrivial concept, and involves the math­
ematical concept of lattices [Cassels, 1959]. The use of lattices in sampling 
has been recognized for several decades, for example, see Petersen and Mid­
dleton [1962], and references therein. A detailed treatment of 2D sampling 
can be found in Dudgeon and Mersereau [1984]. Theoretical aspects of mul­
tidimensional systems are treated in Bose [1982].

The use of lattices has also been extended to the case of discrete time 
decimation and interpolation [Mersereau and Speake, 1983], [Dubois, 1985]. 
More recently, lattices have been used for the description and analysis of 
multidimensional filter banks [Ansari and Lee, 1988], [Ramstad, 1988], [Visc­
ito and Allebach, 1988b], [Bamberger, 1990], [Karlsson and Vetterli, 1990], 
[Simoncelli and Adelson, 1990], [Vaidyanathan, 1990c, 1991b], [Chen and 
Vaidyanathan, 1991,1992a,b]. In particular the perfect reconstruction prob­
lem has been addressed in Viscito and Allebach [1988b and 1991], Ansari 
and Guillemot [1990], Karlsson and Vetterli [1990], and Kovačević and Vet-
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terli [1992]. Design techniques for 2D filter banks can be found in Ansari 
and Guillemot [1990], Smith and Eddins [1990], Fettweis, et al. [1990] and 
Bamberger and Smith [1992]. The last two references show how to design 
filters which can be used for “directional decomposition” of images.

An article on MD filter banks, with excellent tutorial value can be found 
in Viscito and Allebach [1991]. Some of the notations to be developed in 
Sec. 12.4-12.9 are based on this reference and on [Vaidyanathan, 1990c].

Chapter Outline
Some of the basic concepts on MD signals are reviewed in Sec. 12.1-12.3. 
An attempt to do full justice to the basics will take up several chapters. 
The exposition here, accordingly, is brief (but technically complete). It is by 
no means a substitute for complete texts such as Dudgeon and Mersereau 
[1984], Jain [1989], and Lim [1990].

Sec. 12.4 to 12.10 are, however, self contained. They deal with multi- 
dimensional decimation, interpolation, polyphase decomposition, and filter 
banks. Four Tables in the end summarize key notations and concepts.

12.1 MULTIDIMENSIONAL SIGNALS
A D-dimensional signal xa(t0, t1, . . . ,tD-1) is a function of D real variables 
t0, t1, . . . ,tD-1. We define the column vector

12.1.1 The Fourier Transform
The Fourier transform of xa(t)(if it exists) is defined to be the D-dimensional 
integral

(12.1.2)

Thus, the Fourier transform is a function of D real variables (frequencies) 
Ω0, Ω1, . . . , ΩD-1. (Both xa(t) and Xa(jΩ) are scalar functions of vectors). 
The inverse transform relation analogous to (2.1.21) is

(12.1.3)
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(12.1.1)
and abbreviate the signal as xa(t). The subscript a indicates 'analog' which 
actually means that ti are continuous variables. Even though these variables 
do not (necessarily) represent time, it is customary to call them so, and refer 
to xa(t) as a continuous 'time' signal.



Defining the column vector of frequencies

The notation ∫ba indicates that the MD signal is integrated with respect to 
all variables, with each variable ranging from a to b. The above Fourier 
transform relations resemble the 1D versions [eqns. (2.1.20) and (2.1.21)] 
with the exceptions that (a) Ωt is replaced with the inner product ΩTt, and 
(b) there is a scale factor (1∕2π)D rather than l∕2π in the inverse transform 
relation.

Bandlimited signals. A multidimensional signal is said to be band 
limited if the Fourier transform Xa(jΩ) is identically zero everywhere except 
in a designated finite region. The region where Xa(jΩ) is allowed to be 
nonzero is said to be the support of Xa(jΩ). Figure 12.1-1 shows several 
examples, with gray areas indicating the support. The examples in parts (a) 
and (b) are lowpass signals. If the quantity ∣Xa(jΩ)∣ is a nonzero constant 
in the gray areas, it can be considered to be a lowpass filter [i.e., xa(t) is the 
impulse response of a 2D lowpass filter]. Part (c), on the other hand, would 
represent a bandpass filter.

Figure 12.1-1 Demonstration of supports for Xa(jΩ).

Discrete-Time Signals
Fourier transform relations for discrete-time 1D signals were defined in 

(2.1.4). In the D-dimensional case, the signal is denoted as x(n), where the 
'time' index n is a column vector

(12.1.7)
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we can abbreviate these relations as

(12.1.5)

(12.1.6)



Thus, x(n) is a function of D integer variables nk, 0 ≤ k ≤ D — 1. We refer 
to n as an integer vector (or just “integer”). The Fourier transform, if it 
exists, is defined analogous to the 1D case, and is a function of D frequency 
variables ωk, 0 ≤ k ≤ D - 1. With

(12.1.8)

the Fourier transform is defined by

(12.1.9)

where N denotes the set of all D-component integer vectors. The inverse 
Fourier transform relation is

(12.1.10)

Since
(12.1.11)

we see that X(ω) is periodic in each variable ωi with period 2π.

12.1.2 The z-Transform
Consider the summation

(12.1.12)

which is called the z-transform of x(n). Here z denotes the vector

This summation does not, in general, converge for arbitrary z. For details 
about convergence, see Lim [1990]. If it converges for all zk of the form

(12.1.13)

(ωk real) it reduces to the Fourier transform X(ω).
Notice the subscript z on X in (12.1.12). This is meant to distinguish the 

above from X(ω). This is necessary because we have to substitute zk = ejωk 
into Xz(z) (rather than substitute z = ω) to obtain X(ω). Introducing the 
notation
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the z-transform becomes

(12.1.15)

The notation Z(n) helps us to write the multidimensional z-transform 
in a manner which resembles the 1D z-transform. † Notice that when 
zi = ejωi, the quantity e-jωTn takes the place of Z(-n).

Special case of 2D signals. For the special case of 2D signals, we 
shall often use notations such as x(n0, n1), Xz(z0, z1), and X(ω0, ω1) in place 
of x(n), Xz(z) and X(ω).
Key Properties of the Fourier and z-Transforms

We now state a number of properties of Fourier and z-transforms. Proofs 
for some of these are requested in Problem 12.1.

1. Linearity. From the definition we can see that if Xz,1(z) and Xz,2(z) 
are the transforms of x1(n) and x2(n), then the transform of a1x1(n) + 
a2x2(n) is given by a1Xz,1(z) + a2Xz,2(z) for arbitrary a1,a2.

2. Shifting a sequence. The sequence y(n)=x(n — k) is said to be the
shifted version of x(n), with k denoting the vector-shift. To demonstrate 
this consider a 2D sequence x(n0,n1) which is equal to unity at the sample 
locations indicated in Fig. 12.1-2(a), and zero elsewhere. The shifted version 
is shown in Fig. 12.1-2(b) for k = [21].

Figure 12.1-2 (a) A sequence x(n) and (b) its shifted version x(n — k).

It is easily verified that the z-transform of the shifted sequence x(n - k) 
is given by Z(-k)Xz(z). So Z(-k) can be regarded as a delay (or shift) 
operator, which introduces k 'units' of delay. It can also be shown that (a) 
Z(-k) = 1∕Z(k), and (b) Z(k1 + k2) = Z(k1)Z(k2).

† An alternative, z(n), has some advantages; see comments after Example
12.4.2.
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3. Convolution theorem. Given two MD sequences x(n) and h(n) define 
the convolution sum y(n) = ΣmεNh(m)x(n-m). Then, the transforms are 
related as Yz(z) = Hz(z)Xz(z). In terms of Fourier transforms, this becomes 
Y(ω) = H(ω)X(ω).
Modulation and Frequency-Shift

Consider the sequence y(n) = x(n)eaTn, where a is a column vector. 
Then Yz(z) is obtained from Xz(z) by replacing each variable zi with zie-ai 
where ai is the ith element of a. Defining the diagonal matrix
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(12.1.16)

we can write Yz(z) = Xz(Λaz). Thus, in the 2D case,

In particular suppose a is purely imaginary, that is, a = jb for real b. 
Then we can verify that Y(ω) = X(ω - b). So multiplication of x(n) with 
ejbTn for real b amounts to a frequency shift by the amount b.

12.1.3 Multidimensional Digital Filters
Figure 12.1-3 shows the schematic for a multidimensional digital filter. This 
is an LTI system characterized by a transfer function

(12.1.17a)

where h(n) is the impulse response of the filter. The input-output relation 
of the system is given by the generalized convolution,

(12.1.17b)

or, in terms of z-transforms by Yz(z) = Hz(z)Xz(z). Given a two dimensional 
image x(n) with finite size, the convolution operation in (12.1.17b) produces 
a larger image y(n). In fact y(n) has infinite extent if the filter is IIR. There 
exist techniques to cut down the size of the image by appropriate processing 
of the boundaries.

The frequency response H(ω) of the filter is given by

(12.1.18)

This is Hz(z) evaluated at zk = ejωk,0 ≤ k ≤ D — 1. Figure 12.1-4 shows 
some typical frequency responses for the 2D case. The passband region (i.e., 
region where ∣H(ω)∣ ≈ 1) is said to be the support of the filter.



Figure 12.1-3 Schematics for multidimensional digital filters.

Figure 12.1-4 Typical two-dimensional frequency response plots. The magni- 
tude m dB is plotted. (a) Diamond filter, and (b) fan filter.
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Figure 12.1-5 Several possible supports for 2D filters. Gray areas denote 
passbands. If H(ω) is constant in gray areas, then (a) and (f) are separable 
filters.
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It is convenient to show the responses of filters in terms of their support. 
Figure 12.1-5 shows several examples of this kind. Note in particular that 
a lowpass response can have many possible supports, such as rectangular, 
circular, diamond, and so on. The supports shown in Fig. 12.1-5(g) and 
(h) correspond to the filters in Fig. 12.1-4. These are, respectively, called 
diamond and fan filters, because of the shape of the support.

The supports in the figure are shown only for the region - π ≤ ωi ≤ π, 
but the response is periodic (with period 2π) in each direction. This is 
demonstrated in Fig. 12.1-6 for lowpass and highpass filters.

Separable filters. A multidimensional filter is said to be separable if
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(12.1.19)
In other words, the transfer function is a product of D one-dimensional 
transfer functions. Separability implies, in particular, that the plot of H(ω) 
with respect to any one frequency variable ωi is unchanged (except for a scale 
factor) if the remaining frequency variables are changed. To demonstrate 
nonseparability, consider the 2D filter response in Fig. 12.1-7(a). The plot 
of H(ω0,ω1) with respect to ω0 is shown in parts (b) and (c), for two values 
of ω1. These plots are not scaled versions of each other so that the response is 
not separable. On the other hand, Fig. 12.1-5 (a) and (f) represent separable 
filters (if H(ω) is constant in the gray regions). Here are some analytical 
examples: (a) z-10z1-1 (separable), and (b) 1 — z-10z-11 (nonseparable).

The advantage of separable filters is that they can be designed easily 
from 1D filters. However, there exist many nonseparable filters which can be 
designed from 1D versions by clever mappings. A simple example is 1 — H(ω), 
which is not necessarily separable even if H(ω) is. [If H(ω) is unity in the 
gray area of Fig. 12.1-5(a), then 1 - H(ω) is as in Fig. 12.1-5(d).] More 
nontrivial examples of these will be mentioned in Sec. 12.7. (For a preview 
the reader can see Fig. 12.7-2!) Also see Problem 12.36.

Linear phase and zero-phase filters. A multidimensional filter 
H(ω) is said to have linear phase if

(12.1.20)
where k is a real constant vector, HR(ω) is a real function, and c is a (possibly 
complex) constant. (Notice that it is possible for ΗR(ω) to be negative, but 
in most cases this happens only in the stopbands). Linear phase systems do 
not introduce phase distortion (in the same sense as for the 1D case, Sec. 
2.4.2). If H(ω) has linear phase, then so does the frequency-shifted version 
H(ω — b) and the time shifted-version h(n — m).

A zero-phase filter is a linear phase filter whose frequency response is 
real for all ω. In other words, the response can be written as in (12.1.20) 
with k = 0, and c = 1. It can be shown (Problem 12.3) that a filter has 
zero-phase if, and only if, the impulse response satisfies

(12.1.21)



Figure 12.1-6 Demonstration of two-dimensional periodicity of the 2D digital 
filter response. (a) Rectangular lowpass filter and (b) highpass filter.

In the 2D real coefficient case, the condition

(12.1.22)

is therefore necessary and sufficient to ensure zero phase.
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Linearity of phase is important in image processing (unlike in many 
speech applications where some amount of phase nonlinearity is acceptable). 
Examples demonstrating this point can be found in Lim [1990] and references 
therein.

Figure 12.1-7 Demonstration of a nonseparable response. (a) Support of the 
filter, (b) and (c) responses for two fixed values of ω1.

12.2 SAMPLING A MULTIDIMENSIONAL SIGNAL
The theory behind sampling of a multidimensional signal is fundamentally 
more complicated because of the many different ways to choose the sampling 
geometry. To illustrate, we first consider the 2D case. Given a 2D signal 
xa(t0, t1), the simplest sampled version we can visualize is
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(12.2.1)

where n0 and n1 are integers. So all the values of t0 and t1, which are integer 
multiples of T0 and T1, are included by the sampler. The sample points 
are thus arranged in a rectangular pattern, as demonstrated in Fig. 12.2-1 
for T0 = 2, T1 = 1. This scheme is therefore termed rectangular sampling. 
We now demonstrate a more general sampling pattern. The motivation 
for considering such generalizations arises from the fact that rectangular 
sampling is often not the most efficient way to sample a bandlimited signal 
(as justified in Sec. 12.3.2).



Figure 12.2-1 Demonstration of rectangular sampling. Here T0 = 2, and T1 = 1.

Example 12.2.1
Consider the sequence generated as

(12.2.2)

The sample points are shown in Fig. 12.2-2. To see how this figure has 
been obtained, note that the sample locations, which are t0 = n0 — n1 
and t1 = n0 + 2n1, can be written compactly as

(12.2.3)

The matrix V is called the sampling matrix. Every sample location t is 
of the form

where v0 = and v1 = In other words, the sample locations
are vectors t that are integer linear combinations of the columns v0 and 
v1 of the sampling matrix V.

Given the matrix V, the sample points can be graphically obtained 
as follows: first sketch the vectors v0 and v1 (heavy lines in the figure). 
Then draw two sets of equispaced parallel lines such that the two vectors
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form two sides of a parallelogram generated by these lines. The sample 
points are then located at the intersections of these sets of lines.

In general V need not be an integer matrix (see next example), but 
it must be real and nonsingular. The sampling geometry in Fig. 12.2-2 is 
only one of an infinite number of possible ones. As we will see, the choice 
of sampling geometry affects the efficiency (in terms of required number of 
samples per unit volume) with which bandlimited signals can be represented.

Example 12.2.2
Suppose we sample a 2D signal xa(t) with the sampling matrix

(12.2.5)

This is a Givens rotation matrix [Eq. (6.1.9), with —θ in place of θm]. 
This means that the sample points

(12.2.6)

are obtained by rotating the sample points corresponding to

(12.2.7)

by an amount θ in the counterclockwise direction. Equation (12.2.7) in 
turn represents rectangular sampling with unit spacing between adjacent
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Figure 12.2-2 The set of sample points generated by V in Example 12.2.1.



samples in both directions. See Fig. 12.2-3 which demonstrates the 
above rotation for θ = π∕4. We can consider the sample points to be 
located at the corners and centers of appropriate hexagons, which fill the 
2D plane [see Fig 12.2-3(c)]. This is a special case of hexagonal sampling 
to be defined at the end of Sec. 12.3.2.

From Fig. 12.2-3(b) we also see that the samples can be considered 
to be located at equidistant points with spacing s (= √2) along equi 
spaced horizontal lines (spacing s∕2). The samples on any horizontal line 
are, however, displaced with respect to those on the adjacent horizontal 
line by the amount s∕2. These comments continue to hold if the word 
'horizontal' is replaced with 'vertical' everywhere.

Figure 12.2-3 (a) Sample points for rectangular sampling with T0 = T1 = 1, (b) 
rotated sample points obtained by using V with θ = 45°, and (c) demonstration 
that the rotated sample points are located at the center and corners of hexagonal 
figures.

12.2.1 Multidimensional Sampling
The sampled version of a D-dimensional signal xa(t) is defined as

(12.2.8)

where V is a real D × D nonsingular matrix

(12.2.9)
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and n ∈ N. The set of all sample points is the set

(12.2.10)

that is, the set of vectors Σk=0D-1 nkvk. This is the set of all integer linear 
combinations of the columns v0, . . ., vD-1 of V. This set, denoted LAT(V), 
is called the lattice generated by the matrix V. The matrix V is called the 
sampling matrix, and is also said to be the basis which generates LAT(V).

Evidently LAT(V) is a discrete set, but has infinite number of ele- 
ments. For the 2D examples above V was indicated in (12.2.3) and (12.2.5) 
respectively. For the rectangular case (12.2.1), we have

(12.2.11)

More generally rectangular sampling is defined to be a sampling scheme for 
which V is diagonal.
Nonuniqueness of the Lattice-Generator V

The matrix V that generates a lattice is not unique. Thus the lattice 
generated in Example 12.2.1 could also have been generated by the sampling 
matrix

(12.2.12)

Similarly, the rectangular lattice with T0 = T1 = 1, which is generated by 
V = I could also have been generated by

(12.2.13)

In Problem 12.5 the reader is requested to verify both of these statements 
graphically. The theory underlying these, though, is given in Lemma 12.2.1. 
But first we need a definition.

Unimodular integer matrix. An integer matrix E is said to be 
unimodular if [det E] = ±1. For such a matrix, the inverse E-1 is also 
an integer (since E-1 is equal to the matrix of cofactors divided by the 
determinant; Appendix A). Conversely, suppose the inverse F of an integer 
matrix E is integer. We have EF = I so that [det E][det F] = 1. Since each 
determinant must be an integer, this shows that both the determinants have 
unit magnitude, that is, both the matrices are unimodular. Summarizing, an 
integer matrix is unimodular if, and only if, its inverse is an integer matrix.

♠ Lemma 12.2.1. Let V be a D × D real nonsingular matrix generating 
the lattice LAT(V) [i.e., V is a basis for LAT(V)].
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But the determinants of E and F are evidently integers, so that the above 
equation implies det E = ±1 indeed. ▽ ▽ ▽

Comments. Part (a) of the lemma should be carefully interpreted. Con- 
sider the two sequences x(n) = xa(Vn) and y(n) = xa(Vn). Then it is not 
necessarily true that x(n) = y(n). Part (a) merely says that the samples of 
y(n) are obtained by a rearrangement (permutation) of the samples of x(n).
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(a) Define V = VE where E is some D × D integer matrix satisfying

(12.2.14)

Then V is another basis for LAT(V). [In other words, LAT(V) = 
LAT(VE).]

(b) Let V be another basis for LAT(V). Then there exists integer matrix 
E with [det E] = ±1, such that V = VE. ◊
Proof. First consider part (a). Let x belong to LAT(V) so that x = 

Vn for some integer n. So we can write

(12.2.15)

where m = E-1n. Since E-1 is also integer, m is an integer. This proves that 
every vector in LAT(V) can also be written as Vm for integer m. Conversely, 
consider any vector of the form y = Vm. We can write y = VEm = Vn for 
integer n, so that y belongs to LAT(V). Thus, V and V generate the same 
lattice.

Now consider proving part (b) which is more fun. The columns vi of 
V are evidently points belonging to the lattice LAT(V). Since V is also a 
basis, we can express these columns as Vni for integer ni. So we have

(12.2.16)

for integer vectors ni. By the same argument we can express each column of 
V as Vmi for integers mi, that is,

(12.2.17)

Combining these two expressions we obtain V = VEF. Since V is nonsin- 
gular, this implies EF = I so that

(12.2.18)



12.2.2 Sampling Density and Determinant of V

The determinant of the sampling matrix V plays a fundamental role in the 
sampling of a MD signal. We will see that 1∕∣det V∣ gives the sampling 
density, that is, number of samples per unit volume (area in the 2D case). 
For the special case of 1D signals we have V = T where T is the sample 
spacing. In this case 1∕∣det V∣ = 1∕T, which is the sampling density (number 
of samples per unit length).

The Fundamental ParalIelepiped (FPD)
Given a sampling matrix V, suppose we sketch all the basis vectors vk 

(columns of V) in a D-dimensional coordinate space. This is demonstrated 
in Fig. 12.2-4 for the sampling matrix V used in Example 12.2.1. We can 
now complete a parallelepiped with these vectors as edges as shown. (This 
can also be done for 3D and higher dimensional cases.) This is called the 
fundamental parallelepiped [denoted FPD(V)] of the sampling matrix V. 
In the 1D case, FPD(V) is the segment 0 ≤ x < V of the real line.

The points which fall inside FPD(V) (gray area in the figure) can be
represented as the set Vx where x = , with 0 ≤ x0, x1 < 1.

More general definition. Let [a,b)D denote the set of D-component 
vectors x such that the components satisfy a ≤ xi < b. Let V be a D × D 
real nonsingular matrix. Then the fundamental parallelepiped generated by 
V is defined as

(12.2.19)

Figure 12.2-4 The fundamental parallelepiped FPD( V) for a specific example 
of V.
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According to this definition the set x ∈ [0, 1)D itself can be denoted as 
FPD(I).



The Role of the Determinant

(12.2.20)

verifying that the area equals ∣det V∣.

Figure 12.2-5 The area of the parallelogram shown above is equal to ab∣sinθ∣.

Representation of Arbitrary Points in Terms of Lattice Points
Given any real number y, we can always express it as y = x + n where 

n is a unique integer and x is a unique real number with 0 ≤ x < 1 [i.e., 
x ∈ [0,1)]. Here n is merely the “integer” part (and x the fraction part) of 
y. Similarly, given a real vector y we can express it as

(12.2.21)

simply by expressing each component as above. Evidently x and n are 
unique.

In the scalar case, a generalization of such decomposition is this: given 
a fixed number v > 0, we can express an arbitrary real u as

(12.2.22a)

Moreover uP and n are unique for a given u. Note that vn belongs to the 
'lattice' generated by the real number v (which is the set of all points of the 
form vm, m = integer). So we can write u = uP + uL, with uP ∈ FPD(v) 
and uL ∈ LAT(v).

562 Chap. 12. Multidimensional multirate systems

It is well known in geometry that the volume of the fundamental par­
allelepiped FPD(V) is equal to ∣det V∣. (The term “volume,” which we use 
for convenience, degenerates to “area” in the 2D case and 'length' in the 1D 
case.) This is particularly easy to verify in the 2D case. Thus, consider Fig. 
12.2-5 which shows a parallelepiped with one edge aligned to the horizontal 
axis. (There is no loss of generality in such alignment since we can always 
rotate a parallelepiped without changing its area). With a and b denoting 
the lengths of the sides, the area is given by ab∣ sin θ∣. On the other hand, the
matrix V generating FPD(V) has columns v0 = , and v1 =
so that



Decomposing a vector u with respect to matrix V. Here is an 
easy generalization, to the MD case, of the above decomposition: Let u be 
any real D-component vector, and V any D x D real nonsingular matrix. 
We can then write

(12.2.23)

Figure 12.2-6 demonstrates FPD(V) as well as shifted versions for some 
values of uL. According to the above decomposition, we can cover the entire 
D-dimensional EucIidean space by taking the union of the set FPD(V) and 
all these shifted copies. Referring to Fig. 12.2-6, the gray area contains all 
vectors u with uL = 0 in (12.2.22b). By shifting this gray area to a lattice 
point (and repeating this for each lattice point), we can cover all points in 
the two dimensional plane.
Sampling Density

By definition of FPD(V), only one lattice point falls inside it, namely 
the origin. Similarly, there is one lattice point in each shifted version. 
The number of sample points per unit volume is equal to the number of 
FPD(V)'s which we can fit into unit volume. Since ∣det V∣ is the volume 
of FPD(V), we conclude that the number of lattice points per unit volume 
(i.e., sampling densitiy) is equal to 1∕∣det V∣. So we have

(12.2.24)

For the sampling matrix in Example 12.2.1 we have ρ = 1/3 whereas for 
Example 12.2.2, we have ρ = 1.
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(12.2.22b)
where uP and uL are unique vectors such that

(12.2.22c)

In other words, any real vector u can be uniquely written as a sum of a 
vector uL in the discrete set LAT(V) and a vector uP in the continuous set 
FPD(V). One often says that uP is the remainder of u modulo the matrix 
V.

The above decomposition is justified as follows: define y = V-1u. Then 
y is a real vector and can be decomposed as in (12.2.21). So u = Vy = 
Vx +Vn. So we have (12.2.22b), with uP = Vx and uL = Vn. Since x and 
n are restricted as in (12.2.21), we have uP ∈ FPD(V) and uL ∈ LAT(V) 
indeed. The uniqueness of uP and uL follow from that of x and n.

Geometric interpretation. The set of points uP + uL where uL is a 
fixed point in the lattice and uP varies over FPD(V) can be considered to 
be a shifted version of FPD(V). Thus consider the example



The sampling density is an important concept. Intuitively we can see 
that for an MD signal which is bandlimited in a certain way, a certain mini- 
mum sampling density is required, if we desire to retain all information (and 
avoid aliasing). We will make this intuition more precise in the succeeding 
sections.

Figure 12.2-6 FPD(V) and copies obtained by shifting it to various points on 
LAT(V) (shown by heavy dots).

12.2.3 Aliasing Effects Created by Sampling
Given a signal xa(t) with Fourier transform Xa(jΩ), suppose we sample it 
with sampling matrix V and obtain x(n) = xa(Vn). How is the Fourier 
transform X(ω) of x(n) related to Xa(jΩ)? Recall what happens in the 1D 
case: if we define x(n) = xa(nT), then
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(12.2.25)

In other words, X(ejω) is formed by adding an infinite number of uniformly 
shifted copies of Xa(jΩ) (shifted by integer multiples of 2π∕T), replacing Ω 
with ω∕T, and scaling the result by 1∕T. So in the time domain the samples 
are spaced apart by T whereas in the frequency domain there is a periodicity 
of 2π∕T.
Effect of Sampling in the MD Case

In the MD case there is a similar effect. Let xa(t) be a D-dimensional 
signal with Fourier transform Xa(jΩ). Define the sequence x(n) = xa(Vn).



Then its Fourier transform is given by

(12.2.26)

Figure 12.2-7 (a) The lattice generated by V, and (b) the scaled reciprocal
lattice, generated by U = 2πV-T. The matrices are as in (12.2.28).

† The notation V-T stands for (V-1)τ.
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where N is the set of all D-component integers. † With V = T (1D case), 
this reduces to (12.2.25).

The reciprocal lattice. Before proving this, some discussion is in 
order. The matrix 2πV-T will play a crucial role in future discussions, and 
deserves a special notation

(12.2.27)

The lattice LAT(V-T) is said to be the reciprocal lattice of LAT(V). The 
lattice LAT(2πV-T) is called the scaled reciprocal lattice. For example, let 
V be as in (12.2.23). For this case

(12.2.28)
Figure 12.2-7 shows the lattice and the scaled reciprocal lattice.



Pictorial interpretation of (12.2.26). We now illustrate the proce- 
dure for constructing X(ω) from Xa(jΩ). For this we first make the change 
of variables
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(12.2.29)
(analogous to Ω → ω∕T) to rewrite (12.2.26) as

(12.2.30)

Consider a signal xa(t) bandlimited to the gray region shown in Fig. 12.2- 
8(a). According to the above expression, we produce an infinite number 
of copies of Xa(jΩ) by shifting its origin to the points on LAT(U). Thus 
X(VTΩ) has support equal to the union of gray regions in Fig. 12.2-8(b). 
Finally by making the change of variables Ω = V-Tω we obtain the Fourier 
transform X(ω) of x(n). This change of variables maps the gray region in 
Fig. 12.2-8(b) to the gray region in Fig. 12.2-8(c) so that X(ω) is indeed 
periodic (period = 2π) in each variable ωi.

The shifted versions of Xa(jΩ) mentioned above are called alias com­
ponents. If any of these has overlap with the unshifted version, we cannot 
recover Xa(jΩ) from X(ω). This is similar to the aliasing effect in the 1D 
case. If the signal Xa(jΩ) is “appropriately bandlimited”, and if the sam­
pling matrix V is appropriately chosen, this overlap can be avoided. We will 
return to this very important point later.

Proof of the relation (12.2.26). From (12.1.6) we have

(12.2.31)

With the change of variables Ω = V-Tω this becomes

(12.2.32)

(Note that dΩ should be replaced with dω∕∣det V∣.) Now we can decompose 
the vector ω as in (12.2.22b), with V = 2πI. In other words, we can write ω = 
ωP - 2πk where ωP ∈ [0, 2π)D and k is an integer vector. By substituting 
this into (12.2.32) (and dropping the subscript P on ω) we obtain

(12.2.33)
which, by comparison with (12.1.10), yields the desired result.



Figure 12.2-8 Demonstrating frequency domain effect of sampling of a 2D 
signal.

The Periodicity Matrix U
In the 1D case, we say that a function f(Ω) of a real variable Ω is 

periodic if there exists U > 0 such that f(Ω) = f(Ω — Uk) for all Ω, for all 
integers k. Graphically this means that we can shift its origin by any integer 
multiple of U, without changing the function. In the D-dimensional case the
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where ρ is the sampling density 1∕∣det V∣. So the separation between 'copies' 
of the basic spectrum Xa(jΩ) increases as the sampling density p increases. 
This suggests that if we sample a bandlimited signal at sufficiently high 
density, then we can avoid overlap between any two terms in (12.2.30). In 
this manner aliasing can been avoided. We can recover xa(t) from such 
sampled version by use of a lowpass filter whose passband includes the re- 
gion of support of Xa(jΩ), and stopband includes the regions of support of 
Xa(j(Ω - 2πV-Tk)) for all k ≠ 0.

It is clear that for a given region of support and a particular sampling 
geometry, p has to exceed a minimum sampling density ρmin. For a given 
region of support, the quantity ρmin itself may depend on the sampling 
geometry (as demonstrated below). So a judicious choice of sampling ge- 
ometry can help to reduce the number of samples per unit volume required 
to represent a given bandlimited signal. We will consider a specific class of

568 Chap. 12. Multidimensional multirate systems 

idea is similar. We say that f(Ω) is periodic if

(12.2.34)

for all integer vectors k. The matrix U (which is required to be real and 
nonsingular), is said to be a “period” or "periodicity matrix." A periodicity 
matrix for which the determinant has smallest magnitude is said to be a 
fundamental periodicity matrix. Now recall that the set of vectors of the 
form Uk is the lattice generated by U. The right hand side of (12.2.34) is 
obtained by shifting the origin of the plot for f (Ω) so that its new origin is 
at the lattice point Uk. So f(Ω) is periodic (with periodicity matrix U) if 
it does not change as a result of relocating the origin to an arbitrary lattice 
point generated by U.

It is now clear that the function in Fig. 12.2-8(b) is periodic in Ω with 
periodicity matrix U. This is consistent with the fact that X(ω) is periodic 
in each of the variables ωi, i.e., it has periodicity matrix 2πI [Fig. 12.2-8(c)].

Summary and tables. Much of the theory of multidimensional sam­
pling, decimation and interpolation can be understood without difficulty, as 
long as the above matrix notations are clearly understood (and efficiently 
used). As an aid to easy reading, we will summarize the main fundamentals 
in Tables 12.10.1 and 12.10.2 at the end of Sec. 12.10.

12.3 MINIMUM SAMPLING DENSITY
Suppose we sample a bandlimited lowpass signal xa(t) using the sampling 
matrix V. We know that the Fourier transform of the sampled version is 
periodic in Ω with periodicity matrix U = 2πV-T. The fundamental paral- 
lelepiped generated by U has area

(12.3.1)



bandlimited signals, namely those with circular support, and compare two 
sampling geometries.

12.3.1 Rectangular Sampling Under Circular Support
Consider a 2D lowpass signal xa(t) with circuIar support for Xa(jΩ) (Fig.
12.3-1(a)).  The circle is centered at the origin (0,0), and has radius σ. 
Suppose we wish to use rectangular sampling. So we have

(12.3.2)

Figure 12.3-1 Effect of rectangular sampling (circular support).

The region of support of (12.2.30) is the union of all circles of radius σ 
with centers at the lattice points generated by U. It is clear [Fig. 12.3-1(b)] 
that there is no overlap between Xa(jΩ) and any of the alias components 
if, and only if,

results in minimum sampling density for rectangular sampling. This mini- 
mum density is

(rectangular sampling). (12.3.5)
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(12.3.3)

So the choice
(12.3.4)



12.3.2 Hexagonal Sampling Under Circular Support
Consider again the same circular lowpass support as above. Rectangular 
sampling at minimal density will result in the support region shown in Fig.
12.3-1(b).  The gaps in this figure (white areas) indicate regions where the 
sampled signal has no energy. Is it possible to reduce these gaps by changing 
the geometry of the lattice points? In other words, can we obtain a closer 
packing of these circles?

Consider Fig. 12.3-2(a) which shows a different arrangement of the 
circles. Once again the circles are arranged in rows, but there is a subtle 
difference: the centers of the circles in any given row are midway between 
the centers in the previous row.

It is already clear from the figure that the white areas are smaller com­
pared to Fig. 12.3-1(b). We will show below that the circles are packed 
tighter. A second way to obtain this arrangement is as follows: (a) fill the 
2D frequency plane with hexagons having equal sides [one of these hexagons 
being centered at (0,0)], and (b) draw a circle (with radius σ) at the center 
and around each corner of each hexagon. If the sides of the hexagons are 
chosen large enough, we can avoid overlap between circles.†

Figure 12.3-2 Pertaining to hexagonal sampling.

The transform of the sampled signal will have such a support if the 
lattice points generated by U are located at the corners and centers of the 
hexagonal figures. Such lattice is indicated separately in Fig. 12.3-2(b), and 
can be obtained by taking the columns of U to be the vectors OA and OB 
indicated in the figure.

By symmetry of the hexagonal figure it is clear that the angle θ = 2π∕6.

† Notice that, in this arrangement, each circle has six "nearest neigh- 
bours," whereas there are only four in the rectangular arrangement of Fig.
12.3-1(b).
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(This is also clear from the requirement 2σ cos θ = σ which we can see from 
the figure.) So the vectors OA and OB can be written in regular notation 
as

(12.3.6)

The matrix U should, therefore, be chosen as

(12.3.7)

The corresponding sampling matrix V = 2πU-T can be simplified to

(12.3.8)

(hexagonal sampling). (12.3.9)

Summarizing, if we wish to sample a bandlimited signal with circular 
support (radius σ), then the minimum sampling density to avoid aliasing 
is given by (12.3.9) for hexagonal sampling, and by (12.3.5) for rectangular 
sampling. So hexagonal sampling is more efficient by a factor of about 1.15; 
it packs the circles more tightly in the frequency domain. The sample points 
generated by V are depicted in Fig. 12.3-3, and we see that we can fit 
hexagons into this sampling geometry, that is, the samples are located at 
the centers and corners of hexagons.

We conclude this section by defining hexagonal sampling (for the 2D 
case) to be one for which the sampling matrix has the form

(12.3.10)

where s0 and s1 are nonzero real numbers (stretching factors), θ = ±45º, 
and E is a unimodular integer matrix. Evidently (12.3.8) is a special case of 
this. The sampling matrix used in (12.2.6) (with θ = 45º) is another special 
case. Notice that the sides of the hexagons are not necessarily equal, and 
depend on the scale factors s0, s1.
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with θ = -45º. To calculate the minimum sampling density note that 
[det V] = 2π2∕√3σ2, so that



Figure 12.3-3 Sample points generated by V (hexagonal sampling).

12.4 MULTIRATE FUNDAMENTALS
Basic multirate ideas for 1D discrete-time signals and systems were intro- 
duced in Chapter 4. These include decimation, interpolation, polyphase 
decompostion, Nyquist filtering, and filter bank structures. We now extend 
these for the multidimensional case. Some of the notations to be introduced 
in this section (e.g., z(M)) were first introduced in [Viscito and Allebach, 
1988b], and are very useful in many of the developments.

12.4.1 Basic Building Blocks and Tools
Multidimensional Decimators

Given a 1D sequence x(n), the M-fold decimated version was defined as 
y(n) = x(Mn). In an analogous manner, given the D-dimensional sequence 
x(n), we define the M-fold decimated version as
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(12.4.1)

where M is a D × D nonsingular matrix of integers. Now we know that 
the set of vectors Mn is the lattice LAT(M) generated by M. Since M 
itself is an integer, this lattice contains only integer vectors. Basically the 
decimated version y(n) contains only those samples of x(n) which fall at 
the points belonging to LAT(M). Figure 12.4-1(a)-(e) demonstrates this for 
some examples of M. In this figure, black dots represent the lattice points, 
that is, sample points retained by the decimator. White circles represent



Figure 12.4-1 (a)-(c) Demonstration of two-dimensional decimation. Continued →
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Figure 12.4-1 Continuation. (d), (e) Demonstration of two-dimensional decimation.



Figure 12.4-1 Continuation. (f), (g) Demonstration of how a decimator renum­
bers the samples. Here M is the hexagonal decimator (part (b)).

integers which are sample points discarded by the decimator. The black 
dots and white circles which fall inside FPD(M) are highlighted by the 
surrounding outer circles.

The decimator in part (a) is rectangular. More generally, a rectangular 
decimator is defined to be one for which M is diagonal. The decimator in 
(b) is said to be hexagonal. The one in (c) is called a quincunx decimator. 
See end of Sec. 12.4.5 for further comments on the term “hexagonal.”

It is important to notice that the decimator which retains a subset of 
samples of x(n), also re-numbers them. This is demonstrated in parts (f) 
and (g) for the hexagonal decimator. The samples x(0 ,0), x(1, 2), x(1, -2) 
and x(2, 0), which are among the samples retained by the decimator, are 
mapped as follows:

Decimation ratio. We know that FPD(M) contains a finite number 
of integer vectors. Denote this set of integers as N(M), that is,

(12.4.2)

Sec. 12.4 Multirate fundamentals 575



The decimator retains one sample point in the FPD(M) (namely the origin) 
and rejects the rest. So it retains one out of ∣det M∣ samples. In other words 
the M-fold decimator has decimation ratio ∣det M∣.

The decimation ratio is indicated in Fig. 12.4-1 for each of the five 
examples. Thus consider part (d) where we have ∣det M∣ = 3. Accordingly, 
we have three integers in FPD(M), indicated by double circles. (One of 
these has a black inner circle indicating that it is a lattice point.) We, 
therefore, retain one out of three points, and the sampling density is reduced 
by three indeed. Similarly in example (e) of this figure, we have ∣det M∣ = 10 
so that one out of ten samples are retained by the decimator. indeed, there 
are ten double circles in the FPD, one of which has a black inner circle.

Reasons for defining generalized decimators. The advantage of 
defining generalized (non rectangular) decimators is that for certain types of 
sequences, proper choice of M permits higher decimation ratio. For example, 
we will see later that if x(n) is bandlimited to the region shown in Fig. 12.5- 
2(a), rectangular decimation cannot reduce the sample density by more than 
a factor of two (without creating aliasing), whereas hexagonal decimation 
can reduce the density by four with no aliasing. Non rectangular decimation 
has also been found to be more efficient than rectangular, in image coding 
practice.
Multidimensional Expanders

In the 1D case, we defined the M-fold expander to be a device with 
input output relation

(12.4.4)

A multidimensional expander is defined similarly, but in terms of the ex- 
pander matrix M. This is a D × D nonsingular integer matrix, and generates 
a lattice LAT(M). The 'expanded' output y(n) is zero unless n belongs to 
this lattice. More precisely,

(12.4.5)

Thus y(n) = 0 for all n, with the exception that

(12.4.6)

† To prove this, note that the volume of FPD(M) is equal to ∣det M∣. 
This means that we can fit ∣det M∣ hypercubes with unit-length sides into 
this parallelepiped. We have one integer per hypercube, so that there are 
∣det M∣ integers in FPD(M).
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The number of integers J(M) in this set is given by †

(12.4.3)



Sec. 12.4 Multirate fundamentals 577

Referring again to Fig. 12.4-1, the output of the M-fold expander is zero at 
the points indicated by white circles, and typically nonzero at other places.

In all discussions to follow, the symbol M is used to denote nonsingular 
integer matrices (unless stated otherwise).

12.4.2 Polyphase Decomposition
For 1D sequences this was introduced in Sec. 4.3. Given a sequence x(n), 
we defined its Type 1 polyphase components as xk(n) = x(nM + k), 0 ≤ k ≤ 
M — 1. We could then express X(z) = ΣM-1k=0 z-kXk(zM). This decomposi­
tion uses the fact that any integer n can be represented as

(12.4.7)

where n0 and k are unique integers such that 0 ≤ k ≤ M — 1. (This the well- 
known division theorem for integers.) Evidently k is the remainder (and n0 
the quotient) when we divide n by Μ. 

For a D-dimensional sequence x(n) a similar polyphase representation is 
possible, and is useful when we deal with M-fold decimators and expanders. 
The representation is based on the following fact.

♠ Division theorem for integer vectors. Let M be a D × D non- 
singular integer matrix, and let n be some D-dimensional integer. We can 
express n as

(12.4.8)
where k ∈ N(M) and n0 is an integer vector. Moreover k and n0 are unique 
for given n. ◊

Proof. We know we can write n as in (12.2.22b), that is,

(12.4.9)

where nP and nL are unique vectors with

(12.4.10)

Since M is an integer, nL is an integer. So it follows from (12.4.9) that nP 
is integer as well. Since nP ∈ FPD(M), it follows that nP ∈ N(M). By 
letting k = nP and nL = Mn0, we therefore obtain (12.4.8). ▽ ▽ ▽

Modulo notation. We say that n0 is the quotient and k the remainder 
obtained by dividing n with M. In many applications the remainder k is more 
important than the quotient. We often use modulo notation to indicate this 
remainder. Thus:

(12.4.11)

These notations imply that k is the unique integer in N(M) satisfying 
(12.4.8).



We have [det M] = -4 so that J(M) = ∣det M∣ = 4. The set N(M), 
therefore, has four elements (i.e., there are 4 polyphase components in 
this case). These four elements are the integer vectors in FPD(M). Fig. 
12.4-2(a) shows FPD(M) as well as these four integer vectors inside it. 
The set N(M) is thus seen to be
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Polyphase decomposition
The number of possible values of k in (12.4.8) is equal to J(M). Since 

any integer can be written as (12.4.8), we can classify the set of all integers 
into J(M) sets, depending on the value of the remainder k.† Thus, given any 
sequence x(n) and the matrix M, we can identify J(M) unique subsequences,

(12.4.12)

The signals xk(n) defined as above are called the Type 1 polyphase compo­
nents of x(n). Notice that xk(n) is merely the M-fold decimated version of 
x(n + k).

Defining yk(n) to be the M-fold expanded version of xk(n), that is,

(12.4.13)

we can express each sample of x(n) in terms of one of the yk(n)'s as follows: 
compute k = n mod M. This determines the unique integer k ∈ N(M). 
Then

(12.4.14)

Example 12.4.1
Consider the matrix

(hexagonal M). (12.4.15)

(hexagonal M).
(12.4.16a)

The set of all two-component integers can therefore be partitioned into 
the four subsets shown in Fig. 12.4-2(b). We have used four different

†In set theoretic language, the set of all integer vectors n can be parti- 
tioned to J(M) equivalence classes. Also see end of this section for terms 
such as cosets and sublattices.



Figure 12.4-2 Demonstrating the four polyphase components generated by 
hexagonal M in (12.4.15). (a) Identifying the set N(M). (b) The partition 
of the two dimensional integer index n, which identifies the four polyphase 
components. (© Adopted from Sadhana, 1990 [Vaidyanathan, 1990c].) 

symbols to indicate the sample points in the four subsets. For example 
black dots ∙ indicate sample locations of the form Mn + k0.

By definition, vectors ki have the form Mxi with xi ∈ [0, 1)2. The 
vectors xi can be verified to be

(12.4.16b)
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Figure 12.4-3 Mappping of a polygon under linear transformation.

Multidimensional Expander (Transform Domain Analysis)
From (12.4.5) we have

(12.4.17)

Thus the effect of the expander is merely to perform a (invertible) transfor­
mation of the frequency vector ω. It is clear that the periodicity matrix for 
Y(ω) is 2πM-T rather than 2πI. So ∣det M∣ copies of the basic spectrum 
X(ω) are squeezed into the region [0, 2π)D.
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12.4.3 Transform Domain Expressions
Linear Transformation of Polygons

We now study the effects of the decimator and expander in the frequency 
domain. In order to visualize these effects pictorially, we will use several 2D 
examples which use polygonal support for X(ω). In many of the discussions 
and examples, we are required to perform transformations of the form q =
Vp where p = , q = , and V is a 2 × 2 real nonsingular matrix.

Suppose P is some polygon in the plane (p0, p1) (Fig. 12.4-3(a)). How 
does this map into the (q0, q1) plane? The answer is that the mapped region 
continues to remain a polygon with the same number of edges, and moreover 
the mapped versions of pairs of touching-edges continue to remain touching- 
edges. This is demonstrated in Fig. 12.4-3(b) where edges are numbered 
for convenience. Finally, for every interior point in the (p0, p1) polygon, 
there exists a unique point interior to the (q0, q1) polygon and vice versa. 
The procedure to find the mapped polygon is as follows: simply map each 
vertex using the transformation q = Vp, and then join these vertices by 
straightlines. Proofs of these statements are developed in Problem 12.6.



This effect is graphically demonstrated in Fig. 12.4-4 for the expander 
matrix

(12.4.18)

The support of X(ω) which is shown in Fig. 12.4-4(a) is mapped into the 
polygon indicated in Fig. 12.4-4(b), using the rules indicated above. Since 
the periodicity matrix for Y(ω) is given by 2πM-T, we have additional 
copies of this polygon, centered at the points of LAT(2πM-T). Of these, 
those that are not centered around integer multiples of 2π are the images 
created by the expander. In the figure, images are shown in light gray. If 
these are eliminated by filtering, only the dark gray areas will remain, and 
will constitute the 'interpolated' signal. In Fig. 12.4-4(b), the parallelogram 
in heavy lines indicates FPD(2πM-T) for reference purposes.

Evidently we can recover X(ω) from Y(ω) by doing a change of variables 
ω → M-Tω. This is achieved trivially by passing y(n) through an M-fold 
decimator.

We can express (12.4.17) in terms of z-domain quantities. The z- 
transform of the signal y(n) is given by

(12.4.19)

Definition of z(M)
We now introduce a new notation, viz., z(M). The quantity z(M) is a 

column vector with D components, obtained from the column vector z = 
[ z0 . . . zD-1]T. The kth component of z(M) is obtained as follows:

With this notation it is easily verified that

which has an appealing resemblance to the corresponding 1D relation Y(z) = 
X(zM).

For diagonal M (i.e., rectangular interpolators), the relation (12.4.21) is 
easy to interpret. For example if M = , then Yz(z0, z1) = Xz(z20, z31).

To appreciate the meaning of the notation z(M) further, we consider a non 
rectangular example.
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by (12.4.5).

(12.4.20)

(M-fold expander), (12.4.21)



Figure 12.4-4 Frequency domain effect (imaging) caused by an expander. (a) 
Support of X(ω) and (b) support of Y(ω) = X(MTω). The white regions imply 
Y(ω) = 0; the light gray regions are images.
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Example 12.4.2

so that we have

(hexagonal M).

So for the hexagonal expander, the output can be rewritten as

Mathematically, the above notation can also be used for rectangular 
matrices. In particular, consider z(n) where n is a D x 1 column vector as 
in (12.1.7) [Viscito and Allebach, 1988b]. Then the above definition yields 
z(n) = zn00 zn11 . . . znD-1D-1. This is consistent with the notation Z(n) introduced 
in (12.1.14), i.e., z(n) = Z(n). The notation z(n) has the advantage that it 
reveals the dependence on z as well as n. It can be verified that [z(M)](n) = 
z(Mn), which is similar to the relation [zM]n = zMn in the scalar (1D) case. 
Furthermore, [z(L)](M) = z(LM).
Multidimensional Decimator (Transform Domain Analysis)

Consider the decimated version y(n) = x(Mn). If X(ω) and Y(ω) de- 
note the Fourier transforms of the sequences x(n) and y(n), how are these 
related? Recall that in the 1D case, the transform of y(n) is given by (4.1.4). 
This means that Y(ejω) is a sum of the stretched version Χ(ejω/Μ)/Μ with 
M — 1 uniformly shifted copies of this stretched version. In the MD case a 
very similar result holds, except that ω is now a vector so that 'stretching' 
and 'shifting' are more sophisticated matrix operations. When M is diagonal 
the result is easy to see; we merely apply the 1D formula for each frequency 
variable separately.

For the M-fold decimator, we will establish the relation
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Consider the hexagonal matrix M in (12.4.15). The kth element of z(M) 
is given by

(12.4.22)

where N(MT) is the set of integers of the form MTx, with x ∈ [0, 1)D 
[consistent with the notation N(.) defined in (12.4.2)]. Once again in the 1D 
case this reduces to (4.1.4). The number of terms in the above summation is 
equal to J(M). The term X(M-Tω) is the 'stretched' version, and the terms



with k ≠ 0 are the shifted versions. Even though the stretched version does 
not necessarily have period 2π in each frequency variable, the sum (12.4.22) 
does (Problem 12.7). If we replace k ∈ N(MT) in (12.4.22) with k ∈ 
N(MTE) for some unimodular integer matrix E, the result of the summation 
remains unchanged (Problem 12.33).

Before proving the above relation, we will consider some examples.

Example 12.4.3
Let

(12.4.23)

Here J(M) = 6 so that there are six terms in Y(ω). The elements ki in 
the set k ∈ N(MT) are

(12.4.24)

Figure 12.4-5 demonstrates the supports of X(ω) and the "stretched ver­
sion" X(M-Tω), for bandlimited x(n) (with circular support). Notice 
that the stretched version in general has different "size" and "shape," 
compared to X(ω). The figure also shows some of the shifted versions, 
which are closest to X(M-Tω).

Note that, in this example, the shifted versions which take part in 
the summation have overlap with the stretched version so that there is 
aliasing.

Beauty of the RHS in (12.4.22): It can be shown that any shifted 
version X(M-T(ω — 2πm)) for arbitrary integer m can be rewritten in the 
form X(M-T(ω — 2πk)) for some k ∈ N(MT). So the RHS contains every 
possible distinct shifted copy of X(M-T(ω)). To see this note that m can 
be expressed as m = k + MTn for integer n, with k ∈ N(MT). Thus
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(12.4.25)

which reduces to X(M-T(ω — 2πk)) in view of the periodicity of X(.).

Derivation of (12.4.22). We will derive this expression by assuming 
that x(n) has been obtained by sampling an analog signal xa(t) with some 
sampling matrix V. There is no loss of generality here, but a reader wishing 
to obtain an independent derivation can go through Problem 12.30. We 
know (Sec. 12.2.3) that X(ω) and Xa(jΩ) are related as



Figure 12.4-5 Illustrating the frequency domain effects of decimation. (a) 
Support of the signal before decimation, and (b) supports of the stretched and 
various shifted versions.

(12.4.26)
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where N is the set of D-dimensional integers. Evidently y(n) is obtainable 
directly from xa(t) as

We now use the division theorem [similar to (12.4.8)] to write the summation 
index n as

(12.4.30) 
where ω = M-T(ω — 2πk). The inner summation can be written in terms 
of X(ω) so that Y(ω) reduces to (12.4.22) indeed!
Polyphase decomposition (Transform Domain Expression)

We wish to write the multidimensional polyphase decomposition in 
terms of z-domain quantities so that we can obtain an expression analo­
gous to (4.3.7). Recall that the k-th polyphase component xk(n) of x(n) is 
defined as in (12.4.12), and that x(n) can be expressed uniquely in terms of 
the polyphase components yk(n) as in (12.4.14).

In terms of z-domain block diagrams we can express xk(n) and yk(n) 
as in Fig. 12.4-6. The relation (12.4.14) shows that we can obtain x(n) from 
the set of signals yk(n) as shown in the figure. Combining these we arrive 
at Fig. 12.4-7 which is merely a decomposition of x(n) into its polyphase 
components and re-synthesis of x(n) from these components. From this it 
is clear that we can express X(ω) as

or in the z-domain as

Figure 12.4-7 can also be looked upon as a generalization of the delay chain 
structure (Fig. 5.6-2), which represented a simple perfect reconstruction
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(12.4.27)
So Y(ω) is given by

(12.4.28)

(12.4.29)
with k ∈ N(MT) and n0 ∈ N. Thus, Y(ω) can be rearranged as

(12.4.31)

(Type 1 polyphase). (12.4.32)



QMF bank! In Sec. 12.9 this will be used as a starting point for design of 
multidimensional QMF banks.

Figure 12.4-6 Block-diagram representations of the relations among the signals 
x(n), xk(n), and yk(n).

Figure 12.4-7 Decomposition of x(n) into Type 1 polyphase components, and 
re-synthesis of x(n).

Example 12.4.4
Consider the rectangular decimation matrix

Here J(M) = 4 and the integers in N(M) are
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so that (12.4.32) becomes

Example 12.4.5. Polyphase Decomposition for Hexagonal M
Consider the hexagonal matrix (12.4.15) again. Here J(M) = 4, and 
the set of integers N(M) is given in (12.4.16a). We can now identify the 
elements Z(-k) as

Type 2 polyphase decomposition. Given any integer n, the de- 
composition (12.4.8) results in Type 1 polyphase decomposition. Now it is 
also possible to obtain a decomposition of the form n = —k + Mn0, where 
k ∈ N(M) and n0 is integer. We can use this to obtain the Type 2 polyphase 
decomposition given by
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So the quantities Z(—k) in (12.4.32) are

We now have z(M) =

In Example 12.4.2 we identified the meaning of z(M) for this M. By 
using this we can rewrite the expression (12.4.32) as

which is the Type 1 polyphase decomposition.

(12.4.33)

where x'k(n) are called Type 2 polyphase components. Notice that Type 
2 decomposition involves advance operators Z(k). We can avoid these by 
use of an overall fixed delay operator in the definition (as we did in the 1D 
case), but we will not do so. In most 2D applications, advance operators are 
realizable (because we would often work with pictures rather than real-time 
signals).



We can perform polyphase decompositions on a transfer function Hz(z) 
precisely as in (12.4.32) and (12.4.33). Figs. 12.4-8(a),(b) show these poly 
phase implementations. The quantities Ez,k(z) and Rz,k(z) are the poly- 
phase components. Figure 12.4-9 shows the details for the hexagonal matrix 
of Example 12.4.5.

Figure 12.4-8 Polyphase implementations of a transfer function.

12.4.4 Generalized orthogonal exponentials, and DFT

From Chapter 4 we know that the M × M DFT matrix plays an important 
role in filter bank design. For example, the uniform DFT bank (Sec. 4.3.2) 
is a very efficient way to implement M filters at the cost of (almost) one 
filter. The entries of W have the form e-j2πkℓ/M, so that W†W = MI.
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More explicitly,

In other words, the columns of W are pairwise orthogonal.
For the 1D case, we know that many important properties, such as 

Mth band property (Sec. 4.6), and the relation between AC matrix and 
polyphase matrix (Sec. 5.5) can be expressed in terms of the elements of the 
DFT matrix. Such valuable relations also exist in the MD case, provided 
the generalized-DFT matrix is defined properly. Such a definition can be 
found in Dudgeon and Merseareau [1984]. We will arrive at this definition 
in a different way, by applying polyphase decomposition.

Figure 12.4-9 Type 1 polyphase implementation of a filter, with hexagonal M 
as in (12.4.15).
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(12.4.34)

Generalized Exponentials
The polyphase component xk(n) is the decimated version of x(n + k). 

Using the relation (12.4.22) we therefore arrive at

(12.4.35)
We know that X(ω) can be expressed in terms of Xk(ω) as indicated in 
(12.4.31). Substituting the above into this and rearranging, we obtain

(12.4.36)



Since this relation holds for all possible functions X(ω), we conclude (see 
Problem 12.9)

(12.4.37a)

This is the MD extension of the orthogonality relation (12.4.34). Here m 
and k are D-component integers, and M is a D × D integer matrix. The 
reader can verify that the above equation can also be rearranged as

(12.4.37b)

Furthermore, by conjugating both sides, we see that these equations hold if 
all the minus signs on the exponentials are dropped.

The set of sequences e-j2πmTM-1 is called the generalized orthogonal 
exponentials. In Problem 12.29 a second derivation of (12.4.37) is presented, 
based on the fact that these are single-frequency sequences. This deriva- 
tion will not make use of results such as (12.4.22) and is therefore more 
independent.
Generalized DFT Matrix

We define the generalized DFT matrix to be the J(M) × J(M) matrix 
W(g) whose elements are given by
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Notice that the row and column indices for the matrix are taken as vec­
tors m and k, which might appear to be strange. However, imagine that 
the sets of integers k and m are ordered in some way (the ordering itself 
being immaterial). Then there is no difficulty in identifying the meaning 
of [W(g)]m,k. Thus, given the vector k, suppose it is the ith vector in the 
set N(M). Similarly, let m be the ℓth vector in the set N(MT). Then the 
notation [W(g)]m,k actually means the (i,l) element [W(g)]i,ℓ. We continue 
to use vector subscripts on matrices and vectors, as it is more convenient.

In view of (12.4.37), W(g) is a unitary matrix satisfying

(12.4.39)
so that

(12.4.40)
In Sec. 12.9 we indicate further applications of the generalized DFT matrix 
in MD multirate systems. Notice that WM(g) would be a more appropriate 
notation, but we omit the subscript for simplicity.



ExampIe 12.4.6: Generalized DFT Matrix for Hexagonal M
Consider again M as in (12.4.15). To construct the matrix W(g), the 
sets N(M) and N(MT) should first be identified. Since [det M] = —4, 
we have J(M) = 4 so that each of these sets has four members. N(M) 
is the set of integers in FPD(M), and is given in (12.4.16a). Similarly 
N(MT) is the set of integers in FPD(MT). From Fig. 12.4-10(b) we 
identify the elements of N(MT) as

(12.4.41)

Figure 12.4-10 The fundamental parallelepiped for various cases. Such 
figures help us to identify the integer sets N(M) and N(MT). (© Adopted 
from Sadhana, 1990 [Vaidyanathan, 1990c].)

We now compute the sixteen products mTiM-1kℓ = mTixℓ, where xℓ 
are given in (12.4.16b). The sixteen computed products are arranged in 
matrix form below:

(12.4.42)
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(for hexagonal M), (12.4.43)

where W ≜ e-j2π/4. Therefore, W(g) is a column-permuted version of the 
traditional (1D) 4 × 4 DFT matrix! This, however, is not a general fact. 
For example, try the 2 × 2 matrix M = 2I. Also see Problem 12.13. The 
exact relation between W(g) and 'traditional' DFT matrices is given in 
Sec. 12.10.

12.4.5 Fine Points About the Decimation Matrix
Recall that the samples of x(n) which are retained by the decimator M, are 
assigned appropriate locations to form y(n). [See Fig. 12.4-1(f),(g)]. Recall 
also that LAT(M) does not change if we replace M with ME where E is 
an integer unimodular matrix. We can think up an infinite number of E- 
matrices like this. For example in the 2D case, any integer matrix of the form

works. As a result, there exist infinite number of decimation

, we can obtain simpler equivalent forms
for the hexagonal and qunicunx matrices m Flg. 12.4-1. Thus, we have the 
equivalent forms

and

(12.4.44)

(quincunx M). (12.4.45)

Comment on the term “hexagonal”
The reader should be warned that the jargon “hexagonal” is somewhat 

misleading. For, we can fit hexagonal patterns into several other kinds of 
decimators, which are not given that label. In Fig. 12.4-11 we demonstrate 
this for hexagonal, quincunx and rectangular (!) decimators. Thus, even the 
samples retained by a rectangular decimator are located at the centers and 
corners of a tilted hexagon.
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So the matrix W(g) is

E =
matrices which retain the same subset of samples from x(n). However, the 
ordering or “arrangement” of these retained samples is different, depending 
on E. In other words, the samples in x(Mn) are permuted versions of the 
samples in x(MEn).

For example, with E =

(hexagonal M),



Unimodular Decimation Matrices
What happens when the decimator matrix itself has determinant = ±1? 

This means that the decimation ratio is unity, and the result is a mere 
rearrangement of samples. No samples are lost in the decimation process. We
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Figure 12.4-11 Fitting hexagons into the set of samples retained by decimators.



can verify in this case that Y(ω) = X(E-Tω) (as the set N(ET) has only one 
element, viz., the zero-vector). Thus, with [det E] = ±1 there is no aliasing, 
and the frequency variable undergoes an invertible linear transformation.

Figure 12.4-12 demonstrates this for

(12.4.46)

Figure 12.4-12 Demonstrating the effect of a 'decimation' matrix with unit 
determinant (unimodular decimator).

The sample points of x(n) get mapped into y(n) as follows: 
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and so on. If the support of X(ω) is a diamond as in part (c), the transformed 
support [support of Y(ω)] is as in part (d). Notice that these supports 
actually repeat with periodicity 2π in each direction.

It can be verified from the definitions that when E is unimodular, the 
E-fold decimator is equivalent to the E-1-fold expander.

Some Algebraic Language

Much of our discussions (such as, for example, polyphase decomposi­
tion) were based on the division theorem. As mentioned earlier, this the- 
orem is a tool by which we can partition the set N of all D × 1 integers 
into J(M) disjoint subsets Nk. The subset Nk is the set of all integers n for 
which (n mod M) = k, that is, division by M would yield the remainder 
k ∈ N(M). From the division theorem one can infer that no two subsets 
have a common member, and that the union of these J(M) subsets is the 
set of all integers N.

It is sometimes useful to express these in terms of cosets and sublattices. 
We now state a few facts in this connection, for which proofs can be found in 
Cassels, [1959]. Also see Problem 12.31. (We will not use these, and present 
them only for completeness.) Let V1 and V2 be D × D real nonsingular 
matrices (not necessarily integers). We say that LAT(V2) is a sublattice of 
LAT(V1) if it is a subset of LAT(V1). Under this subset relation, one can 
verify that L ≜ V-11V2 is an integer matrix. So ∣det L∣ = ∣det V2∣∕∣det V1|, 
and is guaranteed to be an integer. This integer is denoted as p, that is, 
ρ = ∣det V2∣∕∣det V1∣.

Given a fixed vector v1 ∈ LAT(V1), consider the set of all vectors of 
the form v1 + v2 where v2 varies over the set LAT(V2). This is essentially 
the lattice LAT(V2), shifted by v1. This shifted set (often indicated as 
v1 + LAT(V2)) is called a coset of LAT(V2) in LAT(V1). It can be shown 
that the number of distinct cosets is equal to p defined above. No two non 
identical cosets have a common element, and the union of all the ρ non 
identical cosets is the bigger lattice LAT(V1). In set theoretic language, the 
cosets therefore partition the bigger lattice into p subsets (called equivalence 
classes).

Cosets and polyphase decomposition. The most familiar example 
we have seen in this section is the case where V1 = I and V2 = integer matrix 
M. In this case, the lattice LAT(M) is a sublattice of LAT(I) (which in turn 
is merely the set N of all integers). A coset of LAT(M) in LAT(I) is the set 
of all integers of the form (12.4.8), where k is some fixed integer. There are 
precisely ∣det M∣ distinct cosets, one for each k ∈ N(M). The reader will 
now recognize that the kth coset gives rise to the kth polyphase component 
xk(n) of a sequence x(n).

Tables 12.10.1 and 12.10.2 at the end of Sec. 12.10 contain summaries 
of many of the notations and definitions introduce so far.
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12.5 ALIAS-FREE DECIMATION
In the 1D case we know that if the support of X(ω) is limited to —π∕M ≤ 
ω < π/M, then decimation by M does not create aliasing. Such bandlimiting 
can be accomplished by use of decimation filters. In the MD case, we can 
similarly restrict the support of X(ω) so that decimation by the matrix 
M does not cause aliasing. We will describe the appropriate bandlimiting 
support. This information can be used to design decimation filters (i.e., 
anti-alias filters which precede a decimator).

12.5.1 The Symmetric Parallelepiped
Given real nonsingular V, we know how to associate an FPD(V) with it.
(Sec. 12.2.2). The symmetric parallelepiped SPD(V), on the other hand, 
is defined as the set of vectors of the form

(12.5.1)

So the only difference from the set FPD(V) is that, for SPD(V) each 
component xi is allowed to be negative as well, that is, — 1 ≤ xi < 1. Notice 
that in the 1D case, SPD(V) is the segement —V ≤ x < V of the real line.

In Fig. 12.5-1(a), the set FPD(V) is shown for

(12.5.2)

Figure 12.5-1 Demonstrating the relation between FPD(V) and SPD(V).

This is the set of points Vx, with 0 ≤ x0, x1 < 1. This figure also shows the 
set of points Vx for three other cases, viz., (a) —1 ≤ x0 < 0, 0 ≤ x1 < 1, (b) 
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0 ≤ x0 < 1, —1 ≤ x1 < 0, and (c) -1 ≤ x0, x1 < 0. The union of the four 
sets in Fig. 12.5-1(a) is equal to SPD(V) shown in Fig. 12.5-1(b). One can 
verify that SPD(V) can be obtained by appropriately shifting and scaling 
FPD(V). More specifically, we have

(12.5.3)

This is clearly seen in the above example.
The Region SPD(πM-T)

The set of frequencies defined by SPD(πM-T) will play a crucial role 
in decimation and interpolation. This set reduces to 

for the 1D case. The gray areas in Fig. 12.5-2 show SPD(πM-T) for three 
cases, viz.,

(hexagonal M), (12.5.4)

(12.5.5)

([det M] = 1 here.) (12.5.6)

Notice that the volume of SPD(M-T) is equal to that of [—π, π)D divided by 
J(M). In Fig. 12.5-2(c) we have J(M) = 1 (so that an M-fold “decimator” 
merely rearranges the samples, rather than discarding any sample), and 
SPD(πM-T) has the same volume as [—π, π)2. But since SPD(πM-T) is 
not rectangular, it does not fit into the region [-π, π)2.

12.5.2 Alias-Free Decimation
Since X(ω) has periodicity matrix 2πI, the region of support given by 
SPD(πM-T) should be interpreted as the region

(12.5.7)
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(quincunx M),

and



Suppose the quantity X(ω) is bandlimited to the above region. We will 
show that M-fold decimation will not cause aliasing. In fact we will prove a 
slightly stronger result, namely, if the support of X(ω) is restricted to

Figure 12.5-2 Demonstration of SPD(πM-T) (gray region) for three cases.
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for arbitrary c, there is no aliasing due to M-fold decimation. In particular, 
by picking the vector c appropriately, we can obtain the alias-free support

Proof. We have to show that there is no overlap between any two terms 
in the summation of (12.4.22). If X(ω) has support as in (12.5.8), then the 
stretched and shifted version X(M-T(ω - 2πk)) has support

Suppose there is overlap between two terms. This implies

(12.5.12)

where x = 0.5(x1 — x2) ∈ (-1, 1)D, m = m1 - m2 ∈ N, and k = k2 - k1. 
Since MTm and k are integers, the above equation implies x = 0. Since 
ki = MTyi for yi ∈ [0, 1)D, we, therefore, have m ∈ (-1, 1)D. This means 
m = 0, i.e., k1 and k2 are not distinct. Summarizing, if k1 and k2 are 
distinct, there cannot be an overlap between the two terms!
Special Case of Two-Dimensional Signals

In the 2D case

so that

(12.5.13)

The region πM-Tx, x ∈ [-1, 1)2 can then be expressed in terms of the 
frequencies ω0 and ω1 as

(12.5.15)

To demonstrate, consider Fig. 12.5-3(a), which shows the above region of 
support for quincunx M given in (12.5.5). For clarity we have shown a larger 
region than [—π, π)2. The gray region in Fig. 12.5-3(b) is the stretched 
version X(M-Tω). Since ∣det M∣ = 2, there is only one shifted version 
X(M-T(ω - 2πk)) of interest. This occupies the white areas in the figure.

It should be emphasized that if X(ω) has support (12.5.7), then the 
stretched version X(M-Tω) has support ω = πx + 2πMTm, which therefore 
fills the region [-π, π)D completely. Figure 12.5-3(b) clearly demonstrates 
this.
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(12.5.9)

(12.5.10)

(12.5.11)

where In other words,

(12.5.14)



Figure 12.5-3 Supports of (a) X(ω), and (b) X(M-Tω), for quincunx M.

Subtle Things About the Support (12.5.7)
Ignoring the term 2πm in (12.5.7) (which just represents the periodic­

ity), the support of X(ω) is given by
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(12.5.16)
which of course is SPD(πM-T). In the 1D case we know that, as long as 
M > 1, this region is a strict subset of —π ≤ ω < π. In the 2D (or MD)



case, such a result does not hold! That is, SPD(πM-T) is not necessarily a 
subset of [—π, π)D. This was demonstrated in Fig. 12.5-2(c) for the matrix 
M in (12.5.6). (In fact any integer unimodular matrix which is not a trivial 
modification of I is such an example.) This strange feature, however, does 
not violate any fundamental properties of the Fourier transform X(ω), as 
it continues to be periodic in each variable ωi with period 2π [because the 
complete support is given by (12.5.7)].
Deeper Nonuniqueness of Support of a Decimation Filter

Since the vector c in (12.5.8) is arbitrary, the desired support for the 
decimation filter is non unique, for example, it can be a bandpass rather than 
lowpass filter. There is a deeper reason for nonuniqueness which actually 
permits more complicated modifications of the support, than mere shifts. 
For this recall that the lattices generated by M and M1 ≜ ME are the same 
if E is an integer unimodular matrix. So we can use a modified decimation 
filter with support
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(12.5.17)

and decimate the filter output by M, without causing aliasing. (Problem 
12.11) And since E is arbitrary (except for unimodularity), we can generate 
an infinite number of permissible decimation filters. As an example, with 
quincunx M we can obtain

(12.5.18)

Figs. 12.5-4(a),(b) show SPD(πM-T) and SPD(πM1-T), either of which 
can be used as the passband region of the decimation filter. In view of 
periodicity of frequency response, the support in Fig. 12.5-4(b), in reality, 
degenerates to the infinite vertical strip shown in Fig. 12.5-4(c).

Most general alias-free support. What is the most general region 
of support, which will result in alias-free decimation? In the 1D case this 
support can be described as a union of an arbitrary number of supports such 
that (a) no two of them overlap modulo 2π∕M, and (b) the total support 
width is no greater than 2π∕M [Sathe and Vaidyanathan, 1992]. Some dis- 
cussions for the multidimensional case can be found in Chap. 2 of Bamberger 
[1990].

12.5.3 Frequency Partitioning
Consider the frequency region

(12.5.19)



Figure 12.5-4 (a) and (b): two possible supports of X(ω) for which quincunx
decimation does not cause aliasing. The support in (c) is equivalent to (b) because 
of periodicity with respect to ω1.

A simple modification of the preceding discussions shows that these regions 
are distinct for two different values of k ∈ N(MT). Furthermore, the union of 
all the above regions as k varies over N(MT) covers the entire frequency do- 
main. [This can be proved using the vector decomposition result (12.2.22b)]. 
The number of distinct regions is equal to the number of distinct values of 
k which, in turn, is equal to J(M).

Summarizing, the set N(MT) can be used to partition the frequency 
region into J(M) regions. The volume of each of the regions (12.5.19), 
which falls inside the fundamental region [—π, π)D, is equal to the volume 
of [—π, π)D divided by J(M).

For a preview of such a partitioning, see Fig. 12.8-4 which is obtained 
for the case where M is hexagonal. Such a partitioning is useful in filter bank 
theory. For example, each of the J(M) regions can be used as a subband, 
and we can decimate each subband signal by M, to obtain a maximally 
decimated filter bank. We will return to this topic in Sec. 12.9.

12.6 CASCADE CONNECTIONS
As in the 1D case, it is of interest to study cascaded arrangements of deci- 
mators, expanders and transfer functions. Fig. 12.6-1(a) shows a cascade of 
two decimators. Here M1 and M2 are D × D nonsingular integer matrices. 
This structure is equivalent to a single decimator with decimation matrix 
M = M1M2. To see this note that y1(n) = x(M1n) so that
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which is M-fold decimated version. Notice that the hexagonal decimator 
can be regarded as a cascade of a rectangular and the quincunx decimators:

Next, Fig. 12.6-1(b) shows a cascade of two expanders, and the equivalent 
circuit. This equivalence is easier to verify in the frequency domain. Thus, 
Y1(ω) = x(MT2ω), so that

(12.6.2)

which indeed is the M-fold expander output.

Noble Identities
The noble identities, which were introduced in Fig. 4.2-3 for the 1D 

case, can be extended to the multidimensional case. Figs. 12.6-1(c) and 
(d) show these identities. (Note that in block diagrams, filters are labeled 
either as Hz(z) or as H(ω) interchangeably.) Fig. 12.6-2 demonstrates these
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identities for the case of rectangular decimators and expanders. See Example 
12.6.1 below for a more sophisticated case.

The second noble identity follows immediately from the frequency do- 
main relation (12.4.17). To prove the first noble identity, denote G(ω) = 
H(MTω) so that g(n) is the M-fold expanded version, that is, g(Mn) = 
h(n) and g(k) = 0 otherwise. So

Figure 12.6-2 Noble identitites for (a) rectangular decimator, and (b) rectan­
gular expander.

Figure 12.6-3 (a) The polyphase identity, and (b) an application.
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Thus y2(n) = v(Mn) = Σk h(k)x(Mn - Mk). From the figure we also see 
that

(12.6.4)

Using u(n) = x(Mn), we therefore obtain y1(n) = Σk h(k)x(Mn — Mk) = 
y2(n) indeed.
The Polyphase Identity

In Sec. 4.3 we considered the cascade arrangement shown in Fig. 4.3- 
13(a) and showed that this is equivalent to a linear time invariant system 
with transfer function E0(z) [0th polyphase component of H(z)]. A similar 
result is true for the D-dimensional case, and is shown in Fig. 12.6-3(a). 
Here E0(ω) represents the 0th Type 1 polyphase component of H(ω). An 
application of this is indicated in Fig. 12.6-3(b). Proofs of these are re- 
quested in Problem 12.10.



Decimation and Interpolation Filters
Recall from Sec. 12.5 that decimation by M does not result in aliasing 

errors if the transform of the signal is bandlimited to SPD(πM-T). This 
bandlimiting is achieved by use of a decimation filter H(ω) as shown in Fig.
12.6-4(a).

Similarly, Fig. 12.6-4(b) shows an expander followed by a lowpass filter 
H(ω), whose purpose is to suppress the images created by the expander. 
Recall that there are J(M) - 1 images in [—π, π)D. These can be suppressed 
if H(ω) is chosen to have a passband support SPD(πM-T). If the signal 
x(n) is itself bandlimited in some way, then other choices of H(ω) can be 
used to suppress the images. For example if X(ω) and M are as in Fig. 12.4- 
4, then the images [light-gray regions in Fig. 12.4-4(b)] can be suppressed if 
H(ω) has support equal to the dark-gray areas.

Figure 12.6-4 (a) Decimation filter, and (b) interpolation filter.

Example 12.6.1: Polyphase Implementation and Noble Identities
Let M be the hexagonal decimator (eqn. (12.4.15)). For this case z(M) 
was computed in Example 12.4.2. The noble identities can therefore be 
redrawn in this case as shown in Figs. 12.6-5(a) and (b). Figs. 12.6- 
5(c)-(e) show this for some specific examples of f(z0, z1).

For this M we have already obtained the Type 1 polyphase imple- 
mentation (Fig. 12.4-9). Now consider a decimation filter with this M. 
The decimator M, which follows the structure of Fig. 12.4-9 can be 
moved using the noble identity so that the result is as shown in Fig.
12.6-5(f).

To obtain an improved feeling for these strange rules for moving 
decimators, consider the specific case shown in Fig. 12.6-5(c): this says 
that decimation of x(n0 — 1, n1 — 2) is the same as first decimating x(n) 
by M and delaying only in the horizontal direction, that is,

(12.6.5)

This is true for all inputs if and only if

(12.6.6)
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This equation merely says that the 0th column of M should be 
which is true by choice of M! Similarly the rule in Fig. 12.6-5(d) is 
another way of saying that the 1st column of M is equal to

Figure 12.6-5 Some details for hexagonal M. Parts (a), (b) indicate noble 
identities. Parts (c) - (e) are specific examples. Part (f) shows polyphase imple- 
mentation of a decimation filter.

More generally in the D-dimensional case, the noble identity for moving 
a decimator can be broken into D components. The kth component says that 
if we delay the decimated sequence x(Mn) in the kth direction only, it is 
the same as 'first delaying x(n) by the kth column mk of M, and then 
decimating'. In other words, noble identity says

(12.6.7)
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Example 12.7.1
Suppose we wish to decimate a 2D signal x(n) using the quincunx matrix

(12.7.2)

The black dots in Fig. 12.7-1(a) (which are the lattice points generated 
by M) are retained by the decimator. We have J(M) = ∣det M∣ = 2 so 
that the decimator reduces the sample density by a factor of two. Figure
12.7- 1(b) is a reminder that we can fit a hexagon to the sample points.

The region SPD(πM-T) for the above matrix M is shown in Fig.
12.7- 1(c), and the lowpass decimation filter H(ω) should have this sup- 
port. In the region [-π, π)2 we should, therefore, have

(12.7.3)
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where the '1' on the RHS occurs in the kth position. This of course is an 
"obvious identity."

Tables 12.10.1-12.10-4 at the end of Sec. 12.10 serve as a quick reference 
guide to many of the notations and concepts introduced so far.

12.7 MULTIRATE FILTER DESIGN
The design of decimation and interpolation filters for general M is a non- 
trivial problem. The most common frequency response of the filter H(ω) in 
Fig. 12.6-4 is lowpass with passband region SPD(πM-T) (Sec. 12.5). More 
specifically, the ideal frequency response has the form

(12.7.1)
This support was demonstrated in Fig. 12.5-2 for various choices of M. 
In practice, we approximate the above ideal response. With FIR filters it is 
possible to constrain the filter to have zero-phase, so that only the magnitude 
response is approximated. In the IIR case, H(ω) introduces phase distortion 
(which is not acceptable in many image processing applications). We now 
consider some examples of multirate filter design.

A number of techniques for 2D digital filter design have been reported 
in the past [Rabiner and Gold, 1975], [Dudgeon and Mersereau, 1984] and 
[Lim, 1990]. One of these techniques [McClellan, 1973] designs the 2D filter 
by transformation of a 1D filter. In the next few subsections, we will describe 
more recent techniques [Ansari and Lau, 1987], [Chen and Vaidyanathan, 
1991] for decimation filter design. Further results can be found in Smith and 
Eddins [1990], and Bamberger and Smith [1992].



Figure 12.7-1 (a) Lattice generated by quincunx M, (b) fitting hexagons
to lattice points, (c) lowpass decimation filter, and (d) highpass decimation 
filter.

for the ideal decimation filter. As indicated, the above response repeats 
periodically with period 2π in each frequency variable.

For M as above, we now identify the set N(MT) which appears in 
the decimation formula (12.4.22). This is the set of integers of the form

(12.7.4)

with 0 ≤ xi < 1. With xi in this range, the only combinations which 
result in integer valued k are: (a) x0 = x1 = 0 and (b) x0 = x1 = 0.5.
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The corresponding values of k are, respectively,

(12.7.5)

With the decimation filter having support as in Fig. 12.7-1(c), the 
stretched version X(M-Tω) has the support shown earlier in Fig. 12.5- 
3(b) (gray area). The only shifted version appearing in (12.4.22) is 
X(M-T(ω - 2πk1)), and its support is the white area in Fig. 12.5-3(b).

Figure 12.7-1(d) shows a different type of decimation filter, which 
is highpass. (This is obtained by shifting the lowpass response by π in 
both directions.) Thus, in the region [—π, π)2, the ideal response can be 
taken as

(12.7.6)

The decimated signal is still free from aliasing. The stretched version 
now has support identical to the white areas in Fig. 12.5-3(b) with the 
shifted versions occupying the gray areas.

12.7.1 Design of Diamond- and Fan-shaped Filters
From the previous discussions we see that the diamond response is applica­
ble in some multirate designs (e.g., quincunx decimation). We now present 
an elegant method [Ansari and Lau, 1987] for designing such a response, 
starting from a 1D filter. Consider an ideal 1D filter G(ejω) with magni- 
tude response as shown in Fig. 12.7-2(a). Suppose we define a 2D transfer 
function G(z0z1). This has frequency response G(ej(ω0+ω1)). We will sketch 
this response in the 2D plane for the region [-π, π]2. For this note that as 
ω0 and ω1 span the range —π ≤ ωi ≤ π, the sum ω0 + ω1 spans the range 
—2π ≤ ω ≤ 2π. Thus, in the 2D region [-π, π]2 we have

(12.7.7)

This response is shown in Fig. 12.7-2(b). Next consider the 2D transfer 
function G(z0z1-1). This has frequency response G(ej(ω0-ω1)) so that its 
support is obtained by flipping Fig. 12.7-2(b) with respect to the horizontal 
axis. If we now consider the product

(12.7.8)

the magnitude response is as in Fig. 12.7-2(c), which does look like a dia- 
mond, but has the wrong size. Moreover, there are passbands around the 
four corner frequencies (±π,±π).
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Figure 12.7-2 Nonseparable 2D filters designed from a 1D filter.

Let k(n0, n1) denote the impulse response of Kz(z0, z1). Consider the 
decimated impulse response k(2n0, 2n1). We will show that this has the 
desired support shown in Fig. 12.7-2(d). For this note that the the transfer 
function of k(2n0, 2n1) is given by
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results in an approximation of the highpass response shown in Fig. 12.7-2(e). 
To see this note that Hz,1(z0, z1) = Hz,0(-z0, -z1) so that its frequency 
response is obtained by shifting by π in both directions.

Figs. 12.7-2(f),(g) show responses Hz,0(-z0, z1) and Hz,0(z0, -z1) re­
spectively. Filters with such responses are said to be fan filters. So we see 
that a number of useful nonseparable responses can be designed by start- 
ing from a one dimensional prototype, and performing clever manipulations. 
All of the above mentioned filters will serve as decimation filters which avoid 
aliasing with quincunx M.

12.7.2 Multistage Systems
In Chap. 4 we saw examples of filters, expanders and decimators in cascade, 
such as Fig. 4.4-5 (multistage decimators), and Fig. 4.1-10(b) (fractional 
decimation circuit). We now consider some multidimensional examples of 
multistage designs.

Example 12.7.2: Rectangular to Hexagonal Conversion
Figure 12.7-3 shows a multistage structure in which a sequence x(n) is 
first interpolated and then decimated, to accomplish some purpose. We 
now indicate one example of such a “purpose,” for the 2D case. Suppose
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which, in view of (12.7.8), reduces to

(12.7.9)

Now the frequency response of Kz(-z0, z1) is obtained by shifting the re- 
sponse of Kz(z0, z1) to the right by π. If we add this to the response of 
Kz(z0, z1) and then perform zi → z1/2i (i.e., stretch the axes by doing 
ωi → 0.5ωi), the result has the desired diamond support [Fig. 12.7-2(d)] 
indeed.

We now express the above 2D filter in terms of polyphase components 
of G(z). Thus, let

(12.7.10)
Substituting this into (12.7.9), the decimation filter takes the form

(12.7.11)

Summarizing, we first design a 1D lowpass filter G(z) whose magnitude 
response approximates Fig. 12.7-2(a). We then take the 2D filter to be as 
in (12.7.11) where E0(z) and E1(z) are the polyphase components of G(z). 
Then the response of the 2D filter is an approximation of Fig. 12.7-2(d). In 
a similar manner, the 2D transfer function

(12.7.12)



Figure 12.7-4 (a), (b) Figure continued →
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Figure 12.7-3 Technique for conversion from rectangular to hexagonal 
sampling.



Figure 12.7-4 (c), (d). Sample points for various sequences, in the process 
of converting from rectangular to hexagonal sampling.

the signal x(n) is a rectangularly sampled version of some analog signal 
xa(t). We wish to convert it to the hexagonally sampled version y(n), 
without changing the sampling density. One technique for this would 
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followed by lowpass filtering with Gz(z0, z1). This filtering merely re- 
moves the image-support.

Next we decimate v(n) using the quincunx matrix (12.7.2). Figure
12.7- 4(c) shows the lattice generated by this matrix. The sample points 
retained by this decimator are shown as black circles (with big circles 
again denoting the new samples generated by the interpolator). Figure
12.7- 4(d) separately shows the sample locations of the resulting sequence 
y(n), and we clearly see the hexagonal pattern. For clarity, the figure 
also indicates the coordinates of some samples of y(n).

It should be noticed that the above scheme does not alter the sam­
pling density [i.e., x(n) and y(n) have same density] because [det M] = 
[det L] here.

How should we design the filters Gz(z0, z1) and Hz(z0, z1) in the 
figure? Since Gz(z0, z1) merely removes the image [light-gray region in 
Fig. 12.7-5(b)], its response should be zero here, [and unity in the dark- 
gray region]. The decimation filter Hz(z0, z1) precedes M. From Sec. 
12.5 we know that if its passband coincides with the gray area in Fig. 
12.5-4(c), aliasing is avoided. But this is same as the passband of the 
interpolation filter, so that we really have no need for Hz(z0, z1)! So we 
set Hz(z0, z1) = 1.

Example 12.7.3: Two Stage Decimation
Consider the structure of Fig. 12.7-6(a) in which a signal is decimated 
in two stages, resulting in overall decimation by M = M1M2. The 
associated filtering is accomplished in two stages. The filters H1 (ω) and 
H2(ω) are required to ensure that x1(n) and x2(n) are appropriately 
bandlimited to avoid aliasing. For this we design Hi(ω) to be lowpass 
with appropriate support as described earlier. For analysis purposes we 
can rearrange the structure using noble identities as shown in Fig. 12.7- 
6(b). The overall decimation filter is therefore H1(ω)H2(MT1ω). If this 
filter is lowpass with response as in (12.7.1), then decimation by M does 
not cause aliasing.
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be to reconvert x(n) into the analog version, and then resample using a 
hexagonal lattice to obtain y(n).

A more elegant technique would be to perform the conversion di- 
rectly in the discrete domain, using the above structure. Here x(n) is 
first interpolated to produce v(n), which is a rectangular sampled ver­
sion with two times higher density in the horizontal direction. Figures 
12.7-4(a),(b) demonstrate the sample locations before and after interpo­
lation. (The big circles are the newly generated sample locations.) Such 
interpolation is accomplished by use of the expander matrix

(12.7.13)



Figure 12.7-5 (a) Support of X(ω), and (b) support of the output of the
expander (L as in (12.7.13)).

Figure 12.7-6 (a) A two-stage decimator, and (b) its equivalent structure.

As a specific example, let

(12.7.14)

so that
(12.7.15)

From here we have

(12.7.16)
The regions SPD(πM1-T) and SPD(πM2-T) are sketched in Fig. 12.7-
7. If the filters Hi(ω) are designed to have passband coinciding with 
SPD(πMi-T), then neither of the decimators creates aliasing.
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This is the same as the desired support for single stage decimation with 
the exception that the second term is 2πM1-T m rather than 2πm. In 
other words, the support SPD(πM-T) repeats with periodicity ma- 
trix 2πM1-T (rather than 2πI) so that there are additional images of 
SPD(πM-T). To understand this better, let us decompose the integer 
m (using division theorem, Sec. 12.4.2) as m = MT1m1 + m0, with 
m0 ∈ N(MT1) and m1 ∈ N. Then (12.7.17a) becomes
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With the support of H2(ω) chosen as above, the reader can verify 
that the support of H2(MT1(ω) is

Figure 12.7-7 Pertaining to example 12.7.3.

(12.7.17a)

(12.7.17b)



Since m0 can take J(M1) - 1 nonzero values from the set N(M∫), there 
are J(M1) - 1 unwanted image-passbands in H2(MT1ω). In Problem 
12.12 the reader is requested to show that none of these extra images 
overlaps with SPD(πM-T), and that these images are eliminated by 
H1(ω) in the cascaded filter H1(ω)H2(MT1ω).

Summarizing, the cascaded filter H1(ω)H2(MT1ω) has passband 
support given by (12.5.7), consistent with the decimation matrix M.

Subtle Things About Multistage Decimation
We now consider a different example which brings up a strange situation 

for which there is no 1D analogy. Thus consider the decimation matrix

(12.7.18)

Figure 12.7-8 Demonstration that SPD(πM-T) may not be contained in 
SPD(πM1-T). Matrices are as in (12.7.18).
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Figure 12.7-8 shows the region SPD(πM-T), which can be taken as the 
support for the decimation filter. Suppose we wish to implement the deci- 
mation in two stages as in Fig. 12.7-6(a), and take the support of H1(ω) in 
the usual way that is, as SPD(πM1-T) (Fig. 12.7-8). From the figure we 
see that SPD(πM-T) does not fit inside SPD(πM1-T). (Such a situation 
would never arise in the 1D case because of the condition M > M1.) This 
means that the filter H1(ω) would cut off a portion of the signal that would 
normally be passed by H(ω). In other words, the product H1(ω)H2(MT1ω) 
has a support which leaves out part of the desired support SPD(πM-T).

Summarizing, the idea of performing decimation in two or more stages 
does not work with the above choice of H1(ω). In the multidimensional 
case, one has to be careful in choosing the factors M1 and M2 and the 
supports of H1(ω) and H2(ω). In Problem 12.34 we request the reader to 
show that the region SPD(πM-T) will be contained within SPD(πM1-T) as 
long as SPD(M2-T) is contained within [-1, 1)D. In Example 12.7.3 above, 
the choice of factors happened to satisfy this condition, as evidenced from 
Fig. 12.7-7.

12.7.3. Multidimensional Filters From 1D Filters
In the previous section we saw that a certain class of 2D filters can be 

designed efficiently starting from 1D filters. These are useful in quincunx 
decimation. Now consider the more general problem where we wish to ap- 
proximate the decimation filter response (12.7.1) for arbitrary M, and for 
arbitrary number of dimensions D (i.e., M is D × D). Such design is normally 
complicated; the design as well as implementation of general (non separable) 
multidimensional filters has much higher complexity that 1D filters. Both 
of these complexities grow exponentially with the number of dimensions D 
[Dudgeon and Mersereau, 1984].

We will now outline a more efficient procedure for approximating the 
response (12.7.1) [Chen and Vaidyanathan, 1991]. The design as well as im- 
plementation complexity of this procedure will grow linearly with the number 
of dimensions D (rather than exponentially). The method works for arbi- 
trary M and arbitrary number of dimensions D. Further advantages and 
properties will be summarized at the end of this section. To explain the 
method, we first look at the impulse response of H(ω).
The Ideal Impulse Response

Let H(ω) = Σn∈N h(n)e-jωTn, i.e., let h(n) be the impulse response 
of H(ω). With H(ω) given as in (12.7.1), we obtain
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(12.7.19)

Note that mi are the components of the D-vector m = M-1n. We know
M-1 = [Adj M]∕[det M]. Since J(M) = ∣det M∣ , we can write

(12.7.20)

with M = J(M)M-1 = ±[Adj M]. Note that m is not necessarily an integer 
vector. From the above we obtain

(12.7.21)

Figure 12.7-9 The one-dimensional lowpass prototype.

Relation to 1D filters
Consider a one dimensional ideal filter with frequency response P(ω) as 

shown in Fig. 12.7-9. Its impulse response is given by

(12.7.22)

Starting from this P(ω), suppose we define the D-dimensional filter

This is a separable lowpass filter, with passband support SPD(πI∕J(M)). 
Its impulse response is

620 Chap. 12. Multidimensional multirate systems

(12.7.23)
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that is, 

where c = [J(M)]D-1. In other words, h(n) is obtained simply by M-fold 
decimation of the D-dimensional separable sequence h(s)(n), followed by 
scaling with c.
Design Procedure

The above derivation gives us the following procedure for designing the 
decimation filter H(ω) for M-fold decimator.

1. First design a 1D lowpass filter P(ω) which approximates the response 
of Fig. 12.7-9. Let p(n) denote its impulse response.

2. Define the D-dimensional separable filter h(s)(n) as in (12.7.24).
3. Finally obtain the impulse response h(n) of H(ω) by decimating h(s)(n) 

with the matrix M and scaling, that is, as in (12.7.27).
Note that the method can be applied for any decimation matrix M, 

and for any number of dimensions. We will now demonstrate the idea for 
hexagonal M. In this case, we wish the ideal passband of H(ω) to be as in 
Fig. 12.5-2(a). Figure 12.7-10 shows the various frequency responses. The 
filter P(ω) is a linear phase equiripple filter of order 66 with response as 
in Fig. 12.7-10(a). The 2D separable filter h(s)(n) has the response shown 
in Fig. 12.7-10(b), and finally Fig. 12.7-10(c) shows the response of the 
decimation filter H(ω). The minimum stopband attenuation of the 1D filter 
is about 60 dB and that of the non separable 2D filter is about 53 dB.
Further Comments About the Method

A number of further details about this technique can be found in Chen 
and Vaidyanathan [1991]. It is shown in particular that

1. The resulting filter H(ω) can be implemented with computational com­
plexity proportional to N × D rather than ND, where N is the order of 
the 1D filter P(ω).

2. If δ1 and δ2 are the peak passband and stopband ripples of the 1D filter 
P(ω), then the peak passband and stopband ripples of the multidimen­
sional filter H(ω) are upper bounded by
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(12.7.25)

Now consider the quantity h(s)(Mn), which is the M-fold decimated version 
of h(s)(n). Since

(12.7.26)
we obtain the following very simple relation between the sequence h(n) in 
(12.7.21), and the sequence h(s)(Mn) :

(12.7.27)



(b)

Figure 12.7-10 Magnitude response plots in dB for (a) one dimensional fil 
ter P(ω), (b) two-dimensional separable filter Η(s)(ω) and (c) two-dimensional 
nonseparable filter H(ω).
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3. If we wish H(ω) to be a zero-phase filter, we can achieve this by design- 
ing the 1D filter P(ω) to have zero phase.

4. If we wish H(ω) to be a Mth band filter (see Sec. 12.8.1), we can 
achieve this by forcing P(ω) to be a J(M)th band filter.

In the above filter design method, we have restricted the elements of M to 
be integers. The method can easily be extended to the case of lowpass filters 
with passband supports of the form SPD(πP-T) where P is a nonsingular 
rational matrix (i.e., whose elements are rational numbers).

12.8 SPECIAL FILTERS AND FILTER BANKS
In Sec. 4.6 several special classes of filters and filter banks were discussed, 
with applications in multirate systems. These include Nyquist filters, uni- 
form DFT filter banks, and several types of complementary functions. We 
now indicate the multidimensional extensions of some of these. Some of 
these have appeared in Renfors [1989].

12.8.1 Nyqulst(M) Filters or M-th Band Filters
In the 1D case, there are several equivalent ways to define the 'Nyquist' 
property. The same is true in multidimensions. A discrete time filter with 
impulse response h(n) is said to have the Mth band property if
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(12.7.28)

(12.8.1)

where M is a nonsingular integer matrix. In analogy with the 1D case, such 
a filter is also called a Nyquist(M) filter. If an interpolation filter (for M-fold 
interpolation) has this property, then the original set of samples is preserved 
in the interpolated version, as we saw in the 1D case.

We know that any sequence x(n) can be expressed in terms of the 
polyphase components xk(n) as in (12.4.32). The quantity h(Mn) is in fact 
the 0th polyphase component e0(n) of the sequence h(n). So the M-th band 
property (12.8.1) is equivalent to the condition that the Fourier transform 
E0(ω) of the 0th polyphase component e0(n) be a constant.

Since e0(n) is the decimated version of h(n), we have

(12.8.2)

The fact that this is constant implies that the summation above is constant. 
Equivalently,

(12.8.3)



for all ω0. In other words, if we make copies of H(ω) by shifting the origin 
to the points 2πM-Tm (which are points on the lattice LAT(2πM-T)), 
and add the copies for all m ∈ N(MT), the result is constant! This is an 
extension of the 1D property (4.6.6).

Summarizing, the definition of M-th band (or Nyquist(M)) property 
can be taken to be any one of the following: (a) condition (12.8.1), or (b) 
condition (12.8.3), or (c) the property that E0(ω) be constant. †

Ideal Decimation Filter: Example of an Mth Band Filter
Recall that in the 1D case, an ideal lowpass filter with passband edge 

π∕M has the Mth band property. Now consider an ideal multidimensional 
filter H(ω) with passband support SPD(πM-T). (Fig. 12.5-2 demonstrated 
this for several values of M). We now show that such an ideal filter has the 
Mth band property.

From Sec. 12.7.3 we know that the impulse response has the form 
(12.7.27) where h(s)(n) is a separable filter, formed from the 1D filter p(n). 
We see that p(J(M)n) = 0 for n ≠ 0. This implies h(s)(J(M)n) = 0, n ≠ 0. 
From (12.7.27) we conclude that

proving that H(ω) is an Mth band filter indeed.

12.8.2 Uniform DFT Filter Banks

One dimensional uniform DFT filter banks were studied in Chap. 4. In these 
systems, a set of M filters was derived from a prototype H0(z) as shown in 
Fig. 4.3-5 where W is the M × M DFT matrix. The M filters satisfy 
the shift relation Hk(z) = H0(zWk). The quantities Ek(z) are polyphase 
components of the prototype H0(z). To generalize this for the MD case, we 
first consider an example.

Example 12.8.1

Consider the system of Fig. 12.8-1. Here the input x(n) is passed 
through a set of delays

(12.8.4)

† One can make the definition more general by saying that the filter h(n) 
is Nyquist(M) if, for some integer k, h(n — k) satisfies any of the above 
conditions.
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Figure 12.8-1 Multidimensional extension of the uniform DFT analysis 
bank.

Since there are J(M) integers in the set N(M), the result is a 
vector of the J(M) signals uk(n), k ∈ N(M). This vector is then passed 
through the matrix [W(g)]*, to produce the set of J(M) signals vm(n), 
m ∈ N(MT). This system is a multidimensional LTI system with one 
input and J(M) outputs, and is characterized by the J(M) transfer 
functions

(12.8.6)

Thus

where the proptotype response is

(12.8.7)

(Note that m0 = k0 = 0.) Equation (12.8.7) shows that the responses 
Hm(ω) are shifted versions of the response H0(ω). The shifted locations 
are the points on the scaled reciprocal lattice corresponding to M. So
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(12.8.5)

By using the expression (12.4.38) for the entries of W(g), we obtain

(12.8.8)



the system of Fig. 12.8-1 represents a multidimensional uniform-DFT 
analysis bank.

Figure 12.8-2 More general multidimensional uniform DFT analysis bank. (©
Adopted from Sadhana, 1990 [Vaidyanathan, 1990c].)

Figure 12.8-3 The multidimensional uniform DFT synthesis bank. (© Adopted 
from 1990 Sadhana.)

Figure 12.8-2 shows a further generalization of this system. The analysis 
filters are again related by (12.8.7) (Problem 12.17), with the prototype now 
given by

[Remember that according to our notations the quantity Ez,k(z(M)) trans­
lates to Ek(MTω), if written in terms of ω.] Next, Fig. 12.8-3 represents 
a uniform DFT synthesis bank. In Problem 12.18 the reader is requested to 
show that the synthesis filters Fm(ω) are related exactly as in (12.8.7) (with
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H replaced by F everywhere), where the prototype is now given by

(12.8.10)

Example 12.8.2
Consider an uniform DFT analysis bank, with hexagonal M [given in 
(12.4.15)]. In Example 12.4.6 we calculated the elements of the set 
N(MT). From that we can verify the shift vectors 2πM-Tm in (12.8.7) 
to be

(12.8.11)

Assume that the prototype filter H0(ω) [i.e., Hm0(ω)] is lowpass with 
passband support as in Fig. 12.8-4 [which is SPD(πM-T)]. Then, the 
three shifted filters have supports as shown in the same figure.

If we keep in mind the fact that each of the responses in this figure is 
periodic (periodicity matrix 2πI), we can verify that the four passbands 
(which are disjoint), fill the entire frequency plane. If the prototype 
filter had some other kind of support (inconsistent with our choice of 
M), this would not be true.

Figure 12.8-4 Example 12.8.2. Filter supports in the uniform DFT bank.

12.9 MAXIMALLY DECIMATED FILTER BANKS
Figure 12.9-1 shows the maximally decimated filter bank structure (QMF 
bank) for the multidimensional case. The analysis filters Hz,k(z) essentially 
divide the signal x(n) into subbands in the D-dimensional freqency domain.
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The output of each analysis filter is decimated by M. Since the decimator 
reduces the sample density by J(M) (= ∣det M∣), we use a total of J(M) 
analysis filters so that the sampling density is preserved by the complete 
analysis bank. The decimated subband signals vk(n) are then expanded M- 
fold, and passed through the J(M) synthesis filters Fz,k(z). The outputs of 
these filters are added to obtain the reconstructed signal x(n). Notice that in 
Fig. 12.9-1, the index k which identifies the filter-number is a D-dimensional 
integer belonging to N(MT). The reader can regard this convention to be a 
matter of convenience. [One could equally have chosen to use a scalar index 
i (as in Hi(z)), and let i run from 0 to J(M) — 1.]

12.9.1 Analysis of the Structure
By using the transform domain relations for decimators and expanders (Sec. 
12.4.3), one can analyze the filter bank system to obtain the expression

(12.9.1) 
for the reconstructed signal. This shows that X(ω) is a linear combination 
of X(ω) and the shifted versions X(ω — 2πM-Tm) (which are the alias 
components). These aliasing terms can be eliminated if the filters are chosen 
such that

(12.9.2)
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Under this alias-free condition we have

(12.9.3)

with T(ω) representing the overall distortion function. If ∣T(ω)∣ is a nonzero 
constant for all ω (i.e., Tz(z) is allpass) the system is free from amplitude 
distortion; if T(ω) = ce-jωTn0 for some integer n0, the system has perfect 
reconstruction property, i.e., x(n) = cx(n - n0). The quantities

which are the weighting functions for X(ω — 2πM-Tm) in (12.9.1), can be 
collected into a vector A(ω), and expressed neatly in matrix vector notation
as

(12.9.5)

where H(ω) is the J(M) × J(M) alias component (AC) matrix with elements

(12.9.6)

and f(ω) is the synthesis filter vector with elements [f(ω)]k = Fk(ω). The 
condition for alias cancelation is equivalent to setting A(ω) in (12.9.5) to be 
of the form

(12.9.7)

Given the set of analysis filters (and hence the matrix H(ω)), we can there- 
fore find the synthesis filters satisfying alias-free condition by solving the 
equation (12.9.5), subject only to invertibility of the AC matrix.

We can rewrite the above formulation in terms of z-transform variables 
easily. For this recall (Sec. 12.1) that if the frequency variable ω is replaced 
with ω — b for a real vector

then the vector z is replaced with e-jΛbz. In other words, the scalar variable 
zi is replaced with zie-jbi. An example will make this idea clearer.
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Example 12.9.1
Consider the hexagonal decimator (12.4.15) again. We know that the 
elements of N(MT) are as in (12.4.41), so that the four vectors M-Tm 
involved in (12.9.4) are

The AC matrix has four rows, one for each xi. The 0th row corresponds 
to x0, and is given by 

where the subscript z on H is omitted for simplicity. For other values 
of xi, we obtain the corresponding row by replacing z0 with z0e-j2πxi,0 
and z1 with z1e-j2πxi,1. Thus the entire AC matrix is given by

Choice of Frequency Responses
Recall that if a decimation filter has passband support restricted to 

SPD(πM-T) (or an arbitrarily shifted version of this), then there is no 
aliasing. We can therefore choose the analysis filters in Fig. 12.9-1 according 
to this criteria. Since filters are never ideal, we still have some aliasing at the 
outputs of the decimators. This aliasing should be canceled by appropriate 
choice of synthesis filters.

For example suppose we use the hexagonal decimator (12.4.15). Since 
∣det M∣ = 4, we have four analysis filters. Figure -12.5-2(a) shows the region 
SPD(πM-T). Suppose we take the passband of Hz,0(z0, z1) to be this re- 
gion. This region, of course repeats with period 2π in both directions. By 
using four properly shifted copies of this region, we can fill the entire 2D
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Next consider the rectangular decimator M = . In this case the
AC matrix is verified to be



frequency plane as demonstrated in Fig. 12.9-2. (Only the region [—π, π)2 
is shown fully). We can therefore take the passbands of the four analysis 
filters to be these four regions. Again, in practice, we have nonzero transi- 
tion bands, so that there is overlap between passbands. So the passbands 
have areas exceeding the ideal areas. The decimators therefore cause aliasing 
which should eventually be canceled.

Figure 12.9-2 A possible choice of the passband regions for the four analysis 
filters, when hexagonal decimators are used in the QMF bank.

It is often desirable in practice to limit the filter coefficients to be real. 
This can be accomplished if the passband supports are chosen to have ap­
propriate symmetry in the frequency domain.

12.9.2 Polyphase Representation
As in the 1D case, the theory and design of maximally decimated filter banks 
is considerably simplified by use of the polyphase representation. This has 
been observed in Viscito and Allebach [1988b], and used in Karlsson and 
Vetterli [1990] and Vaidyanathan [1991b]. To obtain this, recall that each 
analysis filter can be represented in the form
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(12.9.8)

where Ez,k,m(z) are the Type 1 polyphase components. The J(M) × J(M) 
matrix Ez(z) with elements

(12.9.9)

is the polyphase component matrix (or polyphase matrix) for the analysis 
bank. With this definition we can redraw the analysis bank as indicated in 
Fig. 12.9-3.



For the synthesis filters we will use the Type 2 polyphase decomposition
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(12.9.10)

The J(M) × J(M) matrix Rz(z) with elements

(12.9.11)

is the (Type 2) polphase component matrix (or polyphase matrix) for the 
synthesis bank. We can thus redraw the synthesis bank as shown in the 
figure.

By invoking the noble identities (Fig. 12.6-1) we now move the decima- 
tors and expanders to arrive at the equivalent structure of Fig. 12.9-4, where 
Pz(z) = Rz(z)Ez(z). Any multidimensional QMF bank can be represented 
like this.

Figure 12.9-3 Representation of analysis and synthesis banks in terms of 
polyphase matrices.



Figure 12.9-4 Equivalent structure for the multidimensional QMF bank. Here 
Pz(z) = Rz(z)Ez(z).

12.9.3 Perfect Reconstruction (PR) Systems
The theory of perfect reconstruction systems (Chap. 5) is easily extended to 
the MD case. For the 1D case, we started from the delay chain structure of 
Fig. 5.6-2 (which is a simple PR system) and obtained more general systems 
by insertion of the polyphase matrices E(z) and R(z). A similar approach 
works in the MD case. The extension of the delay chain structure is shown 
in Fig. 12.9-5(a). This system is essentially the QMF bank of Fig. 12.9-1 
with the filters taken as

Example 12.9.2: QMF Bank with Hexagonal Decimation
Let M be the hexagonal decimation matrix (12.4.15). The delay ele- 
ments Z(—mi) for this case were identified in Example 12.4.5. Using 
this, the perfect reconstruction system of Fig. 12.9-5(a) therefore re­
duces to Fig. 12.9-6(a). If we insert matrices [W(g)]* and [W(g)]T as
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(12.9.12)
Thus the kith analysis filter is a delay in the direction mi, whereas the 
synthesis filter is an advance operator in the same direction. It can be 
verified (precisely as we did in Sec. 12.4.3 for Fig. 12.4-7) that this is a 
perfect reconstruction system, and satisfies x(n) = x(n). For the special 
case where M is the rectangular decimator in Example 12.4.4, this reduces 
to Fig. 12.9-5(b).

Now consider an arbirary QMF bank (Fig. 12.9-1). This can always be 
redrawn as in Fig. 12.9-3. If the product Rz(z)Ez(z) = I, this reduces to 
the perfect reconstruction system Fig. 12.9-5(a).



Figure 12.9-5 Examples of perfect reconstruction systems. In part (b), 
M = 2I.

shown in part (b), the perfect reconstruction property continues to hold 
(because the product of the two matrices equals J(M)I). We therefore 
obtain a perfect reconstruction system in which the analysis filters form 
a uniform-DFT bank (Sec. 12.8.2). The matrix W(g) was calculated in
(12.4.43).  Using this we obtain

Figure 12.9-6(c) shows an example in which the filters have higher order. 
Here the polyphase matrix for the analysis bank is

(12.9.13)
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Figure 12.9-6 Examples of FIR perfect reconstruction systems, when M 
is the hexagonal decimator.
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where

(12.9.14)

and Rm are nonsingular. With the synthesis bank chosen as indicated 
in the figure, the complete QMF bank is equivalent to the perfect recon- 
struction system of Fig 12.9-6(a). In fact this idea can be generalized 
by extending the cascade (12.9.13) to RKΛz(z)RK-1 . . . Λz(z)R0.

If the matrices Rm are unitary then Ez(z) is paraunitary, that is, 
satisfies the property

where “tilde” notation implies the following: (a) transpose the matrix, 
(b) replace zi with zi-1, and (c) conjugate the coefficients. When Rm 
is unitary, we can replace Rm-1 with Rm† and obtain perfect reconstruc­
tion. With this choice the Type 2 polyphase matrix for the synthesis 
bank becomes Rz(z0, z1) = Ez(z0, z1). The unitary matrices can be pa- 
rameterized as explained in Sec. 14.6, and these parameters optimized 
to obtain good designs for the analysis filters.

Further properties of multidimensional paraunitary filter banks can 
be found in Problems 12.19 and 12.27.

The ideas used in the above example can be easily applied for the case 
of rectangular decimators. For example we can insert unitary matrices and 
delays at appropriate places in Fig. 12.9-5(b) and so on ... It should be 
noticed that the rectangular decimator structure does not necessarily restrict 
the analysis filters to be separable. See Problem 12.20.

12.9.4 QMF Bank with Quincunx Decimators
We now consider a 2D QMF bank with the decimators and expanders taken 
to be the quincunx matrix. Since J(M) = 2, the QMF bank has two chan- 
nels. The quincunx matrix [Fig. 12.4-1(c)] was discussed earlier on many 
occassions. In Table 12.10.4 we collect many of the facts pertaining to this 
matrix. Based on this we can infer that the perfect reconstruction system of 
Fig. 12.9-5(a) reduces to Fig. 12.9-7. Moreover, the noble identities take the 
simplified form shown in Fig. 12.9-8. Finally the polyphase decomposition 
for the two analysis filters can be written as
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Figure 12.9-7 The simple perfect reconstruction system with quincunx deci­
mator.

Figure 12.9-8 Noble identities for quincunx M.

Choice of Analysis Filters
In Example 12.7.1 and Sec. 12.7.1 we considered filters for the quin- 

cunx decimator. From these we see that if the analysis filter Hz,0(z0, z1) 
is ideal lowpass with a diamond shaped passband support [Fig. 12.7-1(c)], 
then aliasing can be avoided. Similarly if Hz,1(z0, z1) is ideal highpass with 
support as in Fig. 12.7-1(d), this also avoids aliasing.

Filters with such shapes can be approximated by starting from an ideal 
1D filter with magnitude response as in Fig. 12.7-2(a). If this 1D filter 
has polyphase components E0(z) and E1(z), then the above lowpass and 
highpass filters can be obtained as in (12.7.11) and (12.7.12) respectively. 
These can be used as the analysis filters in the quincunx QMF bank. Since 
practical filters are not ideal, there is aliasing, which has to be canceled by 
the synthesis bank.

Example 12.9.3
Figure 12.9-9 shows a QMF bank with quincunx decimators. The signal 
x(n) is split into two subbands [typically with supports approximating 
Figs. 12.7-1(c),(d)] and then decimated by M. This creates aliasing. 
Our aim is to choose the synthesis filters such that aliasing is canceled. 
(After this we have to worry about amplitude and phase distortions too.) 
We now concentrate on a specific technique which completely eliminates 
aliasing and amplitude distortion.

Using the expressions (12.7.11) and (12.7.12), the analysis bank can 
be redrawn as in Fig. 12.9-9(b). Note that the analysis filters are related 
as
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Figure 12.9-9 (a) The quincunx QMF bank, (b) polyphase implementa­
tion of analysis bank, (c) equivalent circuit for analysis bank, (d) proposed 
structure for synthesis bank, and (e) equivalent structure for complete QMF 
bank.

By invoking the noble identities we can move the decimators to obtain 
the equivalent of Fig. 12.9-9(c). If we now choose the synthesis bank as 
in Fig. 12.9-9(d), then the complete system can be redrawn (again with 
the help of noble identities) as in Fig. 12.9-9(e). By comparing with the 
perfect reconstruction system of Fig. 12.9-7 we conclude that this is an 
alias free system with transfer function (or distortion function)

638 Chap. 12. Multidimensional multirate systems

(12.9.18)
With synthesis bank as in Fig. 12.9-9(d), the expressions for the



Figure 12.9-10 Alias-free quincunx QMF bank, starting from Johnston’s 
32D filters. The plots show magnitude in dB. (a) Hz,0(z0, z1), (b) Hz,1(z0, z1) 
and (c) Tz(z0, z1).
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Thus, by designing a 1D prototype filter G(z) to approximate the re- 
sponse of Fig. 12.7-2(a), we can identify the analysis filter Hz,0(z0, z1) 
as in (12.7.11), and the remaining three filters according to (12.9.17) and 
(12.9.19). In particular if the 1D prototype is FIR, then the 2D analysis 
and synthesis filters are FIR as well.

Note that this QMF bank has correspondence with the 1D QMF 
bank studied in Sec. 5.2.2 where the filters were related as in (5.2.1) and 
(5.2.2). In Problem 12.26 we show that Tz(z0, z1) is allpass if the dis- 
tortion function T(z) of the 1D system is allpass. Fig. 12.9-10 shows a 
design example. Here the 1D filter G(z) is taken to be the lowpass filter 
H0(z) in Johnston’s 1D QMF bank design (Sec. 5.2.2). More specifically, 
G(z) is taken to be Johnston’s 32D filter (tabulated in Crochiere and Ra- 
biner [1983]). Figure 12.9-10(a) and (b) show the magnitude responses 
(dB) of the lowpass and highpass filters Hz,0(z0, z1) and Hz,1(z0, z1), 
with peak magnitude normalized to zero dB.

Figure 12.9-10(c) shows the magnitude of the distortion function 
Tz(z0, z1) in dB, with nominal distortion normalized to zero dB. The 
peak distortion function is about 0.05dB. This is two times the corre- 
sponding value in the 1D Johnston design.

The reader is requested to find the AC matrix for the quincunx QMF 
bank in Problem 12.24. Further discussions on hexagonal and quincunx 
filter banks can be found in Ansari and Guillemot [1990], and Karlsson and 
Vetterli [1990].

(12.9.20)

12.9.5 Tree-Structured QMF Banks with Separable Filters
One of the simplest approaches for the design of 2D (and higher dimensional) 
QMF banks is to start from 1D QMF banks and connect them in a tree 
structure. Fig. 12.9-11 shows such a system. Here, the filters H0(z), H1(z) 
are analysis filters of a 1D QMF bank, and F0(z), F1 (z) are the corresponding 
synthesis filters. Similarly G0(z), G1(z) and P0(z), P1(z) are the analysis and 
synthesis filters of a 1D QMF bank. The decimators M0 and M1 are given 
by

In other words, M0 decimates by two only in the horizontal direction (and 
M1 in vertical direction). The overall behavior of this 2D QMF bank (in- 
cluding aliasing and other distortions), evidently depends on the 1D QMF 
banks from which it is derived.

The 2D analysis filters which result from this approach are restricted to 
be separable, and can therefore be designed easily by designing 1D filters.
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synthesis filters are given by

(12.9.19)



Many properties of 1D filter banks (such as, for example, perfect reconstruc­
tion) are automatically inherited by the 2D system. See Problems 12.22 and 
12.23 where we study this in greater detail.

Figure 12.9-11 A tree-structured arrangement of one-dimensional QMF banks, 
which produces a separable two-dimensional QMF bank.

12.10 CONCLUDING REMARKS
In this chapter we have presented several fundamental aspects of multidi­
mensional multirate systems. Many of the 1D concepts have been extended, 
by using the theory of lattices as the starting point. Even though our cover- 
age was limited, it is our hope that the reader will be able to make further 
extensions of 1D results, with this chapter as the starting point. For exam- 
ple, one can extend many of the wavelet concepts (Chap. 11), by using the 
ideas in Sec. 12.9 [Kovačević and Vetterli, 1992]. Tables 12.10.1-12.10.4 at 
the end of this section summarize the key concepts, which can be used as a 
constant reference while reading the chapter.

12.10.1 Diagonalization of the Decimator Matrix
The main reason why the multidimensional ideas are more complicated is be- 
cause the decimation matrix M is not diagonal. If it were diagonal, we could 
do most of our work with separable filters, which in turn can be designed 
starting from 1D filters. In this chapter we found that some multirate filters 
(even with nondiagonal M) can be designed starting from 1D techniques 
(e.g., Sec. 12.7.1 and 12.7.3).

Any D × D integer matrix M can be factorized as [Smith, 1861]
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(12.10.1)
where U and V are integer unimodular matrices and Λ is a diagonal inte- 
ger matrix. In this decompostion, we can always ensure that the diagonal 
elements λi of Λ are positive (assuming M nonsingular) and such that

(12.10.2)



that is, λi is a factor of λi+1. Under these restrictions, Λ is unique for a given 
M, even though U and V are not. Furthermore we can find the elements 
λi as λi = ∆i+1∕∆i where ∆i is the greatest common divisor of all the i × i 
minors of M. (For i = 0 take Δ0 = 1.) The proof of this is very similar to the 
proof of the same result for polynomial matrices (Smith form decomposition, 
Theorem 13.5.1). † Here are some examples:

(12.10.3)

(12.10.4)

This decomposition brings the multidimensional problems much closer 
to the 1D case, since decimation by Λ is equivalent to independent deci- 
mation in each dimension. We now mention a few applications of this de- 
composition. More detailed discussions and applications can be found in 
Vaidyanathan [1991b].
Characterization of Decimators

The M-fold decimator can now be redrawn as in Fig. 12.10-1. U 
permutes the samples of x(n). The matrix Λ performs independent deci- 
mation by the factor λi in each dimension i. The matrix V then permutes 
the decimated samples. Any M-fold decimator is a succession of these three 
operations. Similar comment holds for expanders.

Since V is unimodular, LAT(UΛV) = LAT(UΛ) (Sec. 12.2.1). Thus 
the samples retained by a decimator can be represented by LAT(UΛ), i.e., 
a permutation of samples (due to U) followed by independent decimation 
by λi in ith dimension.

Consider the set of all decimators with decimation ratio 2. These can 
be characterized as UΛ. Since ∣det M∣ = 2, we have ∣det Λ∣ = 2, and the

† In fact such a factorization holds for any matrix whose elements belong 
to a so-called “principal ideal domain” (pid) [Forney, 1970], [Vidyasagar, 
1985]. The set of integers (as well as the set of polynomials with coefficients 
belonging to a field) just happen to be pid's. Also see Sec. 13.5.1.
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Figure 12.10-1 Three stage drawing of a decimator.



only possibility is
(12.10.5)

since λi∣λi+1. As a further example, every 2D decimation matrix with deci- 
mation ratio 4 can be characterized by UΛ where Λ has one of the following 
two forms

(12.10.6)

We therefore have a very satisfactory way to characterize all decimators of 
a given ratio.

As a further theoretical application, one can rederive the frequency do- 
main relation (12.4.22) in a more straightforward manner, by applying the 
1D relation (4.1.4) repeatedly for each dimension. Another application is 
that, by factorizing the elements λi into primes, we can identify many pos­
sible multistage implementations of a given decimator.

Further Significance of the Property λi∣λi+1
Since λi is a factor of λi+1, we can write

(12.10.7)

where αi are integers. For example, in the 3D case,

(12.10.8)

Thus, decimation by M = UΛV can be interpreted as a succession of these 
steps: (a) permute samples by U, (b) decimate in all directions by α0, (c) 
decimate in all but the 0th direction by α1, (d) decimate in the last direction 
by α2, (e) and finally permute by V. This interpretation can be generalized 
for arbitrary dimensions.

Revisiting the Polyphase Implementation using Smith Form

Figure 12.10-2(a) shows a decimation filter, with decimator M = UΛV. 
By using the noble identity along with the fact that the unimodular deci­
mator U is equivalent to a U-1-fold expander, we can redraw this as in 
Fig.12.10-2(b). Here G(ω) = H(U-Tω). Since Λ is diagonal, we can per­
form a traditional (i.e., 1D) polyphase decomposition of G(ω) in each di- 
mension independently (e.g., as in Example 12.4.4), and then apply the 1D 
noble identities in each dimension individually. This results in Fig. 12.10-3.
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Figure 12.10-2 The decimation filter, redrawn.

Figure 12.10-3 Polyphase implementation after diagonalization.

Revisiting the Generalized DFT Matrix using Smith Form
In Sec. 12.4.4, we defined the generalized DFT matrix W(g) for ar- 

bitrary M. Let M = UΛV and let Wλi be the traditional λi × λi DFT 
matrix, i.e., [Wλi]km = e-j2πkm/λi. It can be shown that W(g) is a 'Kro­
necker product' of all the WΛi's. More accurately, 

where P1 and P2 are appropriate permutation-matrices [depending on U, V 
and the ordering of the integer vectors k and m in (12.4.38)]. Here ⊗ is the 
Kronecker product defined as

(12.10.10)

This was also observed in Problem 2.20 of Dudgeon and Mersereau [1984].
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Kronecker product of the 1D DFT matrix W2 with itself because, in this 
case, λ0 = λ1 = 2. So, in general, the form of W(g) for a given M is governed 
essentially by the diagonal matrix Λ.

12.10.2 Commutation of Decimators and Expanders
One of the interesting results in the 1D case is that an M-fold decimator 
and L-fold expander can be commuted in a cascade whenever L and M are 
relatively prime. This result was used in Sec. 4.3.3 to obtain polyphase 
structures for fractional decimation. The equivalents of these results in the 
multidimensional case are quite complicated. They have been developed by 
Kovačević and Vetterli [1991b], for the 2D case. A problem of considerable 
interest is the generalization of this for the MD case. Many authors have 
worked on this, and a number of results (with a wide variety of viewpoints 
as well as details) can be found in Chen and Vaidyanathan [1992a,b], [1993], 
[Gopinath and Burrus, 1991], [Evans, et al., 1992], and [Kalker, 1992].
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For the hexagonal matrix M we have λ0 = 1 and λ1 = 4 so that W(g) 
reduces to a permutation of the 1D DFT matrix W4, as shown by (12.4.43)
On the other hand, if M = , then W(g) (which is still 4 × 4) is a



TABLE 12.10.1 Lattice related notions in D-dimensional multirate systems

Unless context dictates otherwise, 'vector' stands for D × 1 column vector. In- 
teger vectors are often referred to as 'integers'. 'MD' stands for 'Multidimensional,' 
and 2D for 'two-dimensional'.
Notations and terminology.

1. [a, b)D : set of D × 1 real vectors x with elements xi in the range a ≤ xi < b.
2. N : set of all D x 1 integer vectors.
3. Unless mentioned otherwise: V = D × D nonsingular real matrix, and M = 

D×D nonsingular integer matrix. An integer matrix E is said to be unimodular 
if [det E] = ±1.

4. LAT(V) : lattice generated by V, i.e., set of all vectors of the form Vn,n ∈ N.
5. LAT(V-T) : reciprocal lattice. LAT(2πV-T) : scaled reciprocal lattice. Here 

V-T denotes (V-1)T.
6. FPD(V) : fundamental parallelepiped generated by V. This is the set of all 

vectors of the form Vx,x ∈ [0, 1)D. See Fig. 12.2-4. Note: FPD(I) is same as 
[0,1)D.

7. SPD(V) : symmetric parallelepiped generated by V. This is the set of all 
vectors of the form Vx,x ∈ [—1, 1)D. See Fig. 12.5-1. Note: SPD(I) is same 
as [-1,1)D.

8. LAT(M), FPD(M) and SPD(M) defined similarly.
9. J(M) = ∣det M∣.

10. N(M) : set of all integer vectors in FPD(M). Has J(M) elements.
11. N(MT) : set of all integer vectors in FPD(MT). Has J(M) elements.
12. z = [z0 . . . zD-1]T.
13. z(M) : D × 1 vector with kth element (z(M))k = zM0,kzM1,k . . . zMD-1,kD-1.
14. Let n = [n0 . . . nD-1]T. Then z(n) = Z(n) = z0n0zn11 . . . znD-1D-1 .
Important properties.

1. The volume of FPD(V) is equal to ∣det V∣.
2. J(M) (i.e., ∣det M∣) = number of integers in N(M) (hence in N(MT)).
3. Any real vector u can be expressed asu = uP + uL, where uP ∈ FPD(V) and 

uL ∈ LAT(V). Here uP and uL are unique for given V.
4. In particular, therefore, any integer vector n can be expressed as n = nP + nL, 

where nP ∈ N(M) and nL ∈ LAT(M) (and the integers nP and nL are unique 
for given M). In other words, n = nP + Mn0 (division therorm for integers; 
n0 is the quotient and nP the remainder).

5. LAT(V1) = LAT(V2) iff V1 = V2E for unimodular integer E.
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TABLE 12.10.2 Fundamentals at a glance

Sampling a continuous 'time' signal.
1. Let x(n) = xa(Vn). Then X(ω) = Σk∈NXa (jV-T(ω - 2πk))∕∣det V∣.
2. Sampling density ρ = 1∕∣det V∣. (Number of samples/volume.)
3. The sampling is said to be rectangular if V is diagonal.
4. Minimum sampling density required for alias-free sampling depends on choice 

of sampling geometry. If Xa(jΩ) has circular support centered at origin, then 
hexagonal sampling is more efficient than rectangular.

Decimation of discrete 'time' signal.
1. y(n) = x(Mn) = M-fold decimated version of x(n). Decimation ratio = 

∣detM∣. (Fig. 12.+ 1.)
2. Y(ω) = Σk∈Ν(MΤ) X (M-T(ω - 2πk))∕∣det M∣.
3. Decimation does not cause aliasing if X(ω) has support SPD(πM-T) or any 

frequency-shifted version of this. The support SPD(π(ME)-T) also works for 
any unimodular integer matrix E.

'Expander' for the discrete 'time' signal. y(n) defined in (12.4.5) is the 
M-fold expanded version of x(n). Here Y(ω) = X(MTω). (Equivalently Yz(z) = 
X2(z(M)).) Y(ω) has J(M)-1 images, centered at lattice points of 2πM-T (scaled 
reciprocal lattice of M).

Polyphase decomposition. The signal xk(n) ≜ x(Mn + k) (k ∈ N(M)) is the 
kth Type 1 polyphase component of x(n). For given M, there are J(M) such com­
ponents. See Fig. 12.4-2. Similarly Type 2 polyphase components are x'k(n) = 
x(Mn — k). In the transform domain Xz(z) =
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The notation z(k) is also used instead of Z(k)
Generalized DFT matrix. J(M) × J(M) matrix W(g) with elements defined as 
[W(g)]m,k = e-j2πmTM-1k, with m ∈ N(MT) and k ∈ N(M). For fixed row index 
m, the entries e-j2πmTM-1k can be considered to be one period of the sequence
e-j2πmTM-1n. (Single-frequency sequence with frequency -2πM-Tm; periodicity
matrix M.) W(g) is unitary; [W(g)]†W(g) = J(M)I. This is equivalent to the 
conditions (12.4.37a,b).

Noble identities. See Fig. 12.6-1(c), (d).



TABLE 12.10.3 Summary of properties of Hexagonal M

. The lattice generated byThe hexagonal decimator matrix is M =
this is shown in Fig. 12.4-1(b). We have J(M) = 4 so that the decimation ratio 
is four. Regions such as FPD(M), FPD(MT) and SPD(πM-T) are shown in 
Figures 12.4-10 and 12.5-2(a). The elements of N(M) are 

and those of N(MT) are

(Warning: The letters k and m are not standard, and are sometimes interchanged.) 
The delay elements Z(—k) in the Type 1 polyphase decomposition (12.4.32) are

The vector z(M) is given by

Using these, the Type 1 polyphase decomposition can be written as

The generalized DFT matrix W(g) is given by

The noble identities. See Fig. 12.6-5.
The AC matrix. See Example 12.9.1.
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TABLE 12.10.4 Summary of properties of quincunx M

. The lattice generated byThe quincunx decimator matrix is M =
this is shown in Fig. 12.+1(c). We have J(M) = 2 so that the decimation ratio 
is two. Regions such as FPD(M), FPD(MT) and SPD(πM-T) are shown in 
Figures 12.4-10 and 12.5-2(b). The elements of N(M) are 

and those of N(MT) are

(Warning: The letters k and m are not standard, and are sometimes interchanged.) 
The delay elements Z(—k) in the Type 1 polyphase decomposition (12.4.32) are

Using these, the Type 1 polyphase decomposition can be written as

The generalized DFT matrix W(g) is given by

The noble identities. See Fig. 12.9-8.
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PROBLEMS

12.1. Let Xz(z) and Hz(z) denote the z-transforms of the D-dimensional sequences 
x(n) and h(n).

a) Show that the z-transform of x(n — k) is Z(—k)Xz(z).
b) With a = [a0 . . . aD-1]T, show that the z-transform of the sequence

y(n) = x(n)eaTn is given by Xz(Λaz), where Λa is as in (12.1.16).

c) In part (b) consider the 2D case with a = 
of Xz(z0, z1).

Express Yz(z0, z1) in terms

d) Establish that the z-transform of the convolution sum (12.1.17b) is Yz(z) = 
Hz(z)Xz(z).

12.2. Shown below are several 2D filter responses. (Only the region [—π, π)2 shown). 
Assume that H(ω) = 0 in the white (unshaded) areas. The values of H(ω) in 
the shaded areas are indicated ajdacent to them. Which of these responses is 
separable?

12.3. Let h(n) be a D-dimensional digital filter. If the frequency response H(ω) is 
real for all ω, the filter is said to have zero-phase. Show that the zero-phase 
property holds if and only if h(n) = h*(-n).
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12.4. Consider the following two matrices.

(P12.4)

For each of these:
a) Sketch the lattice LAT(Mi).
b) dearly indicate the fundamental parallelepiped FPD(Mi), and highlight 

the integer points which belong to FPD(Mi).
c) Verify that FPD(Mi) contains exactly ∣det Mi∣ integer points.
d) Sketch the reciprocal lattice.

12.5. (a) Sketch the lattice generated by the matrix V in (12.2.12), and verify that 
this is the same as that generated by V in Example 12.2.1. (b) Sketch the 
lattice generated by V in (12.2.13) and verify that it is the set of all integers.

12.6. Consider the linear transformation

where the 2 × 2 matrix is real nonsingular. This maps a point from the coor- 
dinate system (p0, p1) to the system (q0, q1) (see figure below).

Figure P12-6
Show that a straight line AB gets mapped into a straight line CD. Hence 
argue that a polygon gets mapped into a polygon with the same number of 
sides. (Hint. A vertex in (p0, p1) plane is mapped into a unique vertex in 
(q0, q1) plane.)

12.7. Consider the function Y(ω) = Σk X(M-T(ω-2πk)) where M is a nonsingular 
integer matrix, and k ranges over all integers in N(MT). Show that Y(ω) is 
periodic in ω with periodicity matrix 2πI.

12.8. Consider a bandlimited x(n) with support for X(ω) shown below.

Figure P12-8
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Suppose we decimate x(n) by the matrix M = . Show the support
of the stretched version X(M-Tω) and all the shifted versions which enter the 
formula (12.4.22). Is there aliasing?

12.9. Consider the equality

(P12.9)

where M is a nonsingular integer matrix. Suppose f (m) is such that this holds 
for all choice of X(ω). Show then that f (m) is zero for all nonzero m ∈ N(MT), 
and that f(0) = 1.

12.10. Consider the following multirate system, where M is D × D integer nonsingular 
matrix, and J(M) = ∣det M∣.

Figure P12-10

a) Show that this is a (linear and) shift invariant system. What is the transfer 
function?

b) Suppose H(ω) has the response given in (12.7.1). Show then that y(n) = 
x(n).

c) In part (b), suppose we replace H(ω) with H(ω — v) where v is some real 
vector. Show that the relation y(n) = x(n) continues to hold.

12.11. Consider the decimation filter circuit of Fig. 12.6-4(a) for M-fold decimation.
a) Define M1 = ME where E is an arbitrary unimodular integer matrix.

Suppose the support of H(ω) is equal to SPD(πM-T1) (and of course 
repeats with periodicity matrix 2πI). Show then that decimation does not 
result in aliasing [i.e., there is no overlap between the stretched version 
and shifted versions in (12.4.22)].

b) Instead of using the decimation filter in part (a), suppose we use the filter 
H(ω — v) where v is an arbitrary vector. Show that decimation still does 
not result in aliasing.

12.12. This is by way of completing Example 12.7.3, which the reader should first 
review. Recall that the support of H2(MT1ω) is as in (12.7.17a) and is basically 
SPD(πM-T) repeated with periodicity matrix 2πM-T1 rather than 2πI. So 
the support has additional images of SPD(πM-T) represented by the nonzero 
values of m0 in (12.7.17b).

a) Consider the regions
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and
(P12.12b)



where m0 and m'0 are fixed unequal integers in N(MT1), x varies over 
[—1, 1)D and m1 varies over N. Show that these two regions are disjoint.

b) Show that with H1(ω) chosen to have passband region SPD(πM-T1), the 
support of H1(ω)H2(MT1ω) has passband region SPD(πM-T) (i.e., the 
m0-term is removed in (12.7.17b)). Thus H1(ω) eliminates the images of 
passband (which were generated by letting m0 be nonzero).

12.13. For the following matrices, compute the generalized DFT matrix W(g) defined 
in Section 12.4.4.

(P12.13)

Which of these DFT matrices are obtainable by row and column permutations 
of the traditional 1D DFT matrix of corresponding size?

12.14. Consider the matrix
(P12.14)

a) Sketch the lattice generated by M. What is the decimation ratio J(M) for 
M-fold decimation?

b) Give sketches of FPD(M), FPD(MT), and SPD(MT).
c) Identify the elements in the sets N(M) and N(MT).
d) Identify the elements Z(—k) which would appear in the Type 1 polyphase 

decomposition. Hence write down this decomposition (similar to what we 
wrote in Examples 12.4.4, 12.4.5).

e) Identify all the elements of the generalized DFT matrix W(g).
12.15. Let M be as in Problem 12.14.

a) Give a sketch of SPD(πM-T).
b) Give three possible sketches for the support of a (ideal) decimation filter 

for M-fold decimation, which would prevent aliasing. (Make sure not all 
of them are shifted versions of the same thing. And avoid the example 
H(ω) ≡ 0, of course!)

12.16. Let M be as in Problem 12.14.
a) Express the elements of the vector z(M) in terms of z0, z1 and other known 

quantities.
b) Since this is a 2D system, there are two noble identities for decimators and 

two for expanders (analogous to those in Fig. 12.6-5(c),(d)). Draw these 
explicitly.

c) Give a schematic of the polyphase implementation of a decimation filter 
(analogous to Fig. 12.6-5(f)).

12.17. Consider the analysis bank shown in Fig. 12.8-2. Show that the filter H0(ω) 
(i.e. Hm0(ω)) is given by (12.8.9), and that the remaining filters are related to 
H0(ω) as in (12.8.7).

12.18. For the synthesis bank shown in Fig. 12.8-3 show that the filter F0(ω) is 
given by (12.8.10) and that the remaining filters are given by Fm(ω) = F0(ω- 
2πM-Tm).
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12.19. In this problem we consider the 2D quincunx QMF bank (Section 12.9.4). 
Assume all filters are FIR with real coefficients.

a) Redraw the QMF bank in the polyphase form (Fig. 12.9-3(b)), explicitly 
indicating the elements Z(—mi) and Z(mi) in terms of z0 and z1.

b) Suppose Ez(z) (i.e., Ez(z0, z1), which is a more convenient notation in this 
case) has the form

(P12.19a)

Express the analysis filters Hz,0(z0, z1) and Hz,1(z0, z1) in terms of the 
components Ez,0(z0, z1) and Ez,1(z0, z1), and show that

c) In part (b) if the analysis filter Hz,0(z0, z1) has the diamond shaped pass- 
band as in Fig. 12.7-2(d), what is the passband region of Hz,1(z0, z1)?

d) Suppose the matrix in (P12.19a) is such that the first column is power 
complementary, that is,

(P12.19d)

we now have a perfect reconstruction system. Express the synthesis filters 
Fz,0(z0, z1) and Fz,1(z0, z1) in terms of Ez,0(z0, z1) and Ez,1(z0, z1).

g) With Rz(z0, z1) chosen as above, show that

(P12.19e)

h) Re-express the relations (P12.19b) and (P12.19e) in terms of the impulse 
response coefficients h0(n0, n1), h1(n0, n1), f0(n0, n1), and f1(n0, n1).

. Evidently there are four channels
since [det M] = 4. Suppose the analysis filters have the form

(P12.20)
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(P12.19b)

(P12.19c)

for some constant c > 0. Show then that Ez(z0, z1) is paraunitary, that is, 
ETz(z0-1, z1-1)Ez(z0, z1) = cI.

e) With Ez(z0, z1) assumed to be paraunitary, show that the analysis filters 
form a power complementary pair.

f) Assume Ez(z0, z1) is paraunitary. With Rz(z0, z1) chosen as

12.20. Consider a QMF bank with M =



where T is nonsingular.
a) Suppose the 0th row of T is [ 1 1 1 2]. Construct the remaining three

rows (obviously not unique) so that T comes out to be nonsingular. With 
this T, find a set of FIR synthesis filters for perfect reconstruction.

b) With T chosen as in (a), show that Hz,0(z0, z1) is nonseparable [i.e., cannot 
be written as H0(z0)H1(z1)].

12.21. In Section 12.9 we formulated the multidimensional QMF problem in terms of 
the AC matrix Hz(z), as well as in terms of the polyphase matrix Ez(z). In 
the 1D case, we know that these matrices are related as in (5.5.8).

a) In the multidimensional case, show that the relation is
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(P12.21a)

where W(g) is the generalized DFT matrix for the chosen M, and

(P12.21b)
Here ki are the distinct integers in the set N(M), appropriately numbered. 
(It might be notationally easier to obtain the relation in terms of the 
frequency vector ω first. In any case, also give the the relation using ω 
rather than z.)

b) With M taken as the hexagonal decimator, explicitly fill the details of the 
above relation.

12.22. Consider the tree structure of Fig. 12.9-11, with M0 and M1 as in (12.9.20). 
This is equivalent to a four channel two-dimensional QMF bank (Fig. 12.9-1).

a) Express the four analysis filters and four synthesis filters in terms of the 
one dimensional filters in the figure. Are these two dimensional filters 
separable?

b) What is the decimation matrix M?
12.23. Consider again the tree structure of Fig. 12.9-11, with M0 and M1 as in 

(12.9.20). This is designed starting from two one-dimensional QMF banks, 
viz.,

and
a) Suppose the 1D QMF banks are alias-free. Show that the 2D QMF bank 

is alias-free.
b) Repeat part (a) with "alias-free" replaced by "alias-free, and free from 

amplitude distortion."
c) Repeat part (a) with "alias-free" replaced by "alias-free, and free from 

phase distortion."
d) Repeat part (a) with "alias-free" replaced by "perfect reconstruction."

12.24. Write down the entries of the AC matrix for maximally decimated QMF banks 
with the following decimation matrices.
a) Decimator as in Fig. 12.4-1(d).
b) The quincunx decimator.

12.25. Let Tz(z) be a linear phase function, and define Sz(z) = Tz (z(M)). Show that 
Sz(z) has linear phase as well.



12.26. Consider the quincunx QMF bank of Fig. 12.9-9(a) again. Let the filter 
Hz,0(z0, z1) be designed as in (12.7.11) starting from the 1D prototype G(z) = 
E0(z2) + z-1E1(z2). Assuming that the remaining filters are chosen as in 
(12.9.17) and (12.9.19), we know that the system is alias-free, and can be 
redrawn as in Fig. 12.9-9(e). The QMF bank now has distortion function 
Tz(z0, z1) given in (12.9.18).
We shall now compare this with the 1D QMF bank with filters
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(P12.26)
From Chapter 5 we know this system is alias-free with distortion function 
T(z) = 2z-1E0(z2)E1(z2).

a) Suppose the 1D prototype G(z) is of the form ΣNn=0 g(n)z-n where N is 
odd, and g(n) is real with g(n) = g(N — n). From Sec. 5.2.2 we know that 
T(z) has linear phase. Prove that for the 2D QMF bank Tz(z0, z1) has 
linear phase as well.

b) Instead, suppose the 1D prototype G(z) is such that T(z) is allpass. Show 
then that Tz(z0, z1) is allpass as well.

c) Finally suppose G(z) is such that T(z) is a delay z-K. So the 1D system 
has perfect reconstruction. Show that the 2D QMF bank also has perfect 
reconstruction.

12.27. Recall that any QMF bank (Fig. 12.9-1) can be drawn in polyphase form as 
in Fig. 12.9-3(a). Suppose the matrix Ez(z) is FIR and paraunitary, that 
is, Ez(z)Ez(z) = cI, c > 0. (See Example 12.9.2 for definition of the tilde 
notation.)
a) Show that the analysis filters forms a power complementary set, that is, 

Σk ∣Hk(ω)∣2 = constant.
b) Show that the AC matrix Hz(z) is paraunitary (Hint. Use Problem 12.21).
c) Suppose the matrix Rz(z) is chosen as Ez(z). Express x(n) in terms of 

x(n) and show that we have perfect reconstruction.
d) With Rz(z) = Ez(z), show that the synthesis filters are given by the 

relation Fz,k(z) = Hz,k(z).
12.28. Consider the multirate system shown below, where M is some nonsingular 

integer matrix, S = J(M) - 1, and mi ∈ N(M).

Figure P12-28



This is essentially the system of Fig. 12.9-5(a) with the additional transfer 
functions Rmi(ω) inserted. Find a set of necessary and sufficient conditions on 
these transfer functions such that the system is alias-free. Under this condition, 
what is the transfer function X(z)∕X(z)?

12.29. In this chapter we obtained the frequency domain formula (12.4.22) for a dec- 
imator based on the view that x(n) is the sampled version of some underlying 
'analog' signal xa(t). We then used the formula (12.4.22) in conjunction with 
our knowledge of polyphase decomposition, and obtained the generalized DFT 
and the orthogonality relation (12.4.37a).
We shall now take a reverse approach, which may be more appealing to some 
readers. In this Problem we shall derive the orthogonality relation (12.4.37a) 
independently, based on first principles, and then use it in the next Problem 
to get the decimation formula (12.4.22). This is closer to the approach taken 
in Chapter 4 for the one-dimensional case.

a) Let x(n) = ejωT0n, where ω0 is some real D × 1 vector. This is called a 
single-frequency sequence, and the Fourier transform is zero except at a 
'single frequency' ω0 (and repeats periodically). More specifically, show 
that the transform is 

by verifying that it satisfies (12.1.10).
b) Let x0(n) = ejωT0n, and x1(n) = ejωT1n. Assume ω0 and ω1 are two 

distinct frequencies, i.e., ω0 — ω1 ≠ 2πi for integer i. This means the 
Fourier transforms of the sequences x0(n) and x1(n) do not overlap, that 
is, X0(ω)X1(ω) = 0 for all ω. Using this, prove that

(P12.29b)

(Hint. Convolution in “time” is multiplication in frequency.)
c) Now consider the special case of (b) where the frequency vectors are 

ω0 = 2πM-Tm0 and ω1 = 2πM-Tm1 for integer m0, m1. Here M is 
a nonsingular integer matrix. Now the sequences are given by

(P12.29d)

(Hint. Decompose appropriate integer-vectors using appropriate division 
theorems.)

e) Hence prove the relation (12.4.37a).
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Verify that these are periodic with periodicity matrix M. 
d) Let ω0 and ω1 be distinct in (c). Using (P12.29b) verify that



12.30. We shall now derive the relation (12.4.22) for a decimator, using the orthog- 
onality condition (12.4.37a). The latter can be derived independently as in 
the previous problem. The M-fold decimated sequence y(n) = x(Mn) can be 
considered to be generated by a two stage process: first define

(P12.30a)

a) Show that v(n) can be expressed as
(P12.30b)

(P12.30c)

where J(M) = ∣det M∣. Hence derive a relation between V(ω) and X(ω).
b) Show that Y(ω) = V(M-Tω).
c) By combining the results of parts (a) and (b), obtain the relation (12.4.22). 

Note. In this problem be careful not to employ any results which have been 
derived based on (12.4.22), as it would imply a 'circular' proof!

12.31. At the end of Section 12.4.5 we introduced sublattices and cosets. Let V1 and 
V2 be D × D real nonsingular matrices and let LAT(V2) be a sublattice of 
LAT(V1).

a) Prove that L=V1-1V2 is an integer matrix. (Hint. Given any D × 1 integer 
n, we can find D × 1 integer m such that V2n = V1m.)

b) Let Ca and Cb be cosets of LAT(V2) in LAT(V1). Prove that these are 
either identical or disjoint.

c) Let ρ = ∣det L∣. (Evidently this is an integer.) Prove that there are pre- 
cisely ρ distinct cosets of LAT(V2) in LAT(V1), and that the union of 
these cosets is LAT(V1).

12.32. Recall how we obtained the 2D filter H2(z0, z1) of Fig. 12.7-2(d) starting from 
the 1D lowpass response G(ejω). Now suppose that G(ejω) is highpass as shown 
below.

Figure P12-32

Sketch the support of H(ω0, ω1).
12.33. In (12.4.22) suppose we replace the summation index k ∈ N(MT) with k ∈ 

N(MTE) for some unimodular integer matrix E. Show that the summation 
remains unchanged.
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12.34. Let M1 and M2 be nonsingular integer matrices and let M = M1M2. Sup- 
pose the region SPD(M2-T) is contained within [—1, 1)D. Show then that 
SPD(πM-T) will be contained within SPD(πM1-T).

12.35. Consider two zero-phase 2D digital filters Hz(z0, z1) and Gz(z0, z1) with fre­
quency response supports as shown below.

The response is equal to unity in the shaded region and zero everywhere else in 
[—π, π)2. What are the frequency responses of the filters (i) Hz(z20, z1)Gz(z0, z1) 
and (ii) Hz(z0, z1) - Hz(z20, z1)Gz(z0, z1). Note. Using such combinations and 
clever extensions of these, one can design so-called "directional filter banks." 
See Bamberger and Smith [1990 and 1992] and Fettweis, et al. [1990] for further 
details.

12.36. Let Gz(z0, z1) be a separable filter. Show that 1 + Gz(z0, z1) is necessarily 
nonseparable (unless Gz(z0, z1) has the degenerate form G0(z0) or G1(z1)).
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PART 4 Multivariable and 

Lossless Systems

Review of

Discrete-Time

Multi-Input Multi-Output

LTI Systems

13.0 INTRODUCTION
In this chapter we review several important concepts from the theory of 
multi-input multi-output linear time invariant systems (abbreviated ΜΙΜΟ 
LTI systems). ΜΙΜΟ systems are sometimes also called multivariable sys- 
tems, and should not be confused with multidimensional systems discussed 
in Chap. 12. There are excellent texts on this topic, for example, Kailath 
[1980] and Chen [1970 and 1984]. Other references for this chapter include 
Desoer and Schulman [1974], Gantmacher [1959], Rosenbrock [1970], and 
Vidyasagar [1985]. While many of these references emphasize continuous- 
time systems, our presentation here is entirely for the discrete-time case. 
Some of the results, for example, those in Sec. 13.9 and 13.10 have not 
appeared in text books before.

Because of the “reference” nature of this chapter, the writing style is 
unlike any other chapter in this text. We have chosen to present various 
facts and results in the form of lemmas and theorems. This has enabled us 
to review a large number of advanced results in an economic manner, while 
at the same time ensuring completeness. In this chapter we will frequently 
use matrix theory results, particularly concepts such as rank, nonsingularity,
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orthogonal complements, and so on (summarized in Appendix A).

13.1 MULTI-INPUT MULTI-OUTPUT SYSTEMS

In Sec. 2.2 we introduced p × r LTI systems, that is, LTI systems with r 
inputs and p outputs. The kth output in response to all the inputs is given 
by (2.2.1), where Hkm(z) is the transfer function from the input um(n) to 
the output yk(n). The ΜΙΜΟ system is characterized by the p × r transfer 
matrix H(z) or, equivalently, by the impulse response matrix h(n). In Fig. 
2.2-2 we indicated two ways of representing the system. The output sequence 
y(n) is related to the input u(n) in terms of the matrix convolution (2.2.7) 
(equivalently (2.2.4) in the z-domain). We request the reader to review Sec. 
2.2, because the same notations will be used here.

A system with p = r = 1 is said to be a single input single output 
(SISO) system, or a scalar system. Many of the concepts which follow easily 
in the SISO case turn out to be complicated for ΜΙΜΟ systems because 
matrices are involved. Development of basic ideas such as irreducible rational 
functions, minimal realizations, and transmission zeros require more careful 
thought in the ΜΙΜΟ case. In this chapter we will review many of these 
concepts.

Outline
Section 13.2 introduces matrix polynomials and their properties. In Sec. 

13.3 we study the matrix fraction description which is useful for describing 
ΜΙΜΟ transfer functions. Section 13.4 gives a detailed exposure to state 
space description of ΜΙΜΟ LTI systems. The Smith-McMillan form is in­
troduced in Sec. 13.5. Sections 13.6 and 13.7 deal with poles and zeros of 
ΜΙΜΟ LTI systems. The degree or McMillan degree of a system is studied 
in Sec. 13.8. Finally Sec. 13.9 and 13.10 present some results for the case 
of FIR ΜΙΜΟ systems, which are useful in filter bank research.

Polynomials and integers. While many of the results of this chapter 
are developed for polynomials and polynomial matrices, they hold equally 
well for integers and integer matrices. This is because, the set of polyno­
mials as well as the set of integers belong to a common algebraic structure 
called the principal ideal domain [Forney, 1970], [Vidyasagar, 1985]. In Sec. 
12.10.1 we have already applied one of these results (e.g., Smith decompo­
sition of integer matrices) for the implementation of multidimensional deci­
mators. Further applications (to multidimensional multirate systems) of the 
integer counterpart of the results of this chapter can be found in Chen and 
Vaidyanathan [1992a,b], [1993], [Gopinath and Burrus, 1991], [Evans, et al., 
1992], and [Kalker, 1992].

13.2 MATRIX POLYNOMIALS

Matrix polynomials (or polynomial matrices) play a very crucial role in the 
description and understanding of multivariable systems. Both FIR and IIR
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systems can be represented in terms of matrix polynomials. In this section 
we study their properties.

A p × r polynomial matrix P(z) in the variable z is simply a p × r matrix 
whose entries are polynomials in z. The matrix can be expressed as

is said to be a causal FIR system for obvious reasons. The system in (2.2.9) 
is such an example.
Rank and ‘‘Normal Rank” of a Polynomial Matrix

Given a polynomial matrix P(z), it is clear that the rank usually de­
pends on the value of z. In any case the rank p(z) cannot exceed min (p,r). 
As an example, for the system given by

(13.2.2)

it is clear that p(z) < 2 for all z because the second row is proportional to 
the first for all z. On the other hand, the matrix

(13.2.3)

has p(z) = 2 for all z except z = —3/2. To see this note that the determinant 
is equal to 3 + 2z which is nonzero (so that the matrix has full rank) unless 
z = —3/2. For the example in (13.2.2), on the other hand, the determinant 
is identically zero so that p(z) < 2 for all z.

Normal rank. Let p(z) denote the rank of a p × r polynomial at z. 
Then the normal rank is defined to be the maximum value of p(z) in the 
entire z plane. Matrices for which the normal rank is the maximum possible 
[= min (p,r)] are said to have full normal rank.

Thus (13.2.3) has full normal rank whereas (13.2.2) does not. For the 
special case of a M × M (i.e., square) matrix P(z), the normal rank is full
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(13.2.1a)

If p(K) ≠ 0 the quantity K is called the order of the polynomial (not to be 
confused with degree which has a subtler meaning; Sec. 13.3, 13.8). When 
there is no room for confusion, we use the term 'polynomial' rather than 
'polynomial matrix’.

A polynomial in z-1 with order K, that is, a system of the form

(13.2.1b)



(i.e., equal to M) if and only if the determinant (which is a polynomial in 
z) is not identically zero for all z. In this case the rank is less than M only 
at a finite number of points in the z plane (viz., at the locations of the zeros 
of [det P(z)]).
Unimodular Matrices

A unimodular matrix U(z) in the variable z is a square polynomial 
matrix in z with constant nonzero determinant. Here are some examples:

It is readily verified that the product of unimodular matrices is unimodular. 
Using this, one can generate more complicated examples.

For M × M unimodular U(z) the normal rank is M. In fact the rank 
p(z) = M for all z. Moreoever, since

(13.2.4)

(where 'Adj' denotes the adjugate; Appendix A) the inverse is also a poly­
nomial in z. Since U(z)U-1(z) = I, the determinant of the inverse is a 
(nonzero) constant. So the inverse of unimodular U(z) is again a unimodu­
lar polynomial matrix.

Conversely, if U(z) is a polynomial matrix with polynomial inverse V(z) 
then U(z)V(z) = I so that [det U(z)][det V(z)] = 1. Since [det U(z)] and 
[det V(z)] are polynomials, this means that these determinants are constants 
so that U(z) is unimodular. Summarizing, a polynomial matrix U(z) is 
unimodular if and only if its inverse is a polynomial matrix.
Common Factors, GIcd, and Coprimeness

Two scalar polynomials P(x) and Q(x) are said to be coprime (or rela- 
tively prime) if they do not have common factors (i.e., common divisors) with 
order ≥ 1. For example (1 + x) and (2 + x)(3 + x) are coprime, whereas (2 + x) 
and (2 + x)(3 + x) are not. A scalar transfer function H(z) = P(z)∕Q(z) is 
said to be in irreducible form if the polynomials P(z) and Q(z) are relatively 
prime.

In the next section we will express rational transfer matrices in irre­
ducible form. This is algebraically more complicated because matrices are 
involved. We will require the concept of coprimeness of matrix polynomials; 
and we have to distinguish between left divisors and right divisors. Given a 
p × r polynomial Q(z) we say that the p×p polynomial L(z) is a left divisor 
(or factor) of Q(z) if
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(13.2.5)
for some polynomial Q1(z). Suppose L(z) is a left divisor of two polynomials 
P(z) and Q(z) (with the same number of rows p). That is

(13.2.6)



for some polynomials Q1(z) and P1(z). Then L(z) is said to be a left common 
divisor (abbreviated lcd) of Q(z) and P(z). For example, let

(13.2.7)

We can rewrite these as

(13.2.8)

so that L(z) is an lcd.
Notice that any p × p unimodular matrix U(z) is an lcd of P(z) and 

Q(z) because U-1(z) is polynomial and we can write

(13.2.9)

The greatest left common divisor (glcd). Let the polynomial L(z) 
be an lcd of the two polynomials P(z) and Q(z). From (13.2.6) we see that 
every left factor of L(z) is also an icd. We say that L(z) is a greatest lcd 
(abbreviated glcd) if every other lcd is a left factor of L(z), that is, if L1(z) 
is any lcd then
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(13.2.10)
for some polynomial R1(z). So every lcd is a left factor of the glcd, and 
conversely every left factor of the glcd is an lcd, as one can readily verify. 
(In a similar way one can define right common divisors (rcd), and grcd. We 
will skip details, as we do not intend to use them.)

Glcd is not unique. The glcd of two polynomial matrices is not 
unique. For example if L(z) is a glcd of Q(z) and P(z), then so is L(z)W(z) 
for unimodular W(z) (Problem 13.2).

Coprimeness. Two polynomial matrices Q(z) and P(z) are said to be 
left coprime if every lcd (hence the glcd) is unimodular. For the scalar case 
this is equivalent to saying that there are no common factors of order > 0. 
The matrices P(z) and Q(z) in the example (13.2.7) are not left coprime 
because there is an lcd L(z) [shown in (13.2.8)], which is not unimodular.

From the above definitions and the properties of unimodular matrices, 
one can obtain the following two results which we use later:

♠Fact 13.2.1. Two polynomial matrices P(z) and Q(z) are left co- 
prime if and only if P(z)W(z) and Q(z)V(z) are left coprime for every pair 
of unimodular W(z) and V(z). ◊



(13.2.11)

where L is a positive integer and B(z) is a polynomial with B(α) ≠ 0. It 
is sufficient to prove that the factor (z — a)L in the denominator is not 
completely canceled by the adjugate. We can rewrite (13.2.11) as

13.3 MATRIX FRACTION DESCRIPTIONS
We know that any scalar rational transfer function H(z) can be written as 
P(z)∕Q(z), where P(z) and Q(z) are polynomials in z. Similarly, a causal 
p× r transfer matrix H(z) with rational entries Hkm(z) (i.e., a causal rational 
system) can be written as

(13.3.1)

where Q(z) and P(z) are matrix polynomials in z with indicated sizes, and 
Q(z) has full normal rank (= p). This is called a left matrix fraction de- 
scription (abbreviated as left MFD). Such a description helps to study the 
properties of the system more compactly, and also gives rise to implemen­
tations which are more efficient than directly implementing each element 
Hkm(z) of H(z).

The simplest way to obtain the MFD would be as follows: (a) write each 
element Hkm(z) in the form Hkm(z) = Akm(z)∕Bkm(z) where Akm(z) and 
Bkm(z) are polynomials in z (and not in z-1, which is more standard in dig­
ital filtering theory), (b) compute the least common multiple (LCM) D(z) of 
the denominators Bkm(z), (c) re-express Hkm(z) as Hkm(z) = Pkm(z)∕D(z) 
(which in general is not in irreducible form), and (d) define P(z) = [Pkm(z)], 
Q(z) = D(z)I.
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Proof. See Problem 13.2. ▽ ▽ ▽
♠Fact 13.2.2. Inverses of square polynomial matrices. Let P(z) 

be a p x p polynomial matrix in z with normal rank p. Let α be a zero of its 
determinant, i.e., (z — α) a factor of [det P(z)]. Then P-1(z) has a 'pole' at 
z = α. In other words, at least one element of P-1(z) has the factor (z — α) 
in its denominator. ◊

Proof. We know

(13.2.12)

Suppose the adjugate completely cancels the factor (z — a)L. After such 
cancelation, the determinant of the left hand side above is still zero for 
z = a [because of P(z)], but that of the right hand side is nonzero. This is 
evidently a contradiction! ▽ ▽ ▽



In a similar way, a right MFD is defined to be of the form P1(z)Q-1(z). 
In this chapter we will not have much occassion to use this form. Unless 
mentioned otherwise, the term MFD stands for left MFD.

Example 13.3.1
Suppose

(13.3.2)

This can be rewritten as

(13.3.3)

which is a valid MFD. It can be verified that the following choice:

(13.3.4)

results in a second possible MFD for this system.

The matrices Q(z) and P(z) need not be unique (i.e., the MFD is not 
unique) as the above example shows. For every H(z) we can always find a 
so-called irreducible MFD, as we will describe later. Broadly speaking, this 
is analogous to scalar systems expressed in the form P(z)∕Q(z) where P(z) 
and Q(z) have no common factors. Irreducible MFDs, again, are not unique.
Degree or McMillan Degree of a System

A very fundamental concept in the study of ΜΙΜΟ systems is the de­
gree μ of a system (also called the McMillan degree). The degree μ of a p × r 
causal rational system H(z) is the minimum number of delay units (i.e., z-1 
elements) required to implement H(z). We often use “deg” as an abbrevi­
ation for degree (as in [deg H(z)]). The degree is not defined for noncausal 
systems because they cannot be implemented with delays alone.

For scalar (i.e., SISO) systems the degree is an easily understood con­
cept. Thus consider an Nth order causal FIR filter ΣNn-0 h(n)z-n, with 
h(N) ≠ 0. The degree is then N. Similarly an Nth order IIR filter (Chap. 
2) has degree N. For ΜΙΜΟ systems, on the other hand, the situation is 
more complicated. Thus, let
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with h(N) ≠ 0. The order is N (which is merely the highest power appearing 
in the expression for H(z)). But the degree is in general ≥ N. For example 
consider

(13.3.5a)

It is clear that this requires at least two delays for its implementation (Fig. 
13.3-1) so that the degree is two, whereas the order N = 1. A more advanced 
tool is therefore necessary to tell what the degree is. We will deal with this 
issue in Sec. 13.8.

Example 13.3.2
Consider the FIR system

We can rewrite H(z) as

(13.3.5b)

So the system can be implemented as in Fig. 13.3-2 with only one delay, 
proving that the degree is unity. More generally, consider the example 
H(z) = Rz-1 where R is M × M with rank p. This means that we can 
write

so that H(z) = z-1R = T[z-1I]S. This shows that we can implement 
the system using p delays (Fig. 13.3-3). So the system H(z) has degree 
≤ ρ.

Figure 13.3-2 The system 
in Example 13.3.2.
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Figure 13.3-1 Implemen­
tation of z-1I2.

(13.3.6)



It turns out that the degree of H(z) above is precisely equal to 
the rank ρ (Problem 13.8). This is readily verified to be true for the 
examples (13.3.5a) and (13.3.5b).

Figure 13.3-3 Pertaining to Example 13.3.2.

Irreducible MFD, and Order of [det Q(z)]
For SISO systems the expression H(z) = A(z)∕B(z) is said to be irre­

ducible if A(z) and B(z) are coprime. For the matrix case if L(z) is a glcd 
of Q(z) and P(z), then we can obtain a MFD H(z) = Q-11(z)P1(z) where 
Q1(z) and P1(z) are as in (13.2.6). Having done so, the matrices Q1(z) and 
P1(z) are left coprime, and the MFD Q-11(z)P1(z) is said to be irreducible.

Now
(13.3.7)

If P(z) and Q(z) are not left coprime, then L(z) is not unimodular so that 
the order of [det Q(z)] exceeds that of [det Q1(z)]. Thus given a reducible 
MFD, we can always find an irreducible MFD for which the determinant of 
Q1(z) has reduced order.

In Sec. 13.5.2 we show that all irreducible MFDs of a given system H(z) 
have same order for [det Q(z)]. From above discussions it follows that this 
is also the smallest order of [det Q(z)], among all possible MFDs.

Order versus degree. It is worth emphasizing the distinction between 
order and degree. The function 1 + z-1 is a polynomial in z-1 with order 
= 1. Moreover it can also be viewed as a causal system with degree = 1, 
because it can be implemented with one delay. The function 1 + z is a 
polynomial in z with order = 1, but we cannot say that its degree = 1. This 
is because this system cannot be implemented with one delay element! It is 
noncausal, and its degree is simply undefined! For this reason, we have used
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the term “order” rather than “degree” when discussing the determinant of 
Q(z) which is a polynomial in the advance operator z.

13.4 STATE SPACE DESCRIPTIONS

We know that a transfer function H(z) can be implemented in many ways 
such as the direct form, cascade form and so on. Given any such implemen­
tation, the outputs of the delay elements are called state variables, and the 
system behavior can be completely described in the time domain by a set of 
equations which involve the input, state variables and output. This is called 
the state space description of the structure.

To demonstrate state space descriptions, consider the example of a di­
rect form structure shown in Fig. 13.4-1. This is a causal system with 
transfer function H(z) = P(z)∕Q(z), where

(13.4.1)

Since there are N delays, we have N state variables x1(n), . . . , xN(n) 
as shown. The input and output signals are u(n) and y(n), respectively. The
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Figure 13.4-1 The direct form structure, with state variables indicated.



state space description is

This can be expressed compactly in matrix-vector notation as

(state equation), (13.4.3)

(output equation),

where

(13.4.4)

(13.4.5)

(13.4.6)

y(n) = y(n), and u(n) = u(n). We have used bold-faced u(n) and y(n) 
because we will use these equations for the ΜΙΜΟ case also.

We can write down the state space description in the above manner for 
any structure representing a p × r causal LTI system H(z). (See examples 
below.) With N denoting the number of delays, the state equation (13.4.3) 
is a set of N equations. The output equation is a set of p equations. The 
sizes of the matrices are:

(13.4.8)

Figure 13.4-2 shows a schematic of the state space description.

670 Chap. 13. Review of ΜΙΜΟ LTI systems

(13.4.2)
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Main Points About State Space Descriptions

1. State variables, state vector and state transition matrix. The 
outputs xi(n) of the delay elements are the state variables, and the 
vector x(n) of state variables is called the state vector (or just the 
'state' at time n). The matrix A is called the state transition matrix 
(STM). One can verify that if the state x(n0) is given then the quantities 
x(n),n > n0 and y(n), n ≥ n0 can be found by knowing u(m) for 
m ≥ n0. [See (13.4.11) later.]

2. State space description. The state equations represent the storage 
part (or the part of the system having the memory elements z-1), and 
can be considered to be the recursive part, since x(n + 1) is computed 
from x(n). (This does not necessarily imply the existence of feedback; 
see FIR example below). The output equation is the nonrecursive part. 
The quadruple (A,B,C,D) is said to be the state space description of 
the structure.

3. Meaning of D. Notice from Fig. 13.4-2 that the quantity D is given 
by setting z = ∞, that is, D = H(∞). This means that we can find the 
value of D by wiping out the delay elements in the structure (i.e., set 
z-1 = 0). Since H(∞) = h(0) for a causal system, we conclude

Essentially D represents the 'direct path' (i.e., delay-free path) from the 
input to the output.

4. Implicit causality. It should be borne in mind that (13.4.3) and 
(13.4.4) are implicitly restricted to causal systems. The memory part 
[eqn. (13.4.3)] is clearly executed in a causal manner. The output at 
time n is completely determined by the input u(m), m ≤ n (equivalently 
by the input u(m) for n0 ≤ m ≤ n and the state vector x(n0) for 
arbitrary n0). Unless mentioned otherwise, all results in this chapter 
are restricted to causal systems.

Sec. 13.4 State space descriptions 671

Figure 13.4-2 Schematic representation of the state space structure.

(13.4.9)



Example 13.4.1: An FIR System
Consider the FIR system of Fig. 13.4-3 with two inputs, two outputs 
and two state variables. The state equations are easily verified to be

and the output equations are

Figure 13.4-3 FIR example for state space description.

So the state space description of the structure is

Notice that D could also be obtained by replacing the delay elements in 
the figure with zero.

Since A ≠ 0, the vector x(n + 1) depends on x(n). This is repre- 
sented by the feedback path in Fig. 13.4-2. However, from Fig. 13.4-3 
we note that there is no feedback connection in the structure!

Example 13.4.2: An IIR System (the Coupled Form Structure)
Consider the IIR filter structure of Fig. 13.4-4 with one input, two 
outputs and two state variables, as labeled. This is called the coupled 
form structure in digital filtering literature [Oppenheim and Schafer, 
1989]. The state space description is verified to be
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Figure 13.4-4 The coupled form IIR structure.

The fact that D = 0 (i.e., H(∞) = 0) implies that there is no direct 
(delay-free) path between the input and any of the outputs, as can be 
verified from the figure.

State space “structures,” “descriptions,” and “realizations.” It 
is important to distinguish between state space structures and state space de- 
scriptions. This is best explained with the above examples. For the structure 
of Example 13.4.2 we found that the elements of the matrices (A,B,C,D) 
are equal to the values of the multipliers in the structure so that Fig. 13.4-4 
is an implementation of (or a structure for) (A,B,C,D). In Example 13.4.1 
on the other hand, this is not true because of the appearance of the prod- 
uct k1k2 in C. So (A,B,C,D) is merely the state space description of the 
structure in Fig. 13.4-3 but the figure is not a structure for (A,B,C,D). 
Whenever we say 'the realization (A,B,C,D)' we just mean a structure 
whose state space description agrees with (A, B,C,D).

13.4.1 Properties of State Space Descriptions
Transfer Function

The state space description (A,B,C,D) completely determines the in- 
put output behavior of the system. We now proceed to substantiate this by 
writing down the transfer function as well as the time domain input-output 
relations in terms of A, B, C, and D.

Taking z-transforms of both sides of (13.4.3) and (13.4.4) we obtain

(13.4.10a)

From these we obtain Y(z) = H(z)U(z) where

(13.4.10b)
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Time Domain Description
In order to express the output y(n) in terms of (A,B,C,D) and the 

input, we first write y(n) in terms of the initial state vector (or 'initial 
condition') x(0) and the input u(m), 0 ≤ m ≤ n. By repeated application 
of (13.4.3) we find

Impulse response. By comparing the above equation with (2.2.7), we 
can write the the impulse response as
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(13.4.11a)

so that from (13.4.4)

(13.4.11b)

In particular if we have x(0) = 0 then

(13.4.12)

(13.4.13)

Thus, all coefficients of the impulse response can be calculated from the 
matrices (A,B,C,D). A second way to obtain this based on power series 
expansion of (13.4.10b) is addressed in Problem 13.18.
Poles of H(z) and Eigenvalues of A

We say that zp is a pole of H(z) if it is a pole of at least one of the 
elements Hkm(z) of the matrix H(z). Now from (13.4.10b) we see that

(13.4.14)

where R(z) is the adjugate of (zI — A). Thus, if zp is a pole then it is a zero 
of the determinant appearing in (13.4.14). So

(13.4.15)



which shows that poles of H(z) are eigenvalues of A. So the system H(z) is 
stable if all the eigenvalues satisfy ∣λi∣ < 1.

But we have to be careful with the converse. In general, not all eigenval­
ues λ of A are poles of H(z), unless (A,B,C,D) is minimal (to be defined 
in Section 13.4.2). For the moment just note that even if the determinant in 
the denominator of (13.4.14) is zero at z = λ, this can, in principle, cancel 
with a factor (z — λ) in every entry of CR(z)B, so that λ may not in reality 
be a pole.

It is possible for all eigenvalues of A to be zero (as in Example 13.4.1). 
This implies that H(z) is FIR (i.e., has all poles at z = 0).
Similarity Transformations

Given a state space description (A, B, C, D) for a system H(z), suppose 
we define a new set of matrices
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(13.4.16a)

where T is any nonsingular matrix. We then see that the transfer function 
corresponding to this description is given by D1 + C1(zI — A1)-1B1 which 
upon substitution from (13.4.16a) reduces to H(z) given by (13.4.10b). In 
other words, (A1,B1,C1,D) is an equivalent state space description for 
the system H(z). In this way we can find an infinite number of equivalent 
descriptions because T is arbitrary. The matrix T is called a similarity 
transformer (or transformation).

We can rewrite the state equation (13.4.3) as

which shows that the new system has the transformed state vector T-1x(n). 
So, the similarity transformation changes the internal state vector while 
retaining the same input-output relation. In the next subsection we will use 
this idea to generate the so-called minimal realizations.

Notice that the eigenvalues of A are the same as those of A1 (Appendix 
A). From Cayley-Hamilton theorem (the same Appendix) we conclude that 
the quantities AN and AN1 can be expressed as

(13.4.16b)

by using the same set of scalars αk. This is a useful fact.

13.4.2 Minimal Realizations
The number N of delay elements in a structure is equal to the size of the 
state vector x(n). So N is said to be the dimension of the state space. This 
integer N also governs the size of A (which is N × N).



A structure (or implementation or realization) for a transfer function is 
said to be minimal if the number of delay elements N is the smallest possible, 
viz., the degree μ of H(z). So, a structure is minimal if and only if the state 
space has smallest dimension (i.e., size of A is smallest). In this section we 
introduce two properties called reachability and observability, and show that 
a structure is minimal if and only if it satisfies these two properties.

Example 13.4.3
To motivate, consider Fig. 13.4-5 which shows a nonminimal structure. 
The system transfer function is H(z) = z-1, which has degree one. 
But there are four delays in the structure. The first is unconnected to 
the output y(n), and its output is not observable; the second delay is 
unconnected to the input u(n) and is not reachable, that is, its output 
cannot be changed by choice of input u(n). The third delay represents 
an unreachable and unobservable component. The fourth delay is the 
only useful one, as it is both reachable and observable.

Figure 13.4-5 A simple example of a structure with unreachable and 
unobservable states.

Figure 13.4-6 A more subtle example of a structure with unreachable 
states.

Not all structures are as simple to analyze and understand as the 
above one. Thus consider Fig. 13.4-6, where H(z) — 2z-1. Evidently 
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this has degree one, but the structure has two delays. Both delays are 
connected to the input as well as to the output. However, this structure 
is not 'reachable' in the sense that we cannot find an input sequence to 
achieve arbitrary values for the state variables [as they are constrained 
by x1(n) = x2(n) = u(n — 1)].

Decoupling unreachable and unobservable state variables. As 
the above example shows, there are situations where we cannot identify a 
particular state variable to be unreachable, even though the system has more 
delays than necessary. We will show that such structures can be transformed 
(using the similarity transformation) in such a manner that the transformed 
state vectoτ has two sets of state variables. One of these is the set of un- 
reachable variables and can be discarded, thereby reducing the number of 
delay elements. In a similar way, we can perform a transformation that 
separates or “decouples” the unobservable state variables, which can then 
be discarded. The result of these manipulations will be a structure with 
minimum number of delays.

It is now time to make our definitions and analysis mathematically more 
precise.
Reachability

Consider a structure for H(z) with N delays. Let (A,B,C,D) be the 
state space description so that A is N × N. The structure for H(z) is said to 
be reachable (or completely reachable, often abbreviated cr) if we can reach 
any specified final state xf starting from any arbitrary inital state xi by 
application of an appropriate finite length input sequence. Because of the 
shift invariant nature of the system, we will assume that the initial time is 
zero, that is, x(0) = xi.

To study the conditions for reachability, recall that (13.4.11a) gives us 
the general relation between any state x(n),n > 0 and the initial state x(0). 
Given arbitrary initial state x(0), we can reach any specified state xf at time 
n (i.e., force x(n) = xf) by choice of the inputs u(m) in the summation of 
(13.4.11a), provided the matrix
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(13.4.17)

has full row rank N (Appendix A). If this is not the case, we can try to reach 
the desired state xf at time n + 1. Now suppose that we have not been able 
to reach the desired state up until time N. This means that the matrix

(13.4.18)

does not have rank N. If this is the case, then any further waiting will prove 
to be unfruitful. In other words, it will not be possible to reach the state



xf for any n > N. The reason for this is that the additional columns of the 
matrix (13.4.17), which are of the form

(13.4.19)
can be expressed as linear combinations of the columns of ℛA,B (Cayley- 
Hamilton theorem) so that we do not obtain additional linearly independent 
columns after time N. In other words, the rank of (13.4.17) does not increase 
as n is increased beyond N. Summarizing, we have proved the following 
important result.

♠ Lemma 13.4.1. Reachability. A structure with N delays (i.e., N 
state variables) is reachable if and only if the matrices A and B are such 
that the matrix ℛA,B has full rank N. ◊
Remarks

1. Consider the N × N matrix ℛA,Bℛ†A,B· We know this is positive semi 
definite for any ℛA,B. The full-rank condition on ℛA,B is equivalent to 
the condition ℛA,Bℛ†A,B > 0 (i.e., positive definite).

2. Since reachability is governed by the two matrices A and B, we often 
say "(A,B) is reachable" instead of "the structure is reachable."

3. Evidently reachability is a property of the structure implementing H(z), 
rather than a property of H(z).

4. The requirement of reachability is stronger than controllability which is 
a notion we will not use (see Problem 13.7).
What if a structure is not reachable? This means that we can perform 

a transformation on the structure so that the new state vector reveals the 
unreachable state variables explicitly. These variables can then be eliminated 
to obtain an equivalent structure for H(z) with fewer delays. More formally 
we will prove:

♠ Lemma 13.4.2. Reduction to reachable form. Suppose (A,B) 
is such that ℛA,B does not have full rank N. Then there exists a similarity 
transformation T such that the equivalent system (13.4.16a) has matrices 
A1 and B1 of the form

(13.4.20)

where ρ denotes the rank of ℛA,B. ◊
Consequence of the Lemma. If we have a structure for which the 

matrices A1 and B1 have the form (13.4.20), then the state equation can be 
partitioned as

(13.4.21) 
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So the subset of states x2(n) is independent of the input u(n). Moreover 
its evolution in time is independent of x1(n). This means that x2(n) is the 
unreachable component of the state (as it cannot be changed in any way 
by changing the input). Assuming that the initial state is zero, the quan­
tity x2(n) is zero for all future time, and does not affect the input-output 
behavior [and hence the transfer function H(z)].

The reduced system A11, B11, C11, D (with state vector x1(n) of re- 
duced dimension p) has the same input-output behavior as the original sys- 
tem. Here C11 represents the leftmost p × ρ submatrix of C1 ≜ CT.

Proof of Lemma 13.4.2. Let t0, t1, . . . , tρ-1 denote a set of ρ in- 
dependent columns of ℛA,B. Evidently all columns of ℛA,B (which are 
N-vectors) are linear combinations of these. Let tρ, . . . , tN-1 be a basis 
for the orthogonal complement of the column space of ℛA,B. Defining the 
N × N nonsingular matrix 

we then have
(13.4.23)

where the 0 on the RHS is (N - p) × Nr. From this and from the definition 
(13.4.18) of ℛA,B we deduce, in particular, that B has the form

(13.4.24)

Since AN can be expressed as a linear combination of Ak, 0 ≤ k ≤ N — 1 
(Cayley-Hamilton theorem), Eq. (13.4.23) also implies

(13.4.25)

where x denotes possibly nonzero entries. Since the first p columns of T 
span the column space of ℛA,B, (13.4.25) implies

(13.4.26)

where A11 is ρ × ρ, and A12 and A22 are of appropriate sizes. The results 
(13.4.24) and (13.4.26) establish the existence of a similarity transformer T 
such that the new state space description has the form (13.4.20). ▽ ▽ ▽
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ObservabiIity
A structure for H(z) is said to be observable (or completely observable, 

often abbreviated co ) if the state x(m) at time m can be uniquely determined 
by observing a finite-length segment of the output sequence starting from 
time m, and knowing the input sequence for the corresponding set of sample 
values. In view of shift invariance we shall set m = 0 in our discussions. 
Like reachability, observability is a property of the structure and not of the 
transfer function H(z). Once again, if the structure is not observable, then 
measurement of more than N output samples does not help to identify the 
initial state [where N is the size of x(n)]. So the structure is observable if the 
knowledge of u(n),y(n),0 ≤ n ≤ N — 1 can be used to find x(0) uniquely.

To determine the conditions for observability, recall that y(n) can be 
expressed as in (13.4.11b). In terms of the impulse response h(k) defined in 
(13.4.13) we therefore get

Given the quantities y(n) and u(n) for 0 ≤ n ≤ N — 1, that is, given Y and 
f, there exists x(0) satisfying (13.4.27) because, by definition, y(n) satisfies
(13.4.27).  It is also clear (Appendix A) that we can find a unique value of 
x(0) if and only if

(13.4.28)

has full column rank N. Under this condition, the unique solution is

Summarizing, we have proved:
♠ Lemma 13.4.3. Observability. A structure is observable if and 

only if the matrices C and A are such that SC,A has full rank N. ◊
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(13.4.29)



Remarks. (a) Once again, the full-rank condition on SC,A is equivalent 
to the positive definite condition S†C,ASC,A > 0. (b) We often say that 
(C, A) is observable instead of “the structure is observable.”

If (C, A) is not observable, it is possible to apply a similarity trans- 
formation such that the transformed state reveals the unobservable state 
variables. These variables can then be eliminated, resulting in a system 
with fewer delays. This is the consequence of the following lemma.

♠ Lemma 13.4.4. Reduction to observable form. Suppose (C,A) 
is such that SC,A does not have full rank N. Then there exists a similarity 
transformation T such that the equivalent system (13.4.16a) has matrices 
C1 and A1 of the form

(13.4.30)

(13.4.31)

This is an Np × Nr matrix. It can also be considered as an N × N block 
matrix, with each block having size p × r. So the product of the matrices 
which arise in the reachability and observability conditions is merely a matrix 
of the impulse response coefficients h(n) for 1 ≤ n ≤ 2N — 1.
Reachability and Observability Imply Minimality

It is clear from the above discussions that if a structure is minimal (i.e., 
N is as small as possible, viz., N = McMillan degree μ) then it has to 
be reachable and observable. For, otherwise, we can find a smaller matrix
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where p denotes the rank of SC,A. ◊
Proof. Very similar to proof of Lemma 13.4.2. ▽ ▽ ▽
If the state space description has C1 and A1 of the form (13.4.30),

then the state vector can be partitioned into where x1(n) has ρ
elements. The part x2(n) does not affect x1(n) or the output and is therefore 
the nonobservable part. The reduced system A11, B11, C11, D (with state 
vector x1(n) of dimension p) has same input-output behavior as the original 
system. Here B11 represents the first p rows of B1 = T-1B.
A Beautiful Significance of SC,A and ℛA,B

Suppose we form the product SC,AℛA,B. The result is



A11 and a corresponding set of matrices B11 and C11 resulting in the same 
transfer function H(z). The converse of this result is provided by:

♠ Lemma 13.4.5. Suppose a realization (A, B,C,D) is reachable and 
observable. Then it is minimal, that is, there does not exist an equivalent 
structure for the same transfer function with fewer delays. ◊

Proof. We prove this by contradiction. Let N denote the state space 
dimension for (A,B,C,D) and let (a,b,c,D) be an equivalent realization 
with smaller dimension p < N (i.e., a is ρ×ρ, and so on). Since the structures 
represent the same transfer function, the impulse response coefficients h(n) 
are the same for both. From (13.4.13) we therefore have

from which we obtain

(13.4.34)

As (A, B, C, D) is reachable and observable, the N × N matrices S†C,ASC,A 
and ℛA,Bℛ†A,B are nonsingular. So, the LHS of (13.4.34) has rank N. But 
the rank of the RHS is at most p < N. This is a contradiction. ▽ ▽ ▽ 

The. results of the above three Lemmas can be summarized as follows.
♠ Theorem 13.4.1. Minimality, reachability, and observability. 

A realization (A,B,C,D) of a transfer function H(z) is minimal if and 
only if it is reachable and observable (i.e., (A,B) reachable and (C,A) 
observable). ◊

In all future discussions, the word “minimal” is therefore synonymous 
to the condition “reachable as well as observable.” This is also abbreviated 
as crco (i.e., completely reachable and completely observable).
Minimal Realizations are Related by Similarity Transforms

A nice property of minimal realizations is that all minimal realizations 
of a system H(z) are related by similarity transformations:
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(13.4.32)

By using the result (13.4.31) we immediately arrive at

(13.4.33)



♠ Lemma 13.4.6. Let (A,B,C, D) and (a, b,c, D) be two minimal 
realizations of a p × r system H(z). Then there exists a unique similarity 
transformation T which transforms (A,B,C,D) to (a, b,c, D). ◊

Proof. Let N denote the state space dimension so that A and a are 
both N × N. Our aim is to prove the existence of a unique N × N nonsingular 
T such that
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(13.4.35)
Assuming T exists, uniqueness is established as follows: Eq. (13.4.35) im­
plies can = CAnT for all integers n ≥ 0 so that Sc,a = SC,AT. This implies 
S†C,ASc,a = S†C,ASC,AT. Since minimality implies observability, S†C,ASC,A 
is N × N nonsingular. So T is uniquely determined as

(13.4.36)

Using (13.4.33) one can verify that T can also be expressed as

(13.4.37)

We now prove existence of T. We know that a relation similar to 
(13.4.33) holds, from which we have

(13.4.38a)

This step has been possible because the required inverse exists (by observ- 
ability). For clarity, let us rewrite this more explicitly:

(13.4.38b)

where T is the N × N matrix indicated in (13.4.38a). Note that this choice 
of T agrees with (13.4.36) as expected. From this we obtain B = Tb, which 
is one of the three relations in (13.4.35). Now from (13.4.32) we have

(13.4.39)

So if we append the columns ANB and aNb to the matrices ℛA,B and ℛa,b 
in (13.4.33) respectively, the equality continues to hold. In a way similar to 
(13.4.38b) we then obtain

(13.4.40)



Postmultiplying both sides of (13.4.40) by ℛ†a,b and rearranging we obtain 
AT = Ta, which again is one of the relations in (13.4.35). Finally, from 
(13.4.33) we have
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(13.4.41)

Postmultiplying with ℛ†a,b and rerranging, we obtain CT = c. Summarizing, 
we have shown that if T is defined as in (13.4.36) [equivalently (13.4.37)], 
then all the three relations in (13.4.35) are satisfied. This establishes the 
existence of T with the advertised properties. Notice that the minimality 
properties are crucial in the proof because we use the inverses of ℛA,Bℛ†A,B 

and S†C,ASC,A. ▽ ▽ ▽
Real coefficient systems. Suppose H(z) is a real transfer matrix 

(i.e., all elements Hkm(z) have real coefficients). It is clear that there exists 
a structure with real valued multipliers (because we can realize each Hkm(z) 
individually in direct form!). What is perhaps not so obvious is the fact that 
there also exist minimal realizations with real multiplier values. A proof is 
requested in Problem 13.9.
The PBH Test for Reachability and Observability

The rank conditions on the matrices ℛA,B and SC,A can be expressed 
in an elegant form, in terms of the eigenvectors of A. This result is of 
considerable theoretical value (as it simplifies many proofs). It is called the 
PBH condition (or test) because it was invented by Popov, Belevitch, and 
Hautus.

To motivate the basic idea, suppose v is an eigenvector of A which is 
at the same time orthogonal to all rows of C, i.e.,

(13.4.42)

We then have CAv = λCv = 0. More generally, we can verify CAnv = 0 
for any integer n ≥ 0 so that SC,Av = 0. This implies that the rank of SC,A 
is less than N, so that the system is not observable. The PBH test asserts 
an even stronger result, summarized as follows:

♠ Theorem 13.4.2. The PBH test. This can be stated in two parts.
1. The pair (C, A) is observable if and only if there does not exist a nonzero 

vector v such that Av = λv and Cv = 0.
2. The pair (A, B) is reachable if and only if there does not exist a nonzero

vector w such that wTA = λwT and wTB = 0. ◊
Proof. We prove only part 1, as the other part is similar. We already 

showed that (13.4.42) implies that (C,A) is not observable. Conversely, 
suppose (C, A) is not observable. Then we can apply a similarity transform 
T and obtain the equivalent form (13.4.30). Let w be an eigenvector of A22.



We then have

is an eigenvector of A1. Furthermore

This implies that the nonzero vector v≜Tu satisfies (13.4.42). ▽ ▽ ▽
We conclude this subsection with the following easily proved result.

♠ Fact 13.4.1. Observability and reachability preserved under 
similarity transform. Let (C, A) be observable. Then the pair (C1, A1) 
obtained by a similarity transformation is also observable. Same holds for 
reachability. ◊

13.4.3 Stability and Lyapunov Lemma
Recall from Sec. 2.2 that H(z) is said to be stable if each element Hkm(z) is 
stable (i.e., has all poles inside the unit circle). Given any minimal realization 
(A,B,C,D) for H(z), it turns out (see Theorem 13.6.1 later) that λ is a 
pole of H(z) if and only if it is an eigenvalue of A.

So stability is equivalent to the condition that all eigenvalues λi of A 
satisfy ∣λi∣ < 1. If A satisfies this, we say that A is stable. The following 
property of stable matrices is very valuable in system theoretic work.

♠ Lemma 13.4.7. Let A be stable. Then An → 0 as n → ∞. ◊
Proof. If A has distinct eigenvalues, we can write A = TΛT-1 where 

Λ is a diagonal matrix with diagonal elements representing the eigenvalues 
of A, and the columns of T are the eigenvectors. So An = TΛnT-1. Since 
Iλi∣ < 1, the quantity λni goes to zero as n → ∞, so that An → 0.

For the case where eigenvalues are not distinct, we cannot in general 
diagonalize A. In this case we can still apply the unitary triangularization 
result (Sec. A.7, Appendix A). According to this, any square matrix A 
can be written as A = UΔU†, where U and Δ are square matrices with 
U†U = I, and Δ = lower triangular. The diagonal elements of Δ are equal 
to the eigenvalues of A.

We have An = UΔnU† (using U†U = 1) so that proving An → 0 is 
equivalent to proving ∆n → 0. To prove this we adopt the following simple 
trick [Franklin, 1968]: define a lower triangular matrix Δ as follows:
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so that u=



1. The diagonal elements [∆]ii (i.e., eigenvalues of Δ) are distinct, with 
|[∆]ii| ≤ [Δ]ii < 1. This is always possible since stability of A assures 
us that ∣[∆]ii∣ < 1 for all i.

2. [∆]ij ≥ ∣[∆]ij∣ for all (i,j).
As the eigenvalues of Δ are distinct and bounded by unity, we conclude 

∆n → 0. Since all the elements of Δ are nonnegative and satisfy [∆]ij ≥ 
∣[∆]ij∣, it is clear that [∆n]ij ≥ [∆n]ij for all integers n > 0 so that ∆n → 0 
indeed! ▽ ▽ ▽

The stability of A can be expressed elegantly in terms of a simple al- 
gebraic equation. This is called the discrete-time Lyapunov Lemma, even 
though it is a blending of results due to many authors [Anderson and Moore, 
1979].

♠ Lemma 13.4.8. Discrete-time Lyapunov lemma. We will state 
this in two parts for convenience.

1. Let A be N × N, C be p × N and let (C, A) be observable. Let the 
equation

Now suppose λ is an eigenvalue of A (hence that of A1) so that A1v = λv 
for some v ≠ 0. From (13.4.45) we have v†A†1 A1v + v†C1†C1v = v†v, that 
is, (1 - ∣λ∣2)v†v = [C1v]†[C1v]. Since [C1v]†[C1v] ≥ 0, this proves that 
∣λ∣ < 1 unless C1v = 0. But by PBH test (Theorem 13.4.2) this cannot 
happen because observability of (C,A) implies that of (C1, A1) (by Fact 
13.4.1). This proves Part 1.

Now consider part 2. Define
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(13.4.43)
be satisfied for some Hermitian positive definite P. Then A is stable.

2. Let Q be some N × N Hermitian positive semidefinite matrix so that it 
can be written as Q = C†C for some (possibly rectangular) C. Let A 
be N × N stable with (C,A) observable. Then the algebraic equation 
(13.4.43) has a unique solution P, and the solution is Hermitian positive 
definite. ◊
Proof. First consider part 1. Since P is Hermitian and positive definite, 

there exists nonsingular T such that P = [TT†]-1. So we can rearrange 
(13.4.43) as

(13.4.44)
Define A1 = T -1AT and C1 = CT. Then (13.4.44) becomes

(13.4.45)

(13.4.46)



Since A is stable, this summation converges [p. 64, Anderson and Moore, 
1979]. Evidently P is Hermitian and positive semidefinite. Moreover, the 
sum of the first N terms is precisely equal to S†C,ASC,A, which is positive 
definite (by observability), so that P is positive definite. It is readily verified 
by substitution that this P satisfies (13.4.43).

To prove that P is the only solution, suppose P1 and P2 are solutions 
to (13.4.43). Then a†RA = R, where R = P1 - P2. By repeated use of 
this, one obtains [A†]nRAn = R, for all n ≥ 0. By Lemma 13.4.7, An goes 
to zero as n → ∞ so that this implies R = 0. So P is unique. ▽ ▽ ▽

13.5 THE SMITH-McMILLAN FORM
For transfer matrices H(z) and their structures, a study of advanced con- 
cepts such as transmission zeros, minimality, degree, and related things is 
greatly facilitated by a diagonalization result known as the Smith-McMillan 
decomposition. In this section we study these results.

13.5.1 The Smith Form of a Polynomial Matrix
Given a p × r polynomial matrix P(z), it is possible to obtain simpler forms 
such as triangular and diagonal forms [Smith, 1861], by performing certain 
operations called elementary operations on the matrix.
Elementary Operations on Polynomial Matrices

An elementary row operation on P(z) is defined to be any one of the 
following:

Type 1. Interchange two rows.
Type 2. Multiply a row with a nonzero constant c.
Type 3. Add a polynomial multiple of a row to another row.

Elementary column operations are defined in a similar way. The above row 
operations can be performed by premultiplying P(z) with an appropriate 
square matrix, called an elementary matrix. There are three types of ele- 
mentary matrices corresponding to the above three operations. Examples of 
3 × 3 elementary matrices are shown below.

(13.5.1)

The first matrix interchanges row 0 with row 2. (Remember that rows and 
columns are numbered starting from zero.) The second matrix multiplies all 
elements of row 1 with c ≠ 0. The third matrix replaces row 2 with

(13.5.2)
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where α(z) is a polynomial in z.
Notice that all the three types of elementary matrices are unimodular. 

Repeated application of various row operations amounts to premultiplica­
tion of P(z) with a p × p unimodular matrix. (We will see later that any 
unimodular matrix is a product of the three types of elementary matrices.)

Elementary column operations are equivalent to post multiplication of 
P(z) with one of the three types of elementary matrices. Repeated elemen- 
tary column operations amounts to post multiplication by an r × r unimod­
ular matrix.

Elementary operations can perform wonders. For example, by repeated 
row and column operations, one can reduce P(z) into a diagonal matrix, 
whose diagonal entries are polynomials. This result is theoretically extremely 
powerful, and helps us to obtain many conclusions which would otherwise 
be difficult to derive.

The division theorem. The key property which enables us to obtain 
the diagonalization is the division theorem for polynomials. This states that 
if P1(z) and P2(z) are scalar polynomials in z with order of P1(z) ≥ order 
of P2(z), then we can find unique polynomials Q(z) (quotient polynomial) 
and R(z) (reminder polynomial) such that

(13.5.3)

and such that the order of R(z) < order of P2(z). (This includes the case 
R(z) = 0.)

(13.5.4)

If we divide the (1,0) element 2z2 + 3 by the (0,0) element z + 1 we 
obtain

By using this fact we can perform an elementary row operation of Type 
3 to reduce the (1,0) element to a constant (= R(z) = 5). Thus

(13.5.6)
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Example 13.5.1
Let

(13.5.5)



We can now reduce the (0,0) element to a constant by replacing row 0 
with

(row 0) - z/5 × (row 1) (Type 3 operation).
The result is

Next the (0,1) element can be forced to zero by an elementary column 
operation as follows:

(13.5.10)

Since W1(z) and V1(z) are unimodular, their inverses are also unimod­
ular polynomials in z. So we have the decomposition

(13.5.12)

where Γ(z) is diagonal and W(z), V(z) are unimodular. If desired, the 
diagonal entries of Γ(z) can further be forced to be monic polynomials 
(i.e., highest power has coefficient unity), by use of Type 2 operations.

The above example is a demonstration of a general diagonalization the- 
orem which can be stated as follows.
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(13.5.7)

(13.5.8)

Finally the (1,0) element can be forced to be zero by an elementary row 
operation:

(13.5.9)

eventually resulting in a diagonal matrix. The sequence of row opera- 
tions can be represented as

which we denote W1(z). The only column operation is represented by

so that
(13.5.11)



♠ Theorem 13.5.1. The Smith form [Smith, 1861]. Let P(z) be a 
p × r matrix polynomial in z. Then there exists finite number of elementary 
row and column operations which reduce P(z) into a diagonal polynomial 
matrix. So we can write

(13.5.13)

where W(z) and V(z) are unimodular matrix polynomials in the variable z 
and

(13.5.14)

Here p is the normal rank of P(z). Moreover the unimodular matrices can 
be so chosen that the polynomials γi(z) are monic (i.e., highest power has 
coefficient unity), and γi(z) is a factor of γi+1(z), that is,
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(Smith form decomposition).

(13.5.15a)

Finally, for a given P(z), the matrix Γ(z) is unique, and the elements γi(z) 
are given by

(13.5.15b)
where ∆i(z),i > 0, is the greatest common divisor of all the i × i minors of 
P(z), and ∆0(z) = 1. Γ(z) is called the Smith form of P(z). ◊

Sketch of proof. We will assume that P00(z) is nonzero and has the 
smallest order among all nonzero elements. [This can be arranged by use of 
Type 1 row and column operations, which will be part of W(z) and V(z).] 
Suppose there is a nonzero element P0k(z) in the 0th row. Let Q(z) and 
R(z) denote the quotient and remainder when we attempt to divide P0k(z) 
with P00(z), that is,

(13.5.16a)

We can now perform a Type 3 column operation so that the resulting matrix 
has the element R(z) in place of P0k(z). (Only the kth column is affected 
by this operation.) Since R(z) is the remainder, its order is smaller than 
that of P00(z). By performing another Type 1 operation we can bring R(z) 
to the (0,0) location. In this way we can keep reducing the order of the



(0,0) element. Since this can proceed only a finite number of times, all the 
remaining elements in the 0th row eventually become zero. In a similar way, 
by performing elementary row operations, we can convert all the elements 
in the 0th column (except the (0,0) element) to zero. At this point, the 
polynomial matrix takes the form

(13.5.16b)

where γ0(z) is a scalar polynomial and S(z) is a matrix polynomial.
Suppose γ0(z) is not a factor of all the elements of S(z). For example 

let the (1,1) element of (13.5.16b) be one such. We can then add the 1st 
row to the 0th row (Type 3 operation), and create a situation whereby the 
order of the (0,0) element can be reduced further. Since the order reduction 
cannot proceed indefinitely, we eventually obtain the form (13.5.16b) where 
γ0(z) is a factor of all the elements in S(z).

We can repeat the entire set of operations on the smaller matrix S(z). 
Continuing in this way, we eventually arrive at a diagonal matrix Γ(z) whose 
elements satisfy (13.5.15a). The monic nature of the polynomials γi(z) can 
be ensured trivially by use of Type 2 operations.

It remains to prove (13.5.15b). For this first consider the case where 
W(z) = Ip and V(z) = Ir, so that P(z) = Γ(z). In view of the divisibility 
condition (13.5.15a), we can write

γ0(z) = α0(z), γ1(z) = α0(z)α1(z), γ2(z) = α0(z)α1(z)α2(z), . . .
where αi(z) are polynomials in z. The 1 × 1 minors of Γ(z) are

0, α0(z), α0(z)α1(z), . . .
so that their gcd ∆1(z) = α0(z). So γ0(z) = ∆1(z)∕∆0(z), since ∆0(z) =
1. Similarly we can verify γ1(z) = ∆2(z)∕∆1(z) and so on. This proves 
(13.5.15b) when P(z) = Γ(z). Finally consider the case when W(z) and 
V(z) are not identity. These matrices perform elementary operations on the 
rows and columns of Γ(z). It can be shown by use of the so-called Binet- 
Cauchy theorem [Gantmacher, 1959] that the gcd of i × i minors is unaffected 
(except for scale factors) by these operations. So (13.5.15b) continues to 
hold. ▽ ▽ ▽

Notice that (13.5.13) implies, in particular,
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(13.5.17)
The matrix Γ(z) is called the Smith form of P(z), and (13.5.13) the Smith 
decomposition. Here is an example of Γ(z) that satisfies all conditions stated 
in the Theorem:



Another example is Γ(z) = (a + z)I.

Example 13.5.2
Even though the Smith form Γ(z) is unique, the matrices W(z) and 
V(z) are not. For example,

which shows that there are (at least) two possible choices for W(z) and 
V(z).

Application to unimodular matrices. Now suppose that P(z) is 
itself a unimodular matrix, i.e., a square matrix with nonzero constant de- 
terminant. In view of (13.5.17), the Smith form has to be Γ(z) = I in this 
case. Since W(z) and V(z) are products of elementary matrices, this proves 
that any unimodular matrix is a product of elementary matrices. This im- 
portant result can be summarized as

♠ CoroIlary 13.5.1. Factorization of unimodular matrices. A 
square polynomial matrix P(z) is unimodular if and only if it is a product 
of finite number of elementary matrices. ◊

13.5.2 Application in Glcd Extraction
Given the polynomial matrices P(z) and Q(z) in the MFD Q-1(z)P(z), 
suppose we wish to extract a greatest left common divisor (glcd). This can 
be done by applying the above decomposition theory. For this let

Performing the Smith decomposition we get

(13.5.18)

where × is p ×p denoting possibly nonzero polynomial entries. The fact that 
× is diagonal is irrelevant in this application. Since W1(z) is unimodular, 
its inverse is a polynomial in z and we can rewrite (13.5.19) as

where R(z) is ap×p polynomial matrix. Now V(z)≜V1-1(z) is a polynomial 
in z (since V1(z) is unimodular), so we can write (13.5.20) as

(13.5.21)
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(13.5.19)

(13.5.20)



(13.5.22)

where Vij(z) are polynomials of appropriate sizes. So

which shows that R(z) is an lcd of P(z) and Q(z).
We now show that R(z) is in fact a glcd of Q(z) and P(z). By parti- 

tioning V1(z) in an obvious manner we can write (13.5.20) as

(13.5.23)

This shows that any lcd of P(z) and Q(z) is also a left divisor of R(z). So 
R(z) is in fact a glcd of Q(z) and P(z). Summarizing, we have established:

♠ Lemma 13.5.1. Extension of Euclid’s theorem. Let Q(z) and 
P(z) be matrix polynomials in z with sizes p × p and p × r, respectively, and 
let R(z) be a glcd. Then there exist matrix polynomials Vp(z) and Vq(z) 
such that Q(z)Vq(z) + P(z)Vp(z) = R(z). ◊
Comments

1. When Q(z) and P(z) are scalar polynomials, this reduces to the well- 
known Euclid’s theorem [Sec. 2.3, Bose, 1985]. This says that when 
Q(z) and P(z) are polynomials in z with greatest common factor R(z), 
there exist polynomials Vp(z) and Vq(z) such that Q(z)Vq(z)+P(z)V√z) 
= R(z).

2. When Q(z) and P(z) are left coprime, we can take R(z) = I. So there 
exist polynomial matrices Vq(z) and Vp(z) such that

Q(z)Vq(z) + P(z)Vp(z) = Ip. (13.5.25)
This result is called Bezout's identity. Conversely, (13.5.25) implies that 
Q(z) and P(z) are left coprime (why?).

Obtaining deeper results about irreducible MFDs
Using (13.5.25) we can develop deeper results on irreducible matrix 

fraction descriptions.
♠ Lemma 13.5.2. Let Q-1(z)P(z) and Q2-1(z)P2(z) be two MFDs 

representing H(z) and let Q-1(z)P(z) be irreducible. Then Q2(z)Q-1 (z) is 
a polynomial matrix. ◊

Proof. Since Q-1(z)P(z) is irreducible, (13.5.25) holds for some poly- 
nomials Vp(z) and Vq(z). But Q-1(z)P(z) = Q2-1(z)P2(z) so that
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where × denotes entries whose details are irrelevant. From this equation we 
obtain

(13.5.24)



where c = det V(z) = constant, so that the determinant of Q(z) is the 
same (except for scale factor) for all irreducible MFDs of a given system. 
In particular the order of this determinant is same. From Sec. 13.3 we 
also know that this order is strictly smaller for irreducible MFDs than for 
reducible ones. Summarizing we have:

♠ Corollary 13.5.3. The quantity [det Q(z)] is the same (except for 
constant scale factor) for all irreducible MFDs of a fixed system H(z). This 
means in particular that the order of [det Q(z)] is the same for all irreducible 
MFDs of H(z). Furthermore, the order of [det Q(z)] is strictly smaller for 
irreducible MFDs, than for any reducible MFD. ◊

13.5.3 The Smith-McMillan Form for Transfer Matrices
Let H(z) be ap×r rational transfer matrix representing a causal LTI system. 
Assume each element Hkm(z) has been expressed as Hkm(z) = Pkm(z)∕D(z) 
where D(z) is the least common multiple of the denominators of Hkm(z). 
Here Pkm(z) and D(z) are polynomials in the variable z. Define the p × r 
matrix P(z) = [Fkm(z)], and let (13.5.12) be its Smith decomposition. We 
can then write
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This can be rearranged as

Since the left hand side is a polynomial, this proves the desired result. ∇∇∇
The above lemma shows that we can write

where L(z) = Q2(z)Q-1(z) is a polynomial (an lcd of Q2(z) and P2(z)). In 
the above lemma if both the MFDs are irreducible, then we can interchange 
their roles to argue that Q(z)Q√(z) is a polynomial (i.e., L-1(z) is a poly- 
nomial. In other words, L(z) is not only a polynomial, but is unimodular. 
Summarizing, we have proved:

♠ Corollary 13.5.2. Let Q1-1(z)P1(z) and Q2-1(z)P2(z) be irreducible 
MFDs for the same system H(z). Then Q2(z)Q1-1(z) is a unimodular poly­
nomial matrix. So we can relate the MFDs by

where V(z) = Q2(z)Q1-1(z) is a unimodular polynomial matrix. ◊
This gives rise to a few other very valuable conclusions. First

(13.5.26)



where

(13.5.27)

Evidently λi(z) = γi(z)∕D(z). By canceling off the common factors between 
γi(z) and D(z) we can write this in irreducible form as

(13.5.28)

In view of the divisibility property (13.5.15a), the polynomials αi(z) and 
βi(z) satisfy

(13.5.29)

Equation (13.5.26) is called the Smith-McMillan decomposition of H(z), and 
Λ(z) the Smith-McMillan form of H(z). We summarize these as

♠ Theorem 13.5.2. Smith-McMillan form. Let H(z) be a p × r 
rational transfer matrix representing a causal discrete-time system. Then it 
can be decomposed into the form (13.5.26) where

1. W(z) and V(z) are unimodular matrix polynomials in z.
2. Λ(z) is a p × r diagonal matrix as in (13.5.27) where p is the normal 

rank of H(z).
3. The diagonal elements of Λ(z) can be expressed as in (13.5.28) where

αi(z) and βi(z) are relatively prime polynomials in z satisfying (13.5.29). 
Furthermore the polynomials αi(z) and βi(z) are unique up to a con- 
stant scale factor. ◊

It is worth emphasizing here that the Smith-form (13.5.14) is developed 
for a polynomial matrix P(z), whereas the Smith-McMillan form (13.5.27) 
is developed for a causal rational LTI system H(z).
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Example 13.5.3
Let

The following is a Smith-decomposition of P(z):

(13.5.30)

(13.5.31)

(13.5.32)
We can now identify αi(z) and βi(z) as

(13.5.33)

It is clear that the divisibility conditions (13.5.29) are satisfied. This 
example demonstrates a very important point: the Smith-McMillan form 
Λ(z) is not necessarily causal even though H(z) is causal. We can rewrite 
Λ(z) in (13.5.32) as

(13.5.34)

So λ0(z) has a causal inverse-transform but λ1(z) does not!
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so that H(z) can be written as



Example 13.5.4
We now demonstrate the theory for a rectangular system with p = 2, r = 
1. Let

(13.5.35)

The reader can readily verify that this can be decomposed as

(13.5.36)

Since r = 1, V(z) is a scalar and V(z) = 1 here. Notice that for p × 1 
systems, Λ(z) is also p × 1 and since only its 'diagonal' elements can 
be nonzero, only the 0th element is nonzero. In this example, λ0(z) = 
z-2∕(1 + az-1) which happens to be causal.

(13.5.37)

(13.5.38)
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Irreducible MFDs From Smith-McMillan Decomposition
From the decomposition (13.5.26), it is possible to obtain an irreducible 

MFD for H(z). For this define two diagonal matrices

so that

Since αi(z) and βi(z) are relatively prime, the matrices Λβ(z) and Λα(z) 
are left coprime (Problem 13.13). So by Fact 13.2.1, the matrices defined by 
Q1(z)≜Λβ(z)W-1(z) and P1(z)≜Λα(z)V(z) are left coprime proving that 
the MFD given by Q1-1(z)P1(z) is irreducible!

♠ Corollary 13.5.4. If Q-1(z)P(z) is an irreducible MFD of H(z), 
then [det Q(z)] = c1 Πi=0ρ-1 βi(z) for some constant c1. This follows by com­
bining Corollary 13.5.2 with the fact that Q1-1(z)P1(z) in (13.5.38) is irre­
ducible. ◊



13.5.4 Structural Interpretations of
Unimodular Matrices and Smith-McMillan Forms
FIR system with FIR inverse. Let V(z) be an r × r unimodular poly- 
nomial in z. This represents a (noncausal) FIR system with FIR inverse 
(Fig. 13.5-1). The FIR nature of V(z) means that a finite length input u(n) 
produces a finite length output a(n). And since V-1(z) is also FIR, every 
finite length output of V(z) is produced by a unique, finite length, input! 
This statement is evidently not true for arbitrary FIR V(z) (Problem 13.20). 
Moreover since V(z) and V-1(z) have only positive powers of z, it follows 
that if the input is zero after a certain time m, then so is the output, and 
vice versa. That is,

Figure 13.5-1 A unimodular system and its inverse.

Figure 13.5-2 Implementation of H(z) in terms of quantitites involved in 
Smith-McMillan decomposition.

"Watching" the Poles and Zeros
Now consider the Smith-McMillan decomposition, which is pictorially 

represented in Fig. 13.5-2. Here V(z) is an FIR unimodular prefilter and 
W(z) an FIR unimodular post filter. This representation allows us to 'ob­
serve' the poles and zeros of the elements λi(z) from 'outside' just by mea­
suring the output y(n) in response to a cleverly chosen finite length input 
sequence u(n). †

† For the case of continuous time systems, we cannot attach such a simple 
and elegant interpretation for the decomposition W(s)Γ(s)V(s). This is due 
to the fact that the matrices W(s) and V(s), which are unimodular poly- 
nomials in s, are unrealizable. This in turn has to do with the fact that the 
transfer function sk (kth order differentiator) represents an unstable system 
for k > 0. In contrast, for the discrete time case, W(z) and V(z) are not
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(13.5.39)



For example, suppose we wish to 'observe' the properties of λ0(z). This 
can be done by applying an input u(n) such that the intermediate signal 
a(n) has z-transform

(13.5.40)

The appropriate input is

(13.5.41)

where R(z) is merely the 0th column of V-1(z). Since V(z) is unimodular, 
the input (13.5.41) is a polynomial in z, that is, u(n) is FIR. The output of 
the system H(z) is

(13.5.42)

In (13.5.42) the quantity W0(z), which is the 0th column of W(z), is a 
polynomial in z. Since W(z) is unimodular, this column cannot have a 
factor of the form (z — zp) common to all its elements because this would 
imply that [det W(z)] has a factor (z —zp) violating unimodularity. So none 
of the factors of β0(z) is canceled in (13.5.42).

Summarizing, we can say that zp is a pole of Y(z) if and only if it is a 
pole of λ0(z). And z0 is a zero of Y(z) if and only if it is a zero of λ0(z). 
So all the crucial dynamical properties of each of the elements λi(z) can be 
communicated to the output y(n) in this manner in finite time since an FIR 
input u(n) will convey this information to the output terminal! The relation 
between poles, zeros and the polynomials αi(z), βi(z) will made more precise 
in the next few sections.

13.6 POLES OF TRANSFER MATRICES
The point zp is said to be a pole of H(z) if it is a pole of some element 
Hkm(z) in H(z). Recall from Sec. 2.2 that a causal system cannot have any 
pole at z = ∞, and that H(∞) = h(0) where h(n) is the causal impulse 
response.

only realizable but also FIR (which is the best type of systems we can hope 
for!)
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In terms of time domain significance, poles are related to the solutions of 
the homogeneous difference equation describing the system (Problem 13.22). 
In this section we will present several manifestations of a pole, both in the 
z-domain and time domain. The reader interested only in the main result 
can proceed to Theorem 13.6.1 and Lemma 13.6.4.

♠ Lemma 13.6.1. Poles of H(z) and zeros of [det Q(z)]. Let H(z) 
be a p × r rational LTI system with irreducible MFD Q-1(z)P(z). Then zp 
is a pole of H(z) if and only if [det Q(zp)] = 0. ◊

Proof. We have
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(13.6.1)

where S(z) is the adjugate of Q(z). Since S(z) and P(z) are polynomials in 
z, we see that any factor which occurs in the denominator of any Hkm(z) 
must also be a factor of [det Q(z)]. So if zp is a pole of H(z) then it is a 
zero of [det Q(z)].

Conversely suppose zp is a zero of [det Q(z)]. From (13.6.1) we see 
that, in general, this can cancel with every element in the numerator matrix 
S(z)P(z). So it is not obvious that zp is a pole. The reasoning is somewhat 
subtler, and depends on the fact that the MFD is irreducible. Irreducibility 
means that Q(z) and P(z) are left coprime so that (13.5.25) holds for some 
polynomials Vq(z) and Vp(z), that is,

(13.6.2)

Now if zp is a zero of [det Q(z)], then [Adj Q(z)] cannot completely cancel 
this zero (Fact 13.2.2). So zp is a pole of the RHS of (13.6.2), and hence of 
the LHS. But since Vq(z) and Vp(z) are polynomial matrices, this implies 
that zp is a pole of H(z) indeed. ▽ ▽ ▽

♠ Lemma 13.6.2. Poles of H(z) and zeros of β0(z). The point zp 
is a pole of H(z) if and only if it is a zero of the polynomial β0(z) in the 
Smith-McMillan form. ◊

Proof. We know from the previous section that (13.5.38) is an irre­
ducible MFD obtained from the Smith-McMillan decomposition. In this 
MFD,

(13.6.3)
where W(z) (hence W-1(z)) is unimodular, that is, has constant non zero 
determinant. Clearly, [det Q1 (zp)] = 0 if and only if [det Λβ(zp)] = 0. But 
[det Λβ(z)] is the product of all βi(z), and moreover, β0(z) contains all other 
βi(z) as factors [by (13.5.29)]. This shows that [det Q1(zp)] = 0 if and only 
if β0(zp) = 0. By Lemma 13.6.1 we, therefore, conclude that zp is a pole if 
and only if β0(zp) = 0. ▽ ▽ ▽



Time Domain Dynamical Interpretation of a Pole
Qualitatively speaking, zp is a pole if H(zp) “blows up.” But this state- 

ment hardly provides any physical insight about the meaning of a pole.

In Problem 2.4 we saw that the pole of a scalar causal system H(z) has 
a nice time domain interpretation in terms of causal inputs and outputs. 
According to this, zp is a pole if and only if there exists a finite length input 
u(n) such that the system output takes the form znp for all n greater than 
some finite integer (Fig. 13.6-1).

For ΜΙΜΟ systems a similar interpretation can be given, as elaborated 
in the next Lemma, which is a discrete-time version of the result presented 
in Desoer and Schulman [1974].

♠ Lemma 13.β.3. Time domain meaning of a pole. Let H(z) be 
a p × r rational transfer function representing a causal system. Let zp ≠ 0. 
Then zp is a pole if and only if there exists a finite length input (i.e., FIR 
input) u(n) such that the output takes the form
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Figure 13.6-1 Time domain interpretation of a pole of a scalar LTI system.

(13.6.4)

for some vector v ≠ 0 and for some finite integer K. ◊
Comments. Why exclude zp = 0? For any rational H(z) we can trivially 

find FIR input such that output is FIR. For example, if H(z) = P(z)∕Q(z), 
just pick U(z) = Q(z) so that Y(z) = P(z) = FIR. So there exists FIR 
input such that (13.6.4) holds with zp = 0. This does not necessarily mean 
that there is a pole at the origin because the above argument holds for any 
P(z)∕Q(z).

Proof of Lemma 13.6.3. First suppose that there exists an FIR input



(13.6.5)
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U(z) producing output y(n) of the above form. Then

where Y1(z) is FIR. So Y(z) has the pole zp. Since Y(z) = H(z)U(z) and 
U(z) is FIR, it is clear that H(z) has a pole at zp. (This argument uses the 
assumption zp ≠ 0.)

Now consider the converse. If zp is a pole then an element, say H00(z) 
has this pole. If we apply the input [ S(z) 0 . . . 0]T for some FIR S(z),
we obtain Y(z) = S(z)H0(z) where H0(z) is the 0th column of H(z). We 
can always choose S(z) to cancel all the poles of H0(z) except zp. We then 
have Y(z) = N(z)∕(1 — z-1zp) for FIR N(z). This can be written in the 
form (13.6.5) for FIR Y1(z) and nonzero v, so that (13.6.4) follows. ▽▽▽

Summary of Various Manifestations of a Pole
♠ Theorem 13.6.1. Let H(z) be a p × r causal rational transfer func- 

tion, with irreducible MFD Q-1(z)P(z). Also let A be the state transition 
matrix of some minimal realization of H(z). Finally let the Smith-McMillan 
form of H(z) be as in (13.5.27), with αi(z) and βi(z) relatively prime. Then 
the first four statements below are equivalent. If zp ≠ 0, then all the five 
statements are equivalent.

1. zp is a pole of H(z).
2. zp is a zero of [det Q(z)].
3. zp is a zero of β0(z).
4. zp is an eigenvalue of A.
5. There exists an FIR input such that the output takes the form znpv for

all n greater than a finite integer, for some v ≠ 0. ◊
Proof. It only remains to prove that statement 4 is equivalent to the 

others. From (13.4.14) we already know that if zp is a pole it is an eigen- 
value of A. It only remains to prove the converse under the condition that 
(A,B,C,D) is minimal. Now minimality implies reachability. This means 
that we can apply a finite length input u(0), . . ., u(N — 1) (with zero ini­
tial state) and reach the state x(N) = v, where v is an eigenvector of A 
corresponding to eigenvalue λ. We then have

and so on, so that x(N + k) = λkv, k ≥ 1. Thus the output is

(13.6.6)

for the case where λ ≠ 0. Since (C, A) is observable, Cv ≠ 0 (by PBH test). 
So y(n) = λnw (w ≠ 0) for n > N. Thus λ is a pole (by Lemma 13.6.3). If 
λ = 0, the result is still true. See Problem 13.23. ▽ ▽ ▽



Order of a pole
We say that a scalar system H(z) has a pole zp of order K if (z — zp)K 

appears in the denominator. For ΜΙΜΟ systems, we use the Smith-McMillan 
form to define pole order. Recall that the functions λi(z) have the irreducible 
form (13.5.28) where the αi(z) and βi(z) satisfy (13.5.29). This means in 
particular that β0(z) contains all other βi(z) as factors. If zp is a zero of 
β0(z) with order K, we say that H(z) has a pole of order K at z = zp.

The reason for this definition can be seen from the structural meaning 
of the Smith-McMillan decomposition: we can always find an FIR input 
(13.5.41) such that the output has the form (13.5.42). Now let us write 
β0(z) = β'0(z)(z — zp)K so that β'0(z) is a polynomial in z which does not 
vanish at z = zp. If we replace the above FIR input with
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(13.6.7)

it is clear that the output is replaced with

(13.6.8)

And since α0(z)W0(z) is nonzero for z = zp, there is no cancelation of 
factors in (13.6.8).

Conversely, suppose an FIR input U(z) produces output of the form 
(13.6.8). We know Y(z) = W(z)Λ(z)V(z)U(z). Since U(z), V(z), and 
W(z) are FIR, it is clear that at least one element of Λ(z) has the factor 
(z — zp)K in the denominator. This implies, in particular, that β0(z) has the 
factor (z — zp)K. We summarize these discussions as follows:

♠ Lemma 13.6.4. Dynamical meaning of order of a pole. Let 
H(z) be some p × r causal rational discrete-time system and let zp ≠ 0. Then 
zp is a pole of order ≥ K if and only if there exists an FIR input U(z) such 
that the output takes the form Y(z) = Y1(z)∕(z- zp)K where Y1(z) is FIR 
with Y1(zp) ≠ 0. ◊

13.7 ZEROS OF TRANSFER MATRICES
The definition of poles of a transfer matrix H(z) is really very simple; we 
say that zp is a pole if it is a pole of some element Hkm(z). This gives rise 
to several equivalent meanings for a pole as summarized above. But the 
definition of a zero is more complicated as elaborated next.
Fine Points in the Definition of Zeros

One can define a zero z0 to be such that H(z0) = 0, but this is too 
restricted. It means that every element Hkm(z) has a zero at z0. Many 
practical systems will simply fail to satisfy this definition for any z. For 
example, the system in (13.5.35) is not zero for any z.



A second possibility would be to take a hint from Theorem 13.6.1 for 
poles, and define z0 to be a zero if the determinant of P(z0) is zero (where 
Q-1(z)P(z) is an irreducible MFD). This again is meaningless if P(z) is 
not square (i.e., if p ≠ r.) A natural extension of this idea, however, is to 
define z0 to be a zero if P(z0)v = 0 for some vector v ≠ 0. In terms of time 
domain, this means that there exists an input of the form 

which results in zero output. To see this note that (2.2.13) implies

In other words, an exponential input aligned in the direction of v produces 
zero output. This behavior is very similar to the scalar case (where v would 
just be a nonzero scalar).

Upon deeper thinking this definition has some triviality associated with 
it. For example suppose H(z) = [ 1 z-1 ]. Given any point z = z0, consider 

. Since H(z0)v = 0, this will result in zerothe input zn0v where v =
output for all n. More generally, if the normal rank ρ of P(z) is less than r, 
then according to this definition any z0 is a zero of the system!

An improved definition, and the most commonly accepted one, says that 
z0 is a zero if the rank of P(z0) is less than the normal rank of P(z). We 
will rephrase this in terms of the Smith-McMillan form, so that we can also 
explain the meaning of 'order' of a zero.
Zeros in terms of Smith-McMillan form

We say that z0 is a zero of H(z) if it is a zero of αi(z) for some i. In 
view of the divisibility property (13.5.29), this is equivalent to the condition 
αρ-1(z0) = 0. We say that z0 is a zero of order K if αρ-1(z) = (z —z0)Kα'(z) 
where α'(z) is a polynomial in z with α'(z0) ≠ 0. So if z0 is a zero then the 
rank of P(z0) falls below the normal rank ρ.

Zeros at infinity? In Sec. 2.2 we saw that a causal system cannot have 
a pole at z = ∞. However, a causal system might have a zero at ∞, as in 
H(z) = z-1. The definitions in the above paragraph exclude this situation. 
This is because αρ-1(z), being a nonzero polynomial in z, cannot be zero 
at ∞. Furthermore, we do not obtain meaningful answer for the rank of the 
polynomial P(z) if we set z = ∞. In order to study the behavior at z = ∞, 
one usually performs the mapping z → 1/z and studies the behavior at the 
origin. The properties of zeros to be presented in this section hold only for 
zeros at finite points.

As explained above, we cannot attach a nontrivial time domain signif- 
icance to zeros, unless the normal rank is full [i.e., unless p = min(p,r)]. 
Under the full normal-rank assumption, some results in this connection have 
been derived in Desoer and Schulman [1974], for continuous-time systems.
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These are restated below in discrete-time language. We show that if z0 is a 
zero then there exists an IIR input with a pole at z0, such that the output is 
FIR. In other words, the zero of H(z) cancels the 'pole' of the input. More 
precisely we have:

♠ Theorem 13.7.1. Time domain dynamics of zeros. Let H(z) 
be a p × r rational causal LTI system with p ≥ r, and let the normal rank 
be p = r. Let z0 ≠ 0. Then z0 is a zero of order ≥ K (as defined above in 
terms of αρ-1(z)), if and only if there exists an input of the form

where c is a constant vector, U(n) is the unit step function, and f(n) is a 
finite length sequence. Thus the input looks like the exponential sequence 
czn0 for sufficiently large n. For sufficiently large n the output is, however, 
zero (because it is FIR according to the theorem)! This is the time domain 
interpretation of a zero, and is based only on one sided input and output 
sequences. This is unlike the traditional interpretation which depends on a 
two sided exponential input zn0v. The point z0 = 0 is excluded in the above 
result for reasons similar to those discussed after Lemma 13.6.3.

Proof of Theorem 13.7.1. First assume that z0 is a zero of order 
≥ K that is, αρ-1(z) = (z - z0)Kα'ρ-1(z), where α'ρ-1(z) is a polynomial in 
z. We have to prove the existence of an input with above form such that the 
output is FIR. From the Smith-McMillan decomposition we know

(13.7.2)

Since p ≥ r = p,

(13.7.1)

such that the output Y(z) is FIR. ◊
Remarks. If we assume K = 1 for a moment, we can express the above 

input in the time domain as

(13.7.3)
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Suppose we pick U(z) such that

(13.7.4)

Then

(13.7.5)

which is FIR since W(z) is unimodular. (Here Wρ-1(z) is the (p — 1)th 
column of W(z). The input satisfying (13.7.4) is of the form (13.7.1) where

(13.7.6)

The quantity Tρ-1(z) is the (ρ - 1)th column of the inverse of V(z). Since 
V(z) is unimodular, its inverse and hence Tρ-1(z) are FIR, and furthermore 
Tρ-1(z0) ≠ 0. Also βρ-1(z) is relatively prime to αρ-1(z) so that βρ-1(z0) ≠ 
0. So G(z) is FIR with G(z0) ≠ 0, proving the desired result.

Conversely, suppose an input of the form (13.7.1) produces output Y(z). 
Now

(13.7.7)

Since G(z) is FIR with G(z0) ≠ 0, we have V(z0)G(z0) ≠ 0 (because 
V(z) is unimodular). The FIR nature of Y(z) implies then that there is at 
least one diagonal element λi(z) in Λ(z), having the factor (z — z0)K in the 
numerator. (This reasoning uses the assumption z0 ≠ 0). This means that 
z0 is a zero of order (at least) K. ▽ ▽ ▽

For the p < r case the above result does not hold because for every z, 
there exists some nonzero vector v such that P(z)v = 0. For this case, a 
more useful dynamical significance is developed in Problem 13.21.
Case of Square Matrices: the Cleanest Case

Suppose H(z) is p × p so that P(z) in an irreducible MFD Q-1(z)P(z) 
is p × p. If in addition P(z) has normal rank ρ = p, then z0 is a zero if 
and only if [det P(z0)] = 0. The dynamical significance offered by Theorem
13.7.1 continues to hold in this case.

So this is the cleanest case in the sense that the meaning of zeros and 
poles in terms of the MFD quantities are very similar: zp is a pole if, and
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only if, [det Q(zp)] = 0 whereas z0 is a zero if, and only if, [det P(z0)] = 0. 
Also remember that zp and z0 are zeros of β0(z) and αρ-1(z), respectively.

Poles and zeros at same place. For an SISO system a pole zp and 
a zero z0 cannot be at the same place (i.e., we cannot have zp = z0) because 
these would simply cancel. In the ΜΙΜΟ case, a pole and a zero can exist 
at the same point without canceling. An example is
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(13.7.8)

In such cases, Παi(z) and Πβi(z) are not coprime even though αi(z) and 
βi(z) are coprime for each i.

13.8 DEGREE OF A TRANSFER MATRIX
Let H(z) be a p × r causal rational system. In Sec. 13.3 we defined the 
degree μ of H(z) to be the minimum number of delay elements required for 
its implementation. Letting N denote the size of the state vector x(n) in any 
realization of H(z), we showed that N = μ (i.e., the realization is minimal) 
if and only if (C, A) is observable and (A,B) is reachable.

There is an extremely important result in realization theory [Kalman, 
1965] which expresses the degree μ of H(z) in terms of the quantities βi(z) 
in the Smith-McMillan decomposition. Recall that βi(z) and αi(z) are poly­
nomials in z. With μi denoting the order of βi(z), the degree of H(z) is

(13.8.1)

See Kalman [1965] or Forney [1970] for a proof.
Warning. It is important to notice that this result applies only under 

the following conditions:
1. H(z) is causal (otherwise it cannot be realized with delay elements alone, 

and our definition of degree is meaningless).
2. The matrices W(z) and V(z) are polynomials in z, and so are the 

quantities αi(z) and βi(z). If these are re-expressed as polynomials in 
z-1, the above result does not hold.
Relation to [det Q(z)]. An immediate consequence of (13.8.1) can 

be obtained from (13.5.38), which gives an irreducible MFD for H(z). The 
order of [det Q1(z)] is equal to μ (as the determinant of W(z) is constant). 
But the order of [det Q(z)] is the same in all irreducible MFDs of H(z) 
(Corollary 13.5.3). So we conclude that μ = order of [det Q(z)]. We now 
summarize all results pertaining to degree.

♠ Theorem 13.8.1. On degree of H(z). Let H(z) be a causal rational 
p × r discrete-time system. Then the following are true.



1. Let (13.5.27) be the Smith-McMillan form. Then the degree μ is given 
by (13.8.1) where μi is the order of βi(z).

2. Let Q-1(z)P(z) be an irreducible MFD for H(z), where P(z) and Q(z) 
are polynomials in z. Then, μ = order of [det Q(z)].

3. Finally a realization (A,B,C,D) for H(z) is minimal (i.e., has the
smallest possible size μ × μ for A) if, and only if, (C, A) is observable 
and (A,B) is reachable. ◊

where f(z) is causal, the degree

Degree of H(z) Versus Degree of [det H(z)]
Suppose H(z) is p×p with irreducible MFD Q-1(z)P(z). We know that 

the order of [det Q(z)] is equal to the degree μ of H(z). Does the degree of 
[det H(z)] have any role in this connection? Can we relate it to μ? We now 
provide an answer.

For example if H(z) =

(13.8.2)

where c is constant, α(z) = Π αi(z) and β(z) = Π βi(z). We know the order 
of β(z) equals μ. The order of α(z) is ≤ μ because of causality (remember 
that α(z) and β(z) are polynomials in z). So, the degree of (13.8.2) is at 
most μ. It is less than μ if there are cancelations in the ratio (13.8.2). 
Summarizing, we have proved

(13.8.3)

where μ is the McMillan degree of H(z).

13.9 FIR TRANSFER MATRICES
The above results apply for FIR as well as IIR systems. In this text we 
frequently deal with ΜΙΜΟ FIR systems. These arise, for example, in mul­
tirate filter banks in the form of polyphase matrices for the analysis and 
synthesis banks. If the filter bank is FIR then these polyphase matrices are 
FIR and it is important to understand their system-theoretic properties.
Degree of FIR Transfer Matrices

Suppose H(z) is p × r causal FIR so that
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of H(z) is equal to that of f(z) whereas the degree of [det H(z)] is zero 
regardless of f(z). So the degree of [det H(z)] can be as small as zero. Next, 
how large can it be? It turns out that it cannot be greater than μ. To see 
this note that (13.5.26) yields

(13.9.1)

with h(K) ≠ 0. The quantity K is called the order of H(z), and K + 1 the 
length. If μ is the degree of H(z) then μ ≥ K because we require at least K 
delays to realize this system.



Remarks
1. Examples of the form H(z) = z-1I demonstrate that μ can be larger 

than K.
2. We also know from Example 13.3.2 that if H(z) = h(K)z-K then the 

degree is equal to sK where s is the rank of the (possibly rectangular) 
matrix h(K).

3. For the special case of p × 1 FIR systems the transfer matrix is a column 
vector. This arises, for example, when H(z) is an analysis bank with p 
analysis filters. In this case the degree μ is equal to K because h(K) 
has rank one. H(z) can then be implemented as in Fig. 13.9-1 requiring 
K delays. Similarly if H(z) is a row vector (as in a synthesis bank) then 
μ = K.

Figure 13.9-1 Implementation of p × 1 FIR H(z).

State Space Description of FIR Systems
Given a structure for a p × r causal FIR transfer matrix, one can find 

a state space description (A,B,C,D) in the usual manner. Assuming that 
the realization is minimal, the eigenvalues of A are the poles, all of which 
lie at the origin of the z plane. So, all eigenvalues of A are zero. Some of 
the other properties are summarized in the next lemma.

♠ Lemma 13.9.1. On FIR state space description. Consider a 
minimal realization (A,B,C,D) of a p × r causal FIR system with order 
K [eqn. (13.9.1)]. Then, A has all eigenvalues equal to zero. Moreover, (a) 
AKB = 0, (b) CAK = 0, and (c) AN = 0, where N is the state space 
dimension (i.e., A is N × N). Conversely, if AN = 0, then (A,B,C,D) 
represents an FIR system. ◊

Proof. We know h(n) = CAn-1B for n > 0. Since h(n) = 0 for 
n > K, we have CAiB = 0, for i ≥ K. So we can write, in particular,

(13.9.2)
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Since (A, B, C, D) is minimal, SC,A has full column rank N, so this implies
AKB = 0. The proof of CAK = 0 is similar. Next AKB = 0 also implies 
ANB = 0, since N ≥ K. This means

(13.9.3)

Since ℛA,B has full row rank N, this implies AN = 0. A second way to 
prove AN = 0 is to note that the characteristic equation is λΝ = 0, and A 
has to satisfy this equation (Cayley-Hamilton theorem; Appendix A).

Conversely, suppose AN = 0. We know that the eigenvalues of AN are 
given by λiΝ, so that we have λiΝ = 0, that is, λi = 0. So all eigenvalues of 
A are equal to zero [i.e., poles of H(z) are at the origin] proving that H(z) 
is FIR. ▽ ▽ ▽

Smith-McMillan Form for the FIR Case
We now present some examples of FIR Smith-McMillan forms, high- 

lighting the main features.

ExampIe 13.9.1
Consider

which is 2 × 2 causal FIR. To find the Smith-McMillan form we first 
express every entry as a ratio of polynomials in z. Thus

(13.9.4)

The Smith-form for this P(z) has been worked out in Example 13.5.1. 
The Smith-McMillan form for H(z) is

(13.9.5)

so that
(13.9.6)

From these we have μ0 = 2, μ1 = 2 so that the degree is μ = 2 + 2 = 4.
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Example 13.9.2.
Consider the causal FIR system

(13.9.7)

This obviously has degree one. It is easily verified that

so that

(13.9.8)

(13.9.9)

So μ = 1 + 0 = 1as expected. The main point to notice in this example 
is that all elements λi(z) are powers of z. From (13.9.8) we see that the 
determinant of H(z) is constant, which is also obvious by inspection of 
(13.9.7). This H(z) therefore happens to be a unimodular polynomial in 
the variable z-1. Note that we have both positive and negative powers 
of z in λi(z). This is fine because Λ(z) can be noncausal for causai H(z).

Since α1(z) = β0(z) = z, we see that the system has a pole as well 
as a zero at z = 0. If we write H(z) in irreducible MFD form we expect 
the rank of P(z) to drop at z = 0. This is clearly verified from the 
following MFD for H(z):

The reader should notice that for the FIR case the polynomials βi(z) are 
of the form zμi. This is consistent with the fact that for causal FIR systems 
all poles are at z = 0. In view of (13.5.29) we also have μ0 ≥ μ1 ≥ . . . ≥ μρ-1.

13.10 CAUSAL INVERSES OF CAUSAL SYSTEMS

13.10.1 Some Basic Results (FIR and IIR Systems)
Let H(z) be a causal p × p system (FIR or IIR), and let there exist a causal 
p × p inverse G(z), so that
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Denoting the impulse response coefficients of H(z) and G(z) by h(n) and 
g(n) respectively, we have from (13.10.1),

(13.10.2)

so that g(0) and h(0) are nonsingular.
State Space Description of the Inverse System

Let (A,B,C,D) be a minimal realization of H(z) so that

(13.10.3)

If D is nonsingular we can apply the matrix-inversion lemma (A.4.7) given 
in Appendix A, to obtain a causal p × p inverse system

(13.10.4)

where

(13.10.5)

This result is true as long as D is nonsigular. Since h(0) = D, we con­
clude that a p × p causal system has a causal inverse if and only if h(0) is 
nonsingular.

It can be shown (Problem 13.10) that minimality of (A, B, C,D) implies 
that of (A1, B1, C1, D). This means in particular that if ap×p causal system 
H(z) has a causal inverse G(z), then H(z) and G(z) have the same degree. 
The same is not true of rectangular systems. For example if

then
(13.10.7)

is a valid left inverse (i.e., G(z)H(z) = 1). But the degrees of H(z) and 
G(z) are, respectively, one and zero.

13.10.2 Causal unimodular systems
In Sec. 5.6.2 we mentioned that the polyphase matrix E(z) of any causal 
FIR perfect reconstruction QMF bank can be written as a product of a 
causal paraunitary system and a causal unimodular system. In Chap. 6 
we elaborated on paraunitary systems (which are further studied in Chap.
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14). In this section we will present some details about causal unimodular 
systems.

The phrase 'causal unimodular system' stands for a square matrix poly- 
nomial H(z) in z-1, which is unimodular. This implies that H(z) is causal 
FIR, and has a causal FIR inverse. Conversely, suppose H(z) is a p × p 
causal FIR system with a causal FIR inverse G(z). Then H(z) and G(z) 
are unimodular polynomials (in z-1). To see this note that (13.10.1) implies 
that the product of determinants is unity, and since each determinant can 
at best be a polynomial in z-1, it has to be a constant. Summarizing, the 
phrase “causal unimodular system” is synonymous to “casual FIR system 
with causal FIR inverse.”

State Space Description for Causal Unimodular Systems
With (A, Β, C, D) denoting a state space description of H(z), the causal 

unimodular inverse G(z) has a realization A1,B1,C1,D1 given by (13.10.5). 
Since both G(z) and H(z) are FIR, it follows that all the eigenvalues of A 
and A1 are equal to zero. Conversely, suppose H(z) is some p × p causal 
system with nonsingular h(0) so that the causal inverse G(z) exists. Sup- 
pose (A,B,C,D) is a realization such that A and A — BD-1C have all 
eigenvalues equal to 0. Then, H(z) as well as its inverse G(z) are (causal) 
FIR. In other words H(z) is causal unimodular. We now summarize these 
results as follows:

♠ Theorem 13.10.1. Let H(z) be some p × p causal rational system, 
and let h(0) be nonsingular.

1. With (A,B,C,D) denoting a minimal realization of H(z), the matrix 
D is therefore nonsingular, and a p × p causal rational inverse G(z) 
exists. The matrices (13.10.5) give a minimal realization of G(z), and 
G(z) has the same McMillan degree as H(z).

2. If in addition H(z) is unimodular then so is G(z), and both A and A1 
have all eigenvalues equal to zero.

3. Finally if (A, B, C, D) is a minimal realization such that A and A1 have
all eigenvalues equal to zero, then H(z) is causal unimodular (that is, 
causal FIR with a causal FIR inverse). ◊

Example 13.10.1

Let

This happens to be a triangular matrix, and [det [H(z)] = 1 by inspec­
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tion. So this is causal unimodular. The inverse is verified to be

(13.10.9)

which is also causal unimodular as expected.
Let us see if we can guess the degree of H(z) by inspection. From 

(13.10.8) it is obvious that at most two delays are required to implement 
H(z) (since z-1 occurs only twice), i.e., the degree ≤ 2. From (13.10.9) 
we see that G(z) has degree ≥ 2 (since z-2 appears). But the degrees 
of H(z) and G(z) are the same according to the above theorem, so we 
conclude that the degree is precisely two!

Even though the degrees of H(z) and G(z) are equal, their orders 
(highest power of z-1 appearing in the transfer function) need not be 
the same. In our example, the order of H(z) is unity whereas that of 
G(z) is two.

Smith-McMillan Form for Causal FIR Unimodular Systems
Suppose H(z) is a p ×p unimodular polynomial in z-1. What does the 

Smith-McMillan form Λ(z) look like? Since H(z) is FIR, βi(z) = zμi. So

(13.10.10)

Since the determinant is required to be constant by unimodularity, αi(z) 
must also have the form αi(z) = zmi, with Σi mi = Σi μi. This fact can be 
verified to be true in Example 13.9.2. Summarizing, we have

(13.10.11)

with Σp-1i=0 ni = 0. The degree μ is equal to Σi ∣ni∣ with the summation 
carried over negative ni only.
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PROBLEMS

find a left MFD.

13.4. Consider the following MFD.

Find another MFD Q-1(z)P(z) for this same system. To avoid trivial answers, 
make sure that Q(z) ≠ f(z)Q(z) for scalar f(z).

13.5. For each of the structures shown in Fig. P13-5, write down the state space 
description (A,B,C,D). For each case answer the following: (a) Is (A,B) 
reachable? (b) Is (C, A) observable? (c) Is (A,B,C,D) minimal?

Problems 715

13.1. Verify Parseval's relation (2.2.12) for vector signals.

13.2. Let P(z) and Q(z) be matrix polynomials in z, with the same number of rows.
a) Let L(z) be a greatest left common divisor (glcd) of P(z) and Q(z). Show 

then that L(z)W(z) is also a glcd, for any unimodular W(z).
b) Let L1(z) and L2(z) be two glcds of P(z) and Q(z). Show then that 

L1(z) = L2(z)V(z) where V(z) is an appropriate unimodular matrix.
c) Supply a proof for Fact 13.2.1.

13.3. For the following system:

Figure P13-5(a)



13.6. For each structure in Fig. P13-5 find out whether A is stable.
13.7. Consider the state space equations (13.4.3), where A is N x N. The pair (A, B) 

is said to be controllable [Anderson and Moore, 1979] if we can start from 
any arbitrary initial state x(0) and force x(N) = 0, by appropriate choice of 
u(0), . . . , u(N - 1). Evidently if (A,B) is reachable (Sec. 13.4.2) it is also 
controllable. However, the converse is not true.

a) Show that the structure shown in Fig. P13-5(a) is controllable but not 
reachable.

b) More generally, show that (A,B) is controllable as long as every column 
of AN can be expressed as a linear combination of the columns of ℛA,B 
defined in (13.4.18).

13.8. Consider the system H(z) = z-1R where R is M × M with rank ρ. Then we 
can write H(z) = TSz-1 where T and S are M × ρ and ρ × M respectively, 
with rank ρ. This leads to the implementation of Fig. 13.3-3.

a) Find the state space description (A,B,C,D) of this structure.
b) Show that this structure for H(z) is minimal, that is, we cannot find a 

structure with fewer than ρ delays.
13.9. Let H(z) be a p × r causal rational system with real impulse response h(n). 

Show that there exists a minimal structure with real valued matrices A, B, C 
and D. (Hint. If you prefer, find a nonminimal realization with real multipliers, 
and apply results of Sec. 13.4.2).

13.10. Let H(z) represent an M × M causal system and let (A,B,C,D) be a valid
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state space description. Assume h(0) is nonsingular. Then (13.10.5) gives the 
state space description of the inverse system G(z). Show that if (A, B, C, D) is 
minimal, then so is the system (13.10.5). (You can use PBH test if you wish.)

13.11. For

find the Smith form Γ(z) as well as diagonalizing unimodular matrices W(z) 
and V(z). Now consider the causal FIR system

a) Find the Smith-McMillan form Λ(z), as well as diagonalizing unimodular 
matrices W(z) and V(z).

b) What is the McMillan degree of this system?
c) Find an irreducible MFD Q-1(z)P(z) for H(z), and evaluate the determi­

nant of Q(z). Verify that this determinant has order equal to the McMillan 
degree.

13.12. Consider the causal unimodular system

a) Find the Smith-McMillan form Λ(z).
b) What is the McMillan degree of this system?
c) Find an irreducible MFD Q-1(z)P(z) for the system. Evaluate the deter­

minant of Q(z) and verify that it has order equal to the McMillan degree.
13.13. Consider the diagonal matrices Λβ(z) and Λα(z) in (13.5.37). Assume that 

αi(z) and βi(z) (which are polynomials in z) are relatively prime for each i. 
Show that the matrices Λβ(z) and Λα(z) are left coprime.

13.14. Let H(z) = I+z-1h1.
a) Let h21 = 0. Show that H(z) has the inverse I — z-1h1, and hence that 

H(z) is causal unimodular.
b) More generally let hL1 = 0 for some integer L > 0. Show that H(z) is still 

unimodular, and find the causal FIR inverse!
13.15. The purpose of this problem is to get acquainted with practically ail the con- 

cepts introduced in this chapter, using a simple example. Consider the following 
left MFD:

a) What is the normal rank of P(z)?
b) Work out the four elements Hkm(z),0 ≤ k,m ≤ 1 of the transfer matrix 

H(z).
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c) Find the causal impulse response matrix h(n) corresponding to H(z). Ex- 
press all the entries hkm(n) in closed form.

d) Compute the coefficients h(0) and h(1).
e) Is the causal system stable?
f) Find [det Q(z)]. Hence argue that the system H(z) has degree one.
g) Argue that the above MFD is irreducible.
h) Find a minimal structure (i.e., structure with only one delay) for H(z). 

Write down the state space description (A, B, C, D) for the structure.
i) Find the Smith-form Γ(z) for P(z) by first computing all appropriate 

minors, and then using (13.5.15b). Also find the Smith-McMillan form 
Λ(z) for H(z). Using the formula (13.8.1), verify again that the degree is 
one.

j) Using the Smith-McMillan form identify the poles and zeros of H(z). These 
should agree with the zeros of [det Q(z)] and [det P(z)] respectively (since 
the MFD is irreducible). Verify that this is so.

13.16. Let P be p × r with rank r. We know that P†P > 0. However, in general we 
cannot claim PTP > 0 even if it turns out to be Hermitian (unless, of course, 
P is real). Demonstrate this with an example.

13.17. Consider an r input p output system with input and output denoted as x(n) 
and y(n), respectively. Suppose the following properties are satisfied:

a) The response to a shifted input x(n - K) is equal to y(n — K), and this 
is true for all K and all possible input sequences x(n).

b) If the responses to xa(n) and xb(n) are equal to ya(n) and yb(n), then the 
response to αxa(n) + βxb(n) is equal to αya(n) + βyb(n). And this is true 
for all scalars α,β and for all possible pairs of inputs xa(n) and xb(n).

Then show that the input output behavior of the system can be characterized 
by the convolution relation (2.2.7). Conversely, if (2.2.7) holds prove that the 
above two conditions are satisfied. This shows that the above two conditions 
can be taken as the defining properties of a ΜΙΜΟ LTI system.

13.18. Recall the relation between the impulse response h(k) and state space descrip­
tions, given in (13.4.13). This was derived by first obtaining the expression 
(13.4.12) and then comparing with the convolution sum. A second proce- 
dure would be to start from (13.4.10b) and express (zI — A)-1 as a power 
series. Rederive (13.4.13) using this idea. (Hint: Note that ΣLk=0 Ak = 
(I — A)-1(I — AL+1). Assume A is stable so that An → 0 as n → ∞.)

13.19. Let H(z) be a M × 1 rational causal system (i.e., an M-channel analysis bank). 
Show that it can always be rewritten as

where W(z) is an M × M unimodular polynomial in z, and λ0(z) is a rational 
transfer function.
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13.20. Consider the FIR filter H(z) = (z + a)(z + b). Suppose we wish the output y(n) 
to be such that Y(z) = (z + b), i.e., FIR. Find an appropriate input. Show that 
there does not exist an FIR input which would result in this output.

13.21. Let H(z) = Q-1(z)P(z) be a p × r causal rational system. In Sec. 13.7 we 
studied the meaning of a transmission zero, and its dynamical interpretation 
(Theorem 13.7.1) for the case p ≥ r. We now consider the case when p < r. 
in this case the normal rank of P(z) < r so that for any value of z0 we can 
find v ≠ 0 such that P(z0)v = 0. For this reason, it is tricky to find a useful 
time domain interpretation of zeros. In what follows, we provide a useful and 
nontrivial time domain interpretation.
Let z0 be a zero. Let the normal rank of P(z) be equal to p. Let c be any 
arbitrary r × 1 vector. Then show that there exist finite length sequences s(n) 
and t(n) with T(z) ≠ 0 for any z, such that the input
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(P13.21)

produces an output Y(z) for which TT(z)Y(z) is a finite length sequence. 
[Here S(z) and T(z) represent the z-transforms of s(n) and t(n).]
Note. If the normal rank of P(z) were less than p, this would be true whether 
z0 is a zero or not. Also note that in the above statement c is an arbitrary 
vector; this is what makes the statement nontrivial!
Hints. Use the fact that (z — z0) is a factor of αp-1(z) in the Smith-McMillan 
form. The trick is to find a way to cancel the HR components of the output, 
introduced by the first term in (P13.21), and by the quantity βp-1(z) in the 
Smith-McMillan form. It helps to remember that αp-1(z) and βp-1(z) are 
relatively prime.

13.22. Consider the MFD H(z) = Q-1(z)P(z), and let the polynomials Q(z) and 
P(z) be given by

(P13.22a)

The input-output relation Y(z) = H(z)U(z) [i.e., Q(z)Y(z) = P(z)U(z)], can 
now be expressed in the time domain as follows:

(P13.22b)

This difference equation completely describes the input-output behavior of the 
system. The difference equation with u(n) = 0, that is,

(P13.22c)

is said to be the homogeneous equation.



(P13.23a)

where Ai are ni × ni matrices of the special lower triangular form

(P13.23b)

(P13.23c)

show that we can express H(z) as

(P13.23d)

b) Let λ0 = 0, that is, A has the eigenvalue zero, with multiplicity n0 > 0. 
By definition, λi ≠ 0 for i > 0. Show that, all the poles of H0(z) are at 
z = 0. Show also that none of Hk(z), k > 0 has a pole at z = 0.

c) Thus, unless H0(z) is a constant, H(z) has a pole at z = 0. We now show 
that H0(z) cannot be constant, by using the minimality of (A,B, C,D).
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a) Let zp be a pole of H(z). Show that the homogeneous equation has a 
solution of the form y(n) = vznp , for some constant non zero vector v.

b) Conversely, let vznp be a solution to the homogeneous equation (v ≠ 0, zp ≠ 
0). Assuming that the MFD is irreducible, show that zp is a pole of H(z).

13.23. One of the results claimed by Theorem 13.6.1 is this: If (A,B,C,D) is a 
minimal realization of a causal rational system H(z), then zp is a pole of H(z) 
if and only if it is an eigenvalue of A. The proof that an eigenvalue λ of A is 
a pole of H(z) assumed that λ ≠ 0. We now develop a proof (suggested to the 
author by Prof. John Doyle, Caltech), which works even when λ = 0. This is 
based on the fact that given any N × N matrix, we can always apply a similarity 
transform to obtain a special form called the Jordan form [Chen, 1970,1984]. 
Since the similarity transform leaves the transfer function unchanged, we will 
develop the proof based on this form. The Jordan form is a block-diagonal 
matrix, given by

Here λi is an eigenvalue of A of multiplicity ni, and × denotes possibly nonzero 
entries (with values = 0 or 1, but that is irrelevant here). Let us assume that 
the minimal realization (A, B, C, D) has A in the above form.
a) By partitioning B and C as



(i) First show that minimality of (A,B,C,D) implies C0 ≠ 0 as well as 
B0 ≠ 0. (ii) Then show that if H0(z) is constant, then

(P13.23e)

thus violating complete observability, and hence minimality of the realiza­
tion (A, B, C, D).

Summarizing, we have proved that H0(z) is not a constant, and therefore has 
pole(s) at z = 0. Thus the eigenvlaues λ0 = 0 of the matrix A imply that H(z) 
has pole(s) at z = 0.

13.24. Let x(n) and y(n) be the input and output of an LTI system H(z), and define 
the blocked versions xB(n) and yB(n) as in (10.1.1), Chap. 10. Show that 
the M-input M-output system which produces yB(n) in response to xB(n) is 
an LTI system. In other words, verify that the defining property of a multi- 
input multi-output LTI system (given in Problem 13.17) is satisfied. (In Chap. 
10 we just assumed this, and proceeded to show that the transfer matrix is 
pseudocirculant.)

13.25. Let (A,B,C,D) be a minimal state space representation of a causal scalar 
transfer function H(z) with degree N. Let H(z) be the blocked version of H(z) 
with block length M (Sec. 10.1.1). Find a state space description A,B,C,D 
for H(z) in terms of (A, B, C, D) and Μ. Make sure your answer is such that 
A has size no larger than N × N. Can you show that the blocked version has 
McMillan degree N?
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14

Paraunitary 

and Lossless Systems

14.0 INTRODUCTION
In Sec. 3.4 we studied allpass functions. An allpass function H(z) satisfies 
the relation ∣H(ejω)∣ = c ≠ 0 for all ω. When c = 1 this implies that the 
input signal u(n) has the same energy as the output signal y(n). For this 
reason a stable allpass function is said to be a (single-input single-output) 
lossless system. The quantity c does not have a fundamental role, even 
though it is convenient to leave it there in the definition. The term 'lossless' 
is used even if c ≠ 1.

In Sec. 6.1 we defined multi-input multi-output (ΜΙΜΟ) lossless and 
paraunitary systems. For these, the transfer matrix H(z) (not necessarily 
square) is unitary on the unit circle. We applied these for the design of 
perfect reconstruction systems (Chap. 6 and 8). In this chapter we present 
a self-contained treatment of ΜΙΜΟ lossless systems, and develop useful 
structures for these. All the structures are based on factorization of the 
transfer matrix. Some of the structures developed here have already been 
used in Sec. 6.4 (two channel QMF banks), Sec. 6.5 (M-channel filter 
banks), and Sec. 8.5 (cosine modulated filter banks), but in these earlier 
chapters we did not provide a formal development of these structures.
Outline

After a brief review of history, we provide a self contained discrete-time 
development of lossless systems. The basics are reviewed in Sec. 14.2. We 
develop structures for lossless systems in Sec. 14.3 and 14.4. Sec. 14.5 
presents the state-space manifestation of lossless property. In Sec. 14.6 we 
present structures for unitary matrices (which are of importance in imple­
mentation of lossless systems). Sec. 14.7 and 14.8 deal with advanced results 
such as the Smith-McMillan form, pole-zero patterns, and modulus proper- 
ties of lossless systems. Sec. 14.9 deals with structures for the IIR case, and 
Sec. 14.10 presents further modified structures which have certain advan-
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tages. In Sec. 14.11 we consider quantization of the parameters in these 
structures, and show how the lossless property can be retained in spite of 
quantization.

14.1 A BRIEF HISTORY
Classical electrical networks based on inductors and capacitors (LC net- 
works) can be considered to be the source from which the concept of loss­
lessness originated. LC networks are lossless, that is, do not generate or 
dissipate energy. We now state their connection to the discrete-time case, 
even though our developments in the rest of the chapter do not use this con­
nection. Our presentation in this chapter will be self-contained and entirely 
in the discrete-time domain.

An electrical network with M ports is associated with M port currents 
and voltages. With such an electrical multiport we can associate an M × M 
impedance matrix Z(s). This relates the M voltages and currents as V(s) = 
Z(s)I(s). Also defined in the classical literature is the scattering matrix

(14.1.1)

If the multiport is lossless (e.g., an LC network) then the impedance matrix 
Z(s) satisfies the property that Z(jΩ) has real part equal to zero for all Ω. 
This is equivalent to the property that S(jΩ) is normalized-unitary. If we 
now use the bilinear transformation to obtain

(14.1.2)

then H(z) is normalized-unitary on the unit circle of the z-plane. In other 
words, H(z) is paraunitary in the sense defined in Sec. 6.1. In this text 
H(z) is p × r (i.e., not necessarily square). Recall, in contrast, that Z(s) is 
square because it relates M currents to M voltages. And S(s) is square by 
its definition in terms of Z(s).

References on passivity and losslessness include Brune [1931], Darling- 
ton [1939], Guillemin [1957], Potapov [1960], Belevitch [1968], Balabanian 
and Bickart [1969], and [Anderson and Vongpanitlerd, 1973]. Many advanced 
results can be found in [Belevitch, 1968].

Passivity and losslessness have been applied for the design of robust 
digital filter structures [Fettweis, 1971], [Deprettere and Dewilde, 1980], [Rao 
and Kailath, 1984], [Vaidyanathan and Mitra, 1984]. Paraunitary transfer 
matrices were applied to the design of perfect reconstruction filter banks 
in Vaidyanathan [1987a], and subsequent references cited in Vaidyanathan 
[1990a]. They have also been used in the design of two-dimensional perfect 
reconstruction filter banks [Karlsson and Vetterli, 1990]. Results on discrete 
time lossless systems and their factorizations can be found in Potapov [1960],
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Deprettere and Dewilde [1980], Vaidyanathan, et al. [1989], and Doğanata 
and Vaidyanathan [1990]. See also references at the beginning of Chap. 6.

Our presentation will be entirely in the discrete-time domain. We be­
lieve that this widens the cross section of readers who can appreciate the 
value of these concepts.

14.2 FUNDAMENTALS OF LOSSLESS SYSTEMS
At this point, the reader should review Sec. 6.1, where we introduced lossless 
systems first. In what follows, we will summarize the main points of Sec. 
6.1, for quick reference.

1. Definition. Let H(z) be a p × r transfer matrix representing a causal 
system. It is said to be lossless if (a) each entry Hkm(z) is stable and 
(b) H(ejω) is unitary on the unit circle, that is,

724 Chap. 14. Paraunitary and lossless systems

(14.2.1a)
for some real constant c ≠ 0. [The matrix I above has size r×r, that is, 
it is Ir]. If in addition the coefficients of H(z) are real [i.e., H(z) real 
for real z], we say that H(z) is lossless bounded real (abbreviated LBR). 
In order to satisfy (14.2.1a) we require p ≥ r.

2. Paraunitary property. For rational transfer functions, (14.2.1a) implies

(14.2.1b)
which is termed the paraunitary property. Conversely, (14.2.1b) implies 
(14.2.1a). We can therefore define a lossless system to be a causal stable 
paraunitary system. For square matrices, (14.2.1b) implies H-1(z) = 
H(z)∕c2. So the inverse is obtained by use of “tilde” operation.

3. Normalized systems. If a lossless system has c2 = 1 in (14.2.1a) we say 
that it is normalized-lossless. Correspondingly, (14.2.1a) and (14.2.1b) 
are termed normalized-unitary and normalized-paraunitary.
Whenever causality and stability are clear from the context, we will use 

“paraunitary” and “lossless” interchangeably. In signal processing literature, 
the term “paraunitary” is somewhat more popular than “lossless” because 
of the more common use of FIR systems (which are stable automatically).

14.2.1 Properties Induced by Losslessness
The paraunitary property induces a number of other properties. We now 
summarize these, but elaborate only those not already presented in Sec. 6.1. 
More advanced properties will be presented throughout this chapter. In 
what follows, H(z) is p × r causal lossless and H(z) = ∑∞n=0 h(n)z-n.

1. Energy balance property. From the input-output relation Y(ejω) = 
H(ejω)U(ejω) we obtain

(14.2.2)



We can integrate both sides of this equation in the range 0 ≤ ω ≤ 2π and 
then apply the vector version of Parseval's theorem (2.2.12) to arrive at

(14.2.3)

The summations above represent the energies of the sequences y(n) and 
u(n). We denote them as Ey and Eu respectively. Thus
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(14.2.4)
Note that for c2 = 1 we have Ey = Eu, justifying the name “lossless” 
(which is employed even when c2 ≠ 1). Conversely, suppose (14.2.3) 
holds for every input sequence u(n). Then the system satisfies (14.2.1a). 
A proof of this is developed in Problem 14.18.

2. The impulse response h(n) satisfies

(14.2.5)

This follows by substituting H(z) = ∑∞n=0 h(n)z-n into (14.2.1b) and 
equating like powers of z. For FIR case, letting H(z) = ΣLn=0 h(n)z-n 
with L > 0, this property implies, in particular,

(14.2.6)

When p = r, this means that h(0) and h(L) are singular matrices.
3. Determinant is allpass. If p = r then the determinant of H(z) is a stable 

allpass function. In particular, if H(z) is FIR then [det H(z)] is of the 
form az-K, where K is a nonnegative integer and a ≠ 0.

4. Power complementary (PC) property. For a M × 1 causal stable transfer 
matrix it is clear that the lossless property is equivalent to the power 
complementary property.

5. Submatrices of lossless H(z). Every column of a lossless transfer matrix 
is itself lossless. Any p × L submatrix of H(z) is lossless.
In Sec. 6.1 several examples and interconnections of lossless systems 

were presented, which should be reviewed at this time. Notable among 
these is the Givens rotation matrix Rm. This is given in (6.1.9), and has 
the flowgraph shown in Fig. 6.1-2(a). We also defined the diagonal lossless 
system Λ(z) as in (6.1.10). We used cascades of the above two types of 
building blocks to generate more general lossless systems (e.g., Fig. 6.1-4).



14.2.2 Structures for Lossless Systems

Basic Philosophy
In this chapter we will derive structures for lossless systems, both FIR 

and IIR. Losslessness implies H(z)H(z) = c2I. So the coefficients of H(z) 
are not arbitrary, but are constrained in some manner. As a result, the 
number of 'degrees' of freedom for a lossless system is less than the number 
of coefficients. If we pick an arbitrary coefficient of H(z), and vary it in an 
arbitrary manner, the lossless property is not retained. The same is true 
of constant unitary matrices. For example, consider M × M real R with 
RTR = I. Even though R has M2 real elements, there are only M(M - 1)∕2 
degrees of freedom (Sec. 14.6).

We will obtain structures for lossless systems such that they have the 
minimum number of free parameters. (For example an M × M real R with 
RTR = I will be implemented with exactly M(M — 1)∕2 parameters.) An 
arbitrarily chosen parameter in the structure can be varied in an arbitrary 
manner (except for mild constraints which will become obvious later), and 
yet the transfer matrix will retain its lossless or unitary property. So, un- 
like the original matrix, the structure has fewer parameters, and these are 
essentially unconstrained. The lossless property is implicitly imposed by the 
structural interconnection. Thus, a good structure, in most cases, is an 
economic way to express a well-defined family of systems. This is the fun­
damental philosophy behind all structures we derive.

An example of a lossless structure is the cascaded lattice derived in 
Chap. 3 (see Fig. 3.4-8). In this structure, the transfer function GN(z) is 
lossless (stable and allpass) as long as ∣km∣ < 1 for all m.

Factorization of Lossless Matrices
Each structure we obtain is a cascade of simple building blocks. We 

arrive at this product-form by performing a factorization of the lossless ma­
trix. For this reason, the terms “structure” and “factorization” are often 
used interchangeably. All factorizations will have the following features.

1. Each building block has a simple “standard” form. It is easy to pre- 
serve its lossless property in spite of parameter variation, as long as the 
parameters satisfy some simple constraint (e.g., realness, or unit-norm 
property, etc.) For example, we can always factorize 2 × 2 real coeffi- 
cient FIR lossless systems in terms of Givens rotations (Fig. 14.3-2). 
The lossless property is preserved regardless of the choice of the real 
valued parameters θm.

2. The factorization is complete, that is, covers a well defined family of 
lossless systems. For example, we will show that every M × M FIR 
lossless system can be factorized as in (14.4.10).

3. The factorization is minimal. This means that the number of delays in 
the resulting structure is equal to the (McMillan) degree of HN(z).
Value of these structures. Perhaps the greatest advantage of these
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factorizations is that they give rise to structures which cover a complete fam­
ily of lossless systems, and at the same time the parameters of the structures 
can be varied independently and arbitrarily, without impairing the lossless 
property. In Chap. 6 and 8, where we had to optimize filter bank responses 
under lossless constraint, such structural representations were useful. The 
lossless lattice structures (Sec. 6.4) can also be used to generate orthonormal 
wavelets (Sec. 11.4).

14.3 LOSSLESS SYSTEMS WITH TWO OUTPUTS
In this section we restrict attention to real coefficient FIR lossless systems 
with two outputs, that is, 2 × 2 and 2 × 1 systems. (These restrictions will be 
removed in the next section). Here are the main results we wish to establish:

1. For the 2 × 2 case we will show that the transfer matrix can be imple­
mented as in Fig. 14.3-2.

2. For the 2 × 1 case we will show that the transfer matrix can be imple­
mented as in Fig. 14.3-3.

14.3.1 2×2 Real-Coefficient FIR Lossless Systems
Suppose we are given the 2×2 FIR lossless system

(14.3.1)

where h(n) are real. If L = 0, then h(0) is a real unitary matrix and can 
always be represented as (Problem 14.12)

(14.3.2)

so that the discussion is trivial. So we will assume L > 0.
The meaning of subscript N in (14.3.1) will be clear in a moment. 

We will first show how HN(z) can be expressed in terms of a FIR lossless 
system HN-1(z) which is a "reduced system” in some sense to be described. 
Repeated application of this operation will result in the desired factorization.
The Degree-Reduction Step

From (14.2.6) we know that h(0) is singular so that there exists a real 
nonzero vector v such that vTh(0) = 0. We can always scale v to have unit 
norm and write vT = [sin θN cos θN] for real θN, so that

Now consider the product

(14.3.4)
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Here RN is the Givens rotation operator (as in (6.1.9)), and is therefore 
unitary, with RTNRN = I. In view of (14.3.3) we have

(14.3.6)

From this it is easily verified that HN-1(z)HN-1(z) = HN(z)HN(z). Since 
HN(z)HN(z) = c2I, we conclude that HN-1(z) is paraunitary. Further- 
more, by construction, HN-1(z) is causal and FIR.

We know that the determinant of HN(z) is a delay, that is,

Figure 14.3-1 The degree reduction step in the factorization of 2 x 2 lossless 
HN(z).
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where × denotes possibly nonzero entries, so that (14.3.4) becomes

(14.3.5)
where G0(z) and G1(z) are causal FIR row-vectors. We can rewrite this as

From (14.3.6) we see that
(14.3.7)

The matrix HN-1(z) is thus a reduced system in the sense that its determi­
nant has lower degree.

Summarizing, we have expressed HN(z) in terms of another 2 × 2 causal 
real coefficient FIR lossless matrix HN-1(z) (see Fig. 14.3-1). In this pro- 
cess, the degree of determinant has been reduced by unity. Essentially, we 
have extracted a lossless degree-one building block to obtain a reduced re­
mainder HN-1(z).



Complete factorization of HN(z)
Given HN(z), we can express it as in (14.3.6) and repeat this process by 

expressing HN-1(z) in terms of HN-2(z) and so on. After N repetitions we 
arrive at the matrix H0(z) with [det H0(z)] = β. If H0(z) is not a constant 
we can perform further reduction to obtain a causal system H-1(z), whose 
determinant is βz (from (14.3.7)). This being impossible, we conclude that 
H0 (z) is a constant unitary matrix, which can therefore be expressed as in 
(14.3.2). Summarizing, we have been able to express HN(z) as

(14.3.8)

This gives the structure of Fig. 14.3-2.

Figure 14.3-2 Lattice structure for 2 × 2 real coefficient FIR lossless system.
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where a = √∣β∣,

(14.3.9a)

and
(14.3.9b)

Minimality. Since HN(z) can be implemented as in Fig. 14.3-2 which 
has N delays, we have

(14.3.10)

From (14.3.8) we also have [deg det HN(z)] = N. But from Sec. 13.8 we 
know [deg HN(z)] ≥ [deg det HN(z)] so that

(14.3.11)



From the above two inequalities we conclude [deg HN(z)] = N. This proves 
that the structure is minimial.

Comment on degree of determinant. It follows from the above 
result, that the degree (i.e., McMillan degree) of the lossless system HN(z) 
is equal to the degree of its determinant. This fact, proved above for a 
very specific case, is true for any lossless system as justified in Sec. 14.7. 
Each degree-reduction step described above, therefore, reduces the McMillan 
degree of the system by unity. Notice that the degree-reduction step does 
not necessarily reduce the highest power of z-1 in the expression for HN(z). 
As seen in Chap. 13, this highest power does not indicate the degree, and is 
not directly involved in the reduction process.

Summarizing, we have shown the following:
♠Theorem 14.3.1. Factorizing 2 × 2 FIR paraunitary systems. 

Let HN(z) be 2 × 2 causal real-coefficient FIR lossless, with [det HN(z)] = 
βz-N. Then, we can implement it in terms of Givens rotations, as shown 
in Fig. 14.3-2 where θm are real, and α = √∣β|. Equivalently, HN(z) can 
be factorized as in (14.3.8), where Rm and Λ(z) are lossless building blocks 
as in (14.3.9). Furthermore the structure is minimal, that is, the number of 
delays N equals the degree of HN(z). There are N + 2 parameters in the 
structure, viz., the N + 1 angles θm and the real number α ≠ 0. Conversely, 
it is also clear that the transfer matrix of the above structure is lossless, 
regardless of the values of θm and α. ◊

14.3.2 2×1 real-coefficient FIR lossless systems
A lossless system with two outputs (p = 2) can be either 2 × 2 or 2 × 1 (since 
p ≥ r.) Suppose we are given a 2 × 1 lossless system

Losslessness implies the power complementary property

(14.3.12)

(14.3.13)

If PN(z) is (causal and) FIR, we can write

(14.3.14)

(14.3.15)
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Our aim is to find a lattice structure for this, similar to Fig. 14.3-2. For this 
define



This is evidently causal (because of the use of z-N at appropriate places) 
and FIR, and moreover satisfies HN(z)HN(z) = c2I.

The matrix HN(z) is therefore a lossless system. Furthermore it has 
real coefficients, so that it can be realized as in Fig. 14.3-2. By ignoring the 
lower input terminal, we obtain the structure of Fig. 14.3-3, for the original 
2 × 1 system PN(z). Without loss of generality, assume that at least one of 
h0(N), h1(N) is nonzero so that the degree of PN(z) is N. The structure, 
which evidently has N delays, is therefore minimal!

Figure 14.3-3 Lattice structure for 2 × 1 real coefficient FIR lossless system.

Given PN(z), the above structure can be synthesized by identifying θm. 
This is done by defining HN(z) as above, and peforming the degree reduction 
step described earlier in Sec. 14.3.1. Thus, given a power-complementary 
pair of FIR filters H0(z) and H1(z), we can always find the structure of Fig. 
14.3-3. Summarizing, we have proved the following [Vaidyanathan, 1986]:

♠Theorem 14.3.2. Factorizing 2 × 1 FIR paraunitary systems. 
Let PN(z) be a 2 x 1 causal real-coefficient FIR lossless system with degree 
N. Then it can be factorized as

(14.3.16)

where c, θ0 are real, and Rm and Λ(z) are as in (14.3.9). Thus PN(z) can 
be realized as in Fig. 14.3-3, and the structure is minimal. Conversely, the 
transfer matrix of the above structure is lossless, regardless of the values of 
the N + 1 real parameters θm and the parameter c > 0. ◊

Notice that if c < 0, we can replace it with ∣c∣ and replace θ0 with θ0 + ∏ 
to get the same transfer functions H0(z) and H1(z).

14.4 STRUCTURES FOR M× M and M× 1 FIR LOSSLESS SYSTEMS
We now generalize the results of the previous section. The generalization 
will take place in two respects. First, we remove the restriction p = 2,
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and consider M x M FIR lossless systems. Second the coefficients are not 
restricted to be real. At the end of this section we also consider factorization 
of power complementary filter banks (i.e., M × 1 FIR lossless systems).

Since the structures for 2 × 2 systems were based on planar rotations, 
one would expect that M × M lossless systems can also be factorized us- 
ing generalized rotations (i.e., M × M unitary matrices). This indeed is 
possible as we show in Sec. 14.10.2. In this section, however, we establish 
a much simpler factorization based on diadic matrices (to be defined). In 
addition to its simplicity, this also offers some practical advantages under 
finite wordlength conditions. To be more specific, rotation based structures 
lose the paraunitary property under coefficient quantization, whereas diadic 
based structures do not (as proved in Sec. 14.11).

♠ Main points of this section. The structures introduced in this 
section are based on a fundamentally different lossless building block. In 
this section we do the following:

1. We first introduce the degree-one lossless building block shown in Fig. 
14.4-1.

2. We then show (Sec. 14.4.2) that any M × M FIR lossless system HN(z) 
(with degree N) can be expressed as a product of N of these building 
blocks, and a constant unitary matrix H0 [as in (14.4.10)]. This results 
in the structure of Fig. 14.4-3. When HN(z) has real coefficients, the 
multipliers in the structure are real.

3. Finally we show (Sec. 14.4.3) that any M× 1 FIR lossless system (i.e., an
FIR power complementary filter bank) can be factorized as in (14.4.12), 
resulting in the structure of Fig. 14.4-4, where P0 is a constant nonzero 
vector. ◊

14.4.1 A Fundamental Degree-One Building Block
The structures we develop in this section are based on the M × M transfer 
matrix given by
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(14.4.1)
where vm is a (possibly complex) M × 1 vector with unit norm, that is,

(14.4.2)

Note the appearance of the diadic form vmv†m in (14.4.1). The resulting 
structures are said to be diadic-based. It is readily verified that Vm(z) can 
be implemented as in Fig. 14.4-1. Since there is only one delay in the figure, 
Vm(z) has degree = 1.

The system Vm(z) is normalized-lossless, that is, Vm(z)Vm(z) = I. To 
prove this, define for convenience P = vmv†m and Q = I —vmv†m. Note that 
P and Q are Hermitian. Using v†mvm = 1, the following identities are easily



Determinant of Vm(z). In the next section, where we obtain a struc- 
ture for FIR lossless systems based on degree reduction, a knowledge of the 
determinant of Vm(z) is required. We now prove

(14.4.5)

Taking determinants we arrive at (14.4.4). ▽ ▽ ▽
Summarizing, Vm(z) has the following properties:

1. It is a normalized lossless system, that is, Vm(z)Vm(z) = I.
2. It has degree = 1.
3. [det Vm(z)] = z-1.
4. Vm(1) = I (follows from definition).

Sec. 14.4 Structures for FIR lossless systems 733

verified:
(14.4.3)

As a result

Figure 14.4-1 Implementation of Vm(z) using one delay.

(14.4.4)

Proof. We have Vm(z)vm = z-1vm (using v†mvm = 1). So vm is an 
eigenvector with eigenvalue = z-1. Next if u is any vector orthogonal to vm 
(i.e., v†mu = 0), then Vm(z)u = u. Suppose now that uk, 0 ≤ k ≤ M-1 is a 
set of M mutually orthogonal unit-norm vectors (with uM-1≜vm). Defining 
the M × M unitary matrix U = [u0 . . . uM-1], we then have



Example 14.4.1: Higher-degree Lossless Systems
To get familiar with the above properties of Vm(z), consider the product 
of two such building blocks, viz., V1(z)V2(z). This is lossless. Assume, 
for sake of this example, that v1 is orthogonal to v2 (i.e., v†1v2 = 0). 
Then, we can verify that V1(z)V2(z) = I - DD† + z-1DD† where 
D = [v1 v2].

Similarly, consider the product V0(z) . . . VM-1(z), where each fac- 
tor is as in (14.4.1). Let the M vectors vm, 0 ≤ m ≤ M - 1 be 
pairwise orthogonal unit-norm vectors. Then it can be verified (Prob­
lem 6.10) that this product reduces to I - EE† + z-1EE† where E = 
[v0 v1 . . . vM-1]. Because of our choice of the vectors vm, E is nor- 
malized unitary (i.e., EE† = I) so that the above product reduces to 
z-1I.

This shows that trivial lossless systems such as z-1I (more generally 
z-KI) can be written as products of degree-one systems of the form 
(14.4.1). We will see later that any M × M FIR lossless system is 
essentially a product of these building blocks.

Most General Degree-One FIR Lossless System
The reader might wonder how the strange-looking building block Vm(z) 

was invented. We now present a logical development to show that it arises 
naturally when we try to identify the most general degree-one FIR lossless 
system.

More formally, let H(z) be ap× r causal FIR lossless system with degree 
= 1. We show that it can be written as
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(14.4.6)

where v is p × 1 with v†v = 1. This is proved as follows:
Proof. We can write H(z) as H(z) = h(0) + h(1)z-1. This has degree 

= 1 if and only if h(1) has rank = 1 (Problem 13.8). Now consider the 
difference H(z) - H(1). This is equal to zero for z = 1 so that we can write 
H(z) - H(1) = (1 - z-1)S. Here S is a constant because the degree-one 
restriction forbids higher powers of z. So we can write



where R = H†(1)∕c2. Here we have used the fact that H†(1)H(1) = c2I. 
Since H(z) is paraunitary and H(1) unitary, it is clear from above that the 
quantity V(z)≜(I + SR - z-1SR) satisfies V(z)V(z) = I. Because of the 
degree-one restriction, SR has rank one, and can be expressed as wu† where 
u and w are nonzero p × 1 vectors. By setting V(z)V(z) = I and equating the 
coefficients of z on both sides we get wu† = — ||w|∣2uu†, that is, wu† can be 
written as — vv†. So we can rewrite V(z) = I — vv† + z-1vv†. By using the 
fact that V(-1) satisfies V†(-1)V(-1) = I, we obtain vv†(v†v — 1) = 0. 
Since v ≠ 0, this implies v†v = 1 indeed. This completes the proof that 
H(z) has the form (14.4.6). ▽ ▽ ▽

14.4.2 Factorization of M × M FIR Lossless Matrices
Our next aim is to show that an arbitrary M × M FIR lossless system can be 
factorized in terms of Vm(z). This is based on a degree-reduction procedure 
as before, and will again involve the reduction of degree of the determinant.
Degree-Reduction Procedure

Let HN(z) be an M × M causal FIR lossless system with determinant 
= βz-N. We first show how we can express HN(z) in terms of the building 
block Vm(z), and a “reduced” lossless system HN-1(z) with determinant 
βz-(N-1).

First recall that the FIR nature of HN(z) implies (14.2.6), so that h(0) 
is singular [unless h(L) = 0 in which case no reduction is necessary]. So, 
there exists a vector vN ≠ 0 such that
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(14.4.7)

Without loss of generality, assume vN has unit norm. Consider the product

(14.4.8)

In view of (14.4.7), the term zvNv†Nh(0) = 0 so that the above product 
remains causal. Since Vn(z)VN(z) = I, we can rewrite (14.4.8) as

(14.4.9)

Since HN(z) and VN(z) are paraunitary, it is easily verified that HN-1(z) 
is paraunitary. From (14.4.9) we obtain



So we conclude [det HN-1(z)] = βz-(N-1), since [det HN(z)] = βz-N.
Summarizing, we have expressed HN(z) as in Fig. 14.4-2, where VN(z) 

is a degree-one lossless system and HN-1(z) is another causal FIR lossless 
system. The system HN-1(z) has reduced determinantal degree N - 1. 
Essentially we have extracted the degree-one lossless building block VN(z) 
to obtain a reduced lossless remainder HN-1(z).

Figure 14.4-2 The degree reduction step in the factorization of M × M lossless 
HN(z).

Complete Factorization of the M×M FIR Lossless System
The lossless system HN-1(z) satisfies all the properties of HN(z) except 

for reduced degree of determinant. If we repeat this reduction N times, we 
eventually obtain the remainder H0(z). This is a causal FIR lossless system 
with [det H0(z)] = β. If H0(z) is not a constant matrix, we can repeat the 
reduction process to obtain a causal remainder H-1(z) with determinant βz, 
which is an impossible situation. The conclusion is that H0 is a constant 
unitary matrix. Thus, the structure of Fig. 14.4-3 follows. As in Sec. 14.3, 
we can also show that the structure is minimal. The overall factorization is 
given by

Figure 14.4-3 Factorization of HN(z). Building blocks are as in Fig. 14.4-1.

Real-coefficient case. Suppose HN(z) has real coefficients. The vec- 
tor vN, which is required to satisfy (14.4.7) can therefore be taken to be real. 
So the remainder HN-1(z) has real coefficients. Continuing this argument
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(14.4.10)

where Vm(z) is as in (14.4.1) with the M×1 vectors vm satisfying v†mvm = 1, 
and H0 is M × M unitary.

Notice, once again, that the highest power of z-1 is not necessarily 
reduced at each step of the reduction process. For example, if this reduction 
is performed on the matrix HN(z) = z-1I, it will require M steps before 
the coefficient of z-1 becomes zero!



we see that all the vectors vm and the matrix H0 in Fig. 14.4-3 will come out 
to be real. So there exists a structure of the said form with real multipliers.

Degree of the determinant of a lossless system. We now consider 
a by-product of the above result. There are N delays in the structure, since 
each building block Vm(z) requires one delay. Since the structure is minimal, 
it follows that N is the degree of HN(z). In other words, for an M × M causal 
FIR lossless system with degree N, we have

Figure 14.4-4 Factorization of PN(z).
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(14.4.11)

where deg [.] denotes the McMillan degree. (It turns out, as we show in Sec. 
14.7, that the FIR restriction in the above statement is not necessary.) The 
special relation (14.4.11) is not necessarily true for arbitrary (non lossless) 
transfer functions. For example, if HN(z) is unimodular (Sec. 13.10.2), then 
its determinant has degree = 0 regardless of degree of HN(z)!

Summarizing this subsection, we have proved the following factorization 
result:

♠ Theorem 14.4.1. Factorization of M × M FIR paraunitary sys- 
tem. Let HN(z) be M × M causal FIR lossless, with [det HN(z)] = βz-N. 
We can then factorize it as in (14.4.10). Furthermore, the structure result- 
ing from the factorization (shown in Fig. 14.4-3) is minimal. (In the real 
coefficient case, we can ensure that vm and H0 are real.) Conversely, the 
structure represents a degree N lossless system whenever vm has unit norm 
and H0 is unitary. ◊

Note. Since Vm(1) = I, we see from (14.4.10) that HN(1) = H0.

14.4.3 Factorization of M×1 FIR Lossless Matrices
Let PN(z) be an M × 1 causal FIR lossless system with degree N. (For 
example, PN(z) could represent an analysis bank with M filters.) We will 
show that it can be expressed as

(14.4.12)

where Vm(z) are as in (14.4.1) with the M × 1 vectors vm satisfying v†mvm = 
1, and P0 is a nonzero vector. As a result, we can implement the system as 
in Fig. 14.4-4 requiring N delays, so that the structure is minimal.

Conversely the above structure represents a lossless system PN(z) as 
long as P0 ≠ 0 and v†mvm = 1. (This is obvious because a product of 
lossless systems is lossless.)



Degree-Reduction Step
The proof of the above factorization is again based on a degree reduction 

step. Given PN(z) with properties stated above, we can write it as
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(14.4.13)

Since this is a column vector, the degree-N property is equivalent to the 
condition p(N) ≠ 0. From (14.2.6) it follows that

(14.4.14)

Consider the new M × 1 transfer matrix

(14.4.15)

If we choose the unit-norm vector vN as

(14.4.16)

then in view of (14.4.14), the noncausal term in (14.4.15) becomes

(14.4.17)

Moreover, the coefficient of z-N becomes

since v†NvN = 1. So PN-1(z) is causal and FIR with degree < N. We can 
rewrite (14.4.15) as

(14.4.18)
which shows that PN-1(z) cannot have degree smaller than N — 1 [since 
PN(z) has degree N]. So the degree of PN-1(z) is precisely N — 1.

It is clear from (14.4.18) that PN-1(z) is paraunitary. Summarizing, 
we have expressed PN(z) in terms of the M × M degree-one building block 
VN(z) and the reduced degree FIR lossless system PN-1(z). See Fig. 14.4-5.

Completion of the factorization. PN-1(z) has all the properties 
of PN(z), except that its degree is N — 1. Repeating the degree-reduction 
process N times, we obtain the structure of Fig. 14.4-4 where P0 is a nonzero



vector. When PN(z) has real coefficients, all the vectors vm and P0 will be 
real.

14.4.4 Uniqueness of the Factorizations
We have obtained two major factorization results in the preceding subsec- 
tions. For a given lossless system, are these factorizations unique? The 
answer depends on the case under consideration, and is best itemized as 
follows.
M × M case.

1. Since Vm(1) = I, we have H0 = HN(1), so that H0 is unique.
2. Vm(z) are not unique. The unit-norm vector vN is required to be 

such that (14.4.7) holds. No other condition is imposed on vN. As a 
result, it is not unique [unless h(0) happens to have rank M - 1 in 
which case vN is unique upto a scale factor of unit magnitude]. Thus 
the vectors vm are, in general, not unique. So, Vm(z) are not unique.

3. Now consider the product VN(z) . . . V1(z). Since H0 is unitary, its in- 
verse exists and this product has value HN(z)H0-1 (see (14.4.10)). From 
the uniqueness of H0 we conclude that this product is unique, even 
though individual factors Vm(z) are not.

M × 1 case
1. Once again P0 = PN(1) = unique.
2. Vm(z) are unique! Recall that vN is required to satisfy the condition
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Figure 14.4-5 The degree reduction step in the factorization of M × 1 lossless 
PN(z).

(14.4.19)

This implies p(N) = (v†NP(N))vN, which proves vN = s × p(N) for 
scalar s. Thus vN is unique upto a unit-magnitude scale factor (since 
its norm is also constrained to be unity). Since this scale factor does 
not affect the diadic vNv†N, the matrix VN(z) is unique, and so is 
the remainder PN-1(z). Repeating this argument we conclude that, 
for given PN(z), the vectors vm are unique upto unit-magnitude scale 
factor, and that Vm(z) are unique.
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Warning. The above uniqueness result is valid only when the factoriza­
tion of PN(z) is minimal, that is, the number of factors Vm(z) equals N as 
in the above method. It is possible to obtain, using other means, an infinite 
number of nonminimal factorizations as shown in Problem 14.11.

14.5 STATE SPACE MANIFESTATION OF LOSSLESS PROPERTY
Given a structure for a transfer matrix H(z), we can always write down its 
state space description (A,B,C,D) as described in Sec. 13.4. Now consider 
the so-called realization matrix

(14.5.1)

It turns out that the lossless property of H(z) can be related to this matrix 
in a elegant way. In this section we will do the following.

1. We first show that whenever R is normalized-unitary (i.e., R†R = I), 
and A is stable, the transfer function is lossless.

2. This does not imply that any structure for a lossless system has unitary 
R. We show, however, that the FIR structures developed in the previous 
section have unitary R.

3. We then show that for any normalized lossless system (FIR or IIR), we 
can find a structure such that R†R = I (Theorem 14.5.1).

4. We finally show that if a structure has stable A and unitary R, it is 
necessarily minimal (i.e., number of delays is equal to degree of the 
system).
Thus the unitary property of the function HN(ejω) for each ω is equiv­

alent to the unitary property of a single constant matrix R.
Brief historical notes. In the continuous-time world, the properties 

of state space descriptions of lossless electrical networks are well understood. 
Letting Z(s) denote the impedance matrix and S(s) the scattering matrix 
(Sec. 14.1) of a lossless electrical network, one can analyze the effects of 
lossless property on their state space descriptions. The results are known in 
various forms, e.g., the Kalman Yakubovic lemma, LBR lemma, LPR Lemma 
and so forth. An excellent comprehensive study of this topic can be found 
in Anderson and Vongpanitlerd [1973]. The discrete-time version of one of 
these results is particularly applicable in digital signal processing, and was 
presented in Vaidyanathan [1985b], and further reviewed in Prabhakara Rao 
and Dewilde [1987]. The results presented in this section are elaborations of 
these two discrete-time references.
Proof That R†R = I Implies H(z) is Lossless

Let (A,B,C,D) be the state-space description of some structure for a 
causal (possibly IIR, but stable) p×r transfer function H(z). Let R defined 
in (14.5.1) be normalized-unitary, that is, R†R = I. We now prove that 
H(z) is normalized-lossless.



Since H(z) is already given to be stable, it only remains to prove 
H(z)H(z) = I. For this recall (Sec. 13.4.1) that H(z) = D + C(zI-A)-1B, 
so that H(z)H(z) is equal to

Since R is normalized unitary, we have

Thus R†R = I implies

where ||v||2 is the energy v†v of the vector v. With Ex(n) = ||x(n)||2, Eu(n) 
= ||u(n)||2, and Ey(n) = ∣∣y(n)∣∣2, this becomes

which implies a beautiful energy balance property. The increase in the state- 
vector energy at time n is equal to the instantaneous input energy minus 
instantaneous output energy. In other words, a portion of the input energy 
Eu goes to the output and the rest goes to increase the internal energy.
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(14.5.2)

(14.5.3)

(14.5.4)

(14.5.5)

By using these we can show that proving H(z)H(z) = I is equivalent to 
proving B†(z-1I - A†)-1F(z)(zI - A)-1B = 0, where

(14.5.6)

Upon simplification F(z) reduces to 0 so that H(z)H(z) = I indeed. This 
completes the proof.
Energy Balance Property

From the definition of (A, B, C, D) we know that the realization matrix 
R relates two vector sequences in the following way:

(14.5.7)

(14.5.8)

(14.5.9)



There is no dissipation. This is a consequence of losslessness of H(z). For 
nonparaunit ary systems, there are no structures with R†R = I.

14.5.1 Finding Structures with Unitary Realization Matrix R

Not every structure for a normalized-lossless system has unitary R. (exam­
ple: try the direct form structure for a second order allpass function). The 
next question, therefore, is how to find structures for lossless systems such 
that R is normalized unitary. For FIR H(z), the structures in Figs. 14.4-3 
and 14.4-4 already satisfy this property. Before proving this, we first consider 
an example.

Example 14.5.1

Consider the degree-one lossless system I-vv† + z-1vv† with ∣∣v∣∣ = 1. 
Figure 14.5-1 reproduces the structure, with various signals labeled. By 
comparing this with the standard state-space equations (Sec. 13.4), we 
conclude A = 0, B = v†,C = v and D = I - vv†. Computing R†R we 
find

so that R normalized unitary.
(14.5.10)

Figure 14.5-1 The degree-one FIR lossless building block.

u(n)

Figure 14.5-2 The cascade of Fig. 14.4-3 reproduced, with internal signals 
labeled.
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FIR Structures with Unitary Realization Matrix R
More generally, we claim this: let HN(z) be an M × r causal FIR matrix 

realized as in Fig. 14.5-2 with M × M building blocks Vm(z) as in Fig. 14.4- 
1. Let the M × r matrix H0 satisfy H†0H0 = I so that HN(z) is normalized 
lossless. Then R is normalized unitary. (Note that structures with r = 1 
and r = M, which were shown in Fig. 14.4-3 and 14.4-4, are special cases.)

To prove this, let Rm denote the R-matrix for the mth section Vm(z). 
From Example 14.5.1 we know that R†mRm = I, so that

This holds for 1 ≤ m ≤ N. By adding these (and using ∣∣u(n)∣∣ = ∣∣y0(n)∣∣ 
and y(n) = yN(n)) we obtain

Summarizing, the vectors and have the same norm for
all n. But these vectors are related as in (14.5.7). Since the above argument
holds regardless of the value of the vector 
unitary (Problem A.17, Appendix A).

R must be normalized

Existence of Structures with Unitary Realization Matrix R
From previous sections we know that any M × 1 or M x M causal 

FIR lossless system can be realized as in Fig. 14.5-2. As a result, these 
FIR systems always have an implementation with unitary R. Furthermore, 
structures based on planar rotations (as given by Figs. 14.3-2 and 14.3-3) 
also have unitary R (see Problem 14.13). We now prove a stronger result.

♠ Theorem 14.5.1. State space manifestation of losslessness. 
Let H(z) be a p × r causal stable system. Then it is normalized lossless if 
and only if there exists a structure with state space description (A, B, C, D) 
such that the realization matrix satisfies R†R = I. ◊

Proof. The 'if' part has already been proved. For the 'only if' part, 
assume H(z) is normalized lossless. Let (A1, B1, C1, D) be some minimal re- 
alization. We will construct an equivalent minimal realization (A,B,C,D) 
such that R†R = I. Since A1 is stable and (C1, A1) observable (due to min­
imality), we know that there exists Hermitian positive definite P such that 
A†1PA1 + C†1C1 = P. Since P is positive definite, we can find a nonsingular T 
such that P = T-†T-1 (Appendix A). So we have A†1T-†T-1A1 + C†1C1 = 
T-†T-1, that is,
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(14.5.11)

(14.5.12)



where A≜T-1 A1T and C≜C1T. By using T as a similarity transformation, 
we can now define an equivalent minimal state-space structure (A,B,C,D) 
for H(z).

So far we have not used the lossless property. We will now show that 
when H(z) is normalized lossless, the condition (14.5.12) implies R†R = I. 
That is (14.5.3) automatically implies (14.5.4) and (14.5.5).

Suppose that we apply a finite-energy input u(n) such that u(n) = 
0,n ≥ M. Then

Adding this for n ≥ M, we get

[using (14.5.12)].

(14.5.13)

Note that as n → ∞, x(n) → 0 and y(n) → 0 since A is stable. The lossless 
property H(z)H(z) = I implies Σ∞n=-∞ ∣∣y(n)∣∣2 = Σ∞n=-∞ ∣∣u(n)∣∣2, that 
is,

(14.5.14)

by using (14.5.13). By causality, the quantities x(M) and y(n),n ≤ M - 1 
do not depend on u(n), n ≥ M, and hence on the assumption that u(n) is 
zero for n ≥ M. So (14.5.14) continues to hold if M is replaced by M + 1, 
i.e.,

Subtracting (14.5.14) from (14.5.15), we obtain

(14.5.16)

This is true for all possible u(M). More subtle is the fact that this is true 
for all possible x(M). To see this note that the minimality of (A,B,C,D) 
assures us that (A, B) is reachable so that we can obtain any value for x(M) 
by choosing u(M — 1), u(M - 2),..., u(M - N) appropriately where N is 
the degree of H(z).
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that is,

(14.5.15)



Since (14.5.16) holds for all x(M) and u(M), we conclude in view of
(14.5.7) that R†R = I. ▽▽▽

Remarks. Note that the result holds for FIR as well as IIR systems. 
Examples of IIR lossless structures for which R†R = I, can be found in 
Problem 14.28. For the case of real-coefficient lossless H(z), one can verify 
the existence of real (A,B,C, D) such that RTR = I.

14.5.2 Minimality of Structure and Unitariness of R
Let (A,B,C,D) be the state space description of some structure for an 
M × M transfer function H(z) with the following two properties: (a) A is 
stable, and (b) R defined in (14.5.1) satisfies R†R = I. Then the structure 
is a minimal realization of H(z).

We now prove this result. From Sec. 13.4.2 we know that proving 
minimality of a structure is equivalent to proving that (A,B) is completely 
reachable and (C,A) is completely observable. The property R†R = I 
implies in particular (14.5.3). Using this and the fact that A is stable, we 
show that (C,A) is completely observable. For this assume that (C, A) is 
not observable. Then there exists v ≠ 0 such that Cv = 0 and Av = λv. 
(This follows from Theorem 13.4.2). From (14.5.3) we then obtain ∣λ∣2v†v = 
v†v, that is, ∣λ∣ = 1, violating stability of A. This proves that (C,A) is 
completely observable.

For M × M matrix H(z), R is square so that R†R = I ⇒ RR† = I. 
If we write out the condition RR† = I in terms of A,B,C and D, one 
of the three equations is AA† + BB† = I. By using this along with the 
fact that A is stable, we can prove (similar to the observability proof) that 
(A,B) is completely reachable. These together establish that the structure 
is minimal.

14.6 FACTORIZATION OF UNITARY MATRICES
Unitary matrices play an important role in the theory and implementation 
of lossless systems. For example:
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Remarks
1. This result is not restricted to FIR H(z). However, it does not in general 

hold for p × r case with p ≠ r (Problem 14.15).
2. In the above, we assumed that A is stable, and proved that R†R = 

I implies minimality. As a complement of this, if one assumes that 
(A,B,C,D) is minimal and that R†R = I, it turns out that A is 
stable. See Problem 14.16.

3. In the next section we show how unitary matrices can be factorized into 
fundamental unitary building blocks. If such factorization is applied to 
the R-matrix in (14.5.1), we obtain new structures for lossless systems.



1. The lossless factorization in Fig. 14.4-3 involves a unitary matrix H0.
2. The factorization in Fig. 14.3-2 is in terms of 2 × 2 real unitary matrices.
3. For a lossless system we can always find a structure such that the real- 

ization matrix R defined in (14.5.1) is a constant unitary matrix.
In view of their frequent occurence, it will be very useful to develop 

cascade structures for unitary matrices, which is the purpose of this section. 
An M × M matrix R is unitary if

When d = 1 we say that R is normalized-unitary. Unitary matrices are 
evidently lossless. From (14.6.1) we have ∣∣Rv∣∣ = √d∣∣v∣∣ for any M × 1 
vector V. Conversely (Problem A.17 in Appendix A) if A is some M × M 
matrix with ∣∣Av∣∣ = √d∣∣v∣∣ for all v (for fixed d) then A†A = dI.

♠ Main points of this section. It is clear that a product of unitary 
matrices is unitary. In this section we show that any M × M unitary R is 
a product of finite number of standard unitary building blocks. To be more 
specific, the following results will be presented.

1. Rotation based structure. We show that when R is real, it can be 
factorized into a product of M(M - 1)∕2 simpler real unitary matrices, 
each of which represents a planar rotation operator (defined below). 
This will result in the structure of Fig. 14.6-3. Equation (14.6.4) below 
shows a 3 × 3 example.

2. Diadic based structure. For complex R a similar result is possible 
with the planar rotations replaced by complex versions. We will not 
prove this result (which can be found in Murnaghan [1962]). Instead, 
we prove a more convenient factorization called Householder (or diadic- 
based) factorization. According to this, R can be factorized in terms of 
the very elegant building block (14.6.11), resulting in the structure of 
Fig. 14.6-4. This also holds for real R, in which case uk are real. An 
advantage of diadic-based structures over rotation-based ones is that we 
can quantize the multipliers without losing unitariness (Sec. 14.11).

3. Degress of freedom. Even though R has M2 complex elements, the
unitary constraint imposes a relation among these. So the number of 
'free parameters' is less that M2. Thus for complex unitary R we have 
only about M2 real-valued free parameters. And for real unitary R we 
have about M(M — 1)∕2 real-valued free parameters (see end of Sec.
14.6.2 for precise statements). The factorizations to be presented are in 
terms of these free parameters. ◊
The results presented in this section can be deduced easily from a num­

ber of texts and papers [Givens, 1958], [Murnaghan, 1962], [Golub and Van 
Loan, 1989].
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(14.6.1)



14.6.1 Factorization of Real Unitary Matrices Using Givens Rotations
Recall the Givens or planar rotation matrix given in (14.3.9a) and repeated 
below:

(14.6.2)

G satisfies GTG = I. It can be verified (Problem 14.12) that any 2 × 2 real 
unitary matrix R can be expressed in terms of Givens rotation as

Less obvious is the fact that any 3 × 3 real unitary R can be expressed as

where ck = cos θk, sk = sin θk (θk being real) and μk = ±1. Notice also that, 
given any set of real numbers {θk}, matrices of the form (14.6.4) are unitary. 
There are three rotation matrices in (14.6.4). Each of these performs rotation 
in a plane (two-dimensional subspace of the three dimensional space). For 
example the leftmost matrix above performs a planar rotation in the (1,2) 
plane. † So we say that R has been factorized in terms of planar rotations 
or Givens rotations.

More generally, it will be shown that any M × M real unitary R can be 
expressed in terms of M(M — 1)∕2 planar rotation operators. This is based 
on the following size-reduction step.
Size-reduction step.

Let R be M × M real with RTR = I. We show that it can be written
as

(14.6.5)

where S is a real (M — 1) × (M — 1) matrix with STS = I, μ = ±1, and 
Θ = ΘM-2ΘM-3 . . . Θ0 where Θm is the building block shown in Fig. 14.6- 
1, with θm real. Evidently ΘTmΘm = I, so that ΘTΘ = I. The matrix Θm 
performs a Givens rotation in the plane defined by the indices (m, M — 1) 
in the M dimensional space.
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(14.6.3)

(14.6.4)

† As always, row and column indices start from zero.



Figure 14.6-1 The building block Θm which is a planar Givens rotation in 
M-dimensional space.

Figure 14.6-2 Representation of R in terms of the smaller matrix S and the 
sequence of rotations θ. Each criss-cross here represents a Givens rotation.

Justifying the factorization (14.6.5). Let us first understand the 
product
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(14.6.6)



where c = cos θ and s = sin θ. We will show how to find real θ such that this 
product has the form

(14.6.7)

where × denotes possibly nonzero entries. The premultiplying matrix in
(14.6.6) is ΘTm-2. This premultiplication has the effect of replacing the last 
two rows of R by linear combinations of these rows. No other rows are 
affected. Our aim is to choose θ so that the last element of the (M — 2)th 
row, that is, the (M — 2, M — 1) element, is forced to be zero. This element 
is given in terms of the elements of R by

(14.6.8)

To force this to be zero we choose θ such that

(14.6.9)

This gives a unique value of θ in the range -π∕2 < θ ≤ π∕2. If RM-1,M-1 = 
0, then (14.6.9) gives θ = π∕2, that is, we simply take c = 0,s = 1.

It is clear that if the premultiplying matrix in (14.6.6) is chosen to be 
ΘTk for some other k, then we can force the last entry of the kth row to be 
zero. So by successive premultiplication with ΘTm for m = M —2, M—3, . . . 0, 
we can obtain a matrix of the form

(14.6.10)

Since every matrix on the left hand side is normalized-unitary, so is the 
right hand side matrix. So each column and each row of right hand side has 
unit norm. By looking at the last column we therefore conclude α = ±1. 
Since the last row has to have unit norm, the remaining elements in the 
ast row are also zero! Summarizing, the right hand side above has the form

. Since ΘTm = Θm-1, we can rewrite (14.6.10) to arrive at the claimed 
factorization (14.6.5).
Completing the Factorization by Repeated Size-Reduction

Pictorially we can represent the above factorization as in Fig. 14.6-2, 
where each criss-cross represents a Givens rotation. It is clear that we can

Sec. 14.6 Factorization of unitary matrices 749



repeat the factorization recursively. Thus, we can replace the (M — 1) ×
(M — 1) matrix S with S = Φ where T is (M — 2) × (M — 2)

with TTT = I, and Φ is a product of M - 2 planar rotations. If we keep 
repeating this we eventually arrive at a factorization of R as in Fig. 14.6-3.

This factorization is entirely in terms of Givens rotations. The matrix 
Tm contains m rotations. The total number of rotation operators is (M —
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Figure 14.6-3 (a) Complete factorization of M × M real R with RTR = I. (b)
Internal details of Tm. Each criss-cross is a Givens rotation.



1) + (Μ - 2) + ... + 1 = M(M - 1)∕2.
Summary. We have proved this: Let R be M × M real with RTR = I. 

We can then factorize R as in Fig. 14.6-3 in terms of M(M - 1)∕2 planar 
rotations, and M sign parameters μi. Conversely, the transfer matrix R of 
the above structure necessarily satisfies RTR = I for all possible choices of 
the rotation angles.

14.6.2 Householder Factorization of Unitary Matrices
We now show how to express unitary matrices in terms of what are called 
Householder building blocks. This factorization holds (and is equally simple) 
for real as well as complex matrices.

An M × M Householder unitary matrix has the form †
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(Householder matrix). (14.6.11)

This is unitary, and H†H = I. Evidently H is Hermitian so that H-1 = H. 
It is interesting to note that if we set z = —1 in the lossless system Vm(z) 
in (14.4.1), we obtain the Householder matrix.
Turning Arbitrary Vectors into Fixed Form

Much of the value of Householder matrices comes from the fact that they 
can be used to 'turn' a vector v into a vector of the form [0 . . . 0 X 0 . . . 0]T.

More formally, we claim this: let v = [v0 v1 . . . vM-1]T be some 
M × 1 nonzero vector and let θ = arg vi so that vi = ∣vi∣ejθ. Define

(14.6.12)

where ei = [0 . . . 0 1 0 . . . 0]T with the '1' in the ith position, and s = ±1. 
Then w ≠ 0 for at least one choice of s. Assuming w ≠ 0 we then have

(14.6.13)

where u = ejφw∕∣∣w∣∣ and φ is an arbitrary real number.
We now prove this. If w = 0 for s = 1 as well as s = -1, this implies 

v = 0, violating the stated conditions. So w ≠ 0 for at least one choice of s 
indeed. Assume this choice is made. By explicit computation,

(14.6.14)

† A more general definition permits a M × N unitary matrix A in place 
of u. We will not require it here.



The left hand side of (14.6.13) is equal to

(14.6.15)

Substituting from (14.6.14), this simplifies to v - w, which by the definition 
of w, reduces to the right hand side of (14.6.13) indeed.

The above fact is useful for factorizing a M × M unitary matrix in terms 
of Householder matrices, as stated next.
Householder Factorization

Let R be M × M unitary, that is, R†R = dI,d > 0. We will show that 
R can be written as

where D is diagonal with dii = ejθi (θi real), and Hk are Householder 
matrices, i.e., Hk = I - 2uku†k with u†kuk = 1. Figure 14.6-4 shows the 
resulting structure for R. Conversely, it is clear that the transfer matrix of 
the above structure is always unitary as long as u†kuk = 1, and θi are real.

Figure 14.6-4 (a) Cascaded structure for unitary R, and (b) Householder
building blocks.

Each column of S has unit norm. Consider the 0th column s0 of S. We know 
there exists a unit-norm vector u1 such that (I - 2u1u†1)s0 = ejθ0e0. As a 
result we have
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(14.6.16)

To prove the above factorization, we will work with S=R∕√d which 
satisfies

(14.6.17)

(14.6.18)



where × denotes possibly nonzero entries. Since S and H1 are normalized 
unitary, the right hand side of (14.6.18) is also normalized-unitary. In par­
ticular this implies that the 0th row is equal to [ejθ0 0 . . . 0]. So

(14.6.19)

We can now repeat the process on T to reduce it to . Repeating

where D and Hk are as defined above. Since Hk = Hk-1, (14.6.20) implies 
S = H1H2 . . . HM-1D so that (14.6.16) follows.
Comments

1. Note that the factorization (14.6.16) is not restricted to real R. If R 
is real, the quantities uk and D are real. In particular the diagonal 
elements of D satisfy dii = ±1.

2. Special nature of uk. By construction, the unit norm vectors uk have a 
certain restricted form. For example, u2 has 0th element equal to zero; 
u3 has the top two elements equal to zero and so on. We thus have

where × denotes possibly nonzero entries. It should also be noticed that 
uk appears only in the form uku†k (diadic form) in Hk. So if we multiply 
uk with a scalar ejαk, this does not affect Hk. We can exploit this to 
reduce a nonzero entry of uk to be real valued.

Number of Free Parameters in the Factorization
We can now count the number of parameters used in the expression 

(14.6.20) to characterize the unitary matrix. We will use the results of this 
counting later on, in order to characterize the cost of implementing lossless 
systems.

The vector uk has M — k + 1 possible nonzero complex-valued entries.
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this M — 1 times we get

(14.6.20)

(14.6.21)

The M — 1 vectors uk are therefore associated with complex-valued
parameters, which is equivalent to M(M + 1) — 2 real valued parameters.



However, each uk is constrained to have unit-norm, that is, u†kuk = 1. 
This constraint takes away one degree of freedom from uk. Moreover, one 
component of each uk can be taken to be real without loss of generality. 
This takes away another degree of freedom. Summarizing, the total number 
of real degrees of freedom associated with the set of vectors {uk} is then 
M(M + 1) — 2 — 2(M — 1) = M2 — Μ. Add to this the real valued parameters 
θi (associated with D) and √d. This results in M2 + 1 real valued freedoms. 
This, of course, reduces to M2 if the matrix is normalized-unitary.

For real unitary matrices, the diagonal elements of D are ±1, and are not 
counted as degrees of freedom. The kth unit-norm vector uk has M — k real- 
valued freedoms. So the total number of freedoms is ΣM-1k=1(M — k) which 
simplifies to M(M — 1)∕2. This is consistent with Sec. 14.6-1. Counting √d, 
this becomes M(M — 1)∕2 + 1.

One can arrive at this counting-result in a direct way, even without 
using the factorization result (14.6.20). This is done in Problem 14.17. We 
summarize the above discussions as:

Degrees of freedom in a unitary matrix. An M × M unitary 
matrix is completely characterized by M2 + 1 real-valued degrees of freedom 
(M2 for the normalized case). A real M × M unitary matrix is completely 
characterized by M(M — 1)∕2 + 1 degrees of freedom (M(M - 1)∕2 for the 
normalized case).

14.7 SMITH-McMILLAN FORM AND POLE-ZERO PATTERN
In this and the next few sections we study a number of deeper properties of 
lossless systems. This includes the Smith McMillan form, pole-zero pattern 
(this section), factorization of IIR lossless systems (Sec. 14.9), new diadic 
based structures, and structures based on planar rotations (Sec. 14.10). 
While these concepts are not used anywhere else in this text, they do find 
applications in advanced research on multirate filter banks.
Reminder About Smith-McMillan Form

In Sec. 13.5 we saw that every causal rational transfer matrix H(z) 
can be written in the form (13.5.26) which is called the Smith-McMillan 
decomposition. Assume that H(z) is M × Μ. Then we can write
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(14.7.1)
where W(z) and V(z) are M × M unimodular matrices (polynomials in z 
with constant nonzero determinants) and Λ(z) is diagonal. The ith diagonal 
element λi(z) of Λ(z) has the form

(14.7.2)

where αi(z) and βi(z) are polynomials in z with no common factors, and 
satisfy the following divisibility condition

(14.7.3)



Losslessness implies that H(ejω) has full rank M so that none of the αi(z)'s 
is identically zero.

Recall that the zeros of βi(z) and αi(z) are the poles and zeros of H(z) 
respectively. Because of the causality of H(z), the order μ of Πiβi(z) (as 
a polynomial in z) is at least as large as that of Πiαi(z). Note that αi(z) 
and βj(z) are polynomials in z and not z-1. Under these conditions, if μi 
denotes the degree of βi(z), the degree of H(z) is

ExampIe 14.7.1
As always, it is best to begin with examples. Consider the FIR lossless 
system

(14.7.5)

The Smith-McMillan decomposition is

(14.7.6)

In this example W(z) and V(z) turn out to be constant nonsingular 
matrices. Also

So μ0 = 1, μ1 = 0 and μ = 1 so that H(z) has degree one. Notice that 
Λ(z) is causal.
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(14.7.4)

That is, H(z) can be implemented with μ memory elements, but not less.
♠ Main points of this section. Let H(z) be an M × M causal lossless 

system. We will study its Smith-form matrix Λ(z) and obtain the following 
conclusions.

1. If H(z) is FIR, the elements λi(z) are pure delays, that is, λi(z) = z-ni, 
with ni ≥ 0.

2. If p is a pole of H(z), then 1∕p* is a zero. If q is a zero, then 1∕q* is a 
pole. Since all poles are inside the unit circle, the zeros lie outside. So 
the polynomials αi(z) and βj(z) do not have common factors for any 
choice of i and j.

3. The degree of H(z) is equal to the degree of its determinant (which in
turn is allpass). ◊

(14.7.7)



From Example 13.9.2 we know that the Smith-McMillan form Λ(z) 
is not necessarily causal, even though H(z) is. However, for FIR lossless 
systems, Λ(z) is always causal as shown below.

Smith-McMillan Form for FIR Lossless Systems
Suppose H(z) is FIR. Then, we know from Sec. 13.9 that βi(z) have 

the form zni, ni ≥ 0, so that the determinant of H(z) is α∏i=0M-1 z-niαi(z) 
where a is constant. If this determinant is a delay [which is the case, for 
instance, when H(z) is lossless] then αi(z) must also have the form zmi, 
mi ≥ 0 so that [det H(z)] = az-K. Thus,

where n0 ≥ n1 ≥ . . . ≥ nM-1 ≥ 0. In particular, therefore, Λ(z) is causal. 
Also, the degree μ = ΣM-1i=0 ni.
Poles and zeros

Let p be a pole of an M × M causal lossless system H(z). We will prove 
that 1∕p* is a zero. This is a beautiful extension of a similar property of 
stable allpass functions, proved earlier in Sec. 3.4.1.

Proof. With αi and βi defined as in (14.7.2), define
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(14.7.8)

From Sec. 14.4 we know that if H(z) is causal FIR lossless, then [det H(z)] 
= az-μ. From (14.7.8) it therefore follows that mi = 0 for all i. So we have 
λi(z) = z-ni, with ΣM-1i=0 ni = μ. Furthermore n0 ≥ n1 ≥ . . . ≥ nM-1 ≥ 0 
in view of (14.7.3).

Summarizing, we have proved the following: Let H(z) be M × M causal 
FIR lossless. Then, the Smith-McMillan form is

Then Λ(z) = B-1(z)A(z), so that H(z) = W(z)B-1(z)A(z)V(z). Defining 
W1(z) = W-1(z) this becomes



where P(z)≜W1(z)W1(z), Q(z)=V(z)V(z). Since W(z) is unimodular, so 
is W-1(z). So, the M × M matrices P(z) and Q(z) have constant nonzero 
determinants, hence full rank for all z. Now let p be a pole of H(z), that is, 
βi(p) = 0 for some i, so that the ith row of the left hand side of (14.7.9) is 
zero for z = p. So the ith row of the right hand side is also zero for z = p, 
that is,
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Using the paraunitary property H(z)H(z) = c2I, we, therefore, obtain

(14.7.9)

(14.7.10)
But we know αi(p) ≠ 0 since αi(z) and βi(z) are relatively prime. Moreover, 
the ith row of Q(p) cannot have all elements equal to zero since Q(z) has 
full rank for all z. So αj(p) = 0 for some j, that is, αj(1∕p*) = 0 for some j 
so that 1∕p* is a zero indeed. ▽ ▽ ▽

Conversely, if q is a zero, one can show that 1∕q* is a pole.
All zeros are outside. As a consequence of the above result, all zeros 

of the lossless system are strictly outside the unit circle (since poles are 
inside)! So αi(z) and βj(z) are relatively prime even if i ≠ j. This would 
not, in general, be true if the system were just stable but not lossless.

We now turn to another important result which can be deduced from 
the Smith-McMillan form.

♠ Theorem 14.7.1. Degree of a lossless system. Let H(z) be 
M × M causal lossless. Then A(z)=det H(z) is stable allpass, and

(14.7.11)

Also p is a pole of A(z) if, and only if, it is a pole of H(z) and q is a zero of 
A(z) if and only if it is a zero of H(z). ◊

Proof. The stable allpass property of A(z) follows from H(z)H(z) 
= c2I. Next, from the Smith-McMillan decomposition we have

(14.7.12)

Since αi(z) and βj(z) are relatively prime for any i and j, there are no 
uncanceled factors in (14.7.12). Thus the degree of A(z) is equal to that of 
the product ΠM-1i=0 βi(z). This, in turn is equal to μ, which is the degree of 
H(z). 

Since there are no uncanceled factors in (14.7.12), it is clear that q is a 
zero of H(z) [i.e., a zero of some αi(z)] if, and only if, it is a zero of A(z); 
The same holds for poles. ▽ ▽ ▽



4.8 THE MODULUS PROPERTY
In Sec. 3.4.1 we proved a property called the modulus property, for stable 
allpass functions. We now establish the following extension of this result: 
Any M × M causal normalized-lossless H(z) satisfies

(14.8.1)

The property 'H†(z)H(z) = I' for ∣z∣ = 1 follows from definition. We 
will now prove

As in Sec. 3.4.1, one could try to invoke a matrix version of the maximum 
modulus theorem (which is proved in Problem 14.30). We will, instead, use 
a direct energy-balance argument here. We apply a specific type of input, 
and bring out the inequality H†(z)H(z) ≤ I in a simple way. Thus let the 
input to H(z) be

(14.8.3)

for some integer L. Here v is an arbitrary nonzero vector. So u(n) is a 
truncated exponential. Assume ∣a∣ > 1 so that u(n) is bounded as n → —∞. 
With h(n) denoting the impulse response of H(z), the output is
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(14.8.2)

(14.8.4)

This can be simplified to yield
(14.8.5)

(The value of y(n) for n > L will not enter our reasoning). The z-transform 
H(z) converges for ∣z∣ > 1 because H(z) is causal and stable (Chap. 2). So 
the quantity H(a) above is well defined. We now have the following sequence 
of inequalities:

(by (14.8.5))

(14.8.6)

(since H(z)H(z) = I)

[by (14.8.3)]
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Consider the leftmost and rightmost quantities above. Since ∣a∣ > 1, the
summation converges to a finite value, and can be canceled.
This results in

(14.8.7)

for any v, so that H†(a)H(a) ≤ I for any a with ∣a∣ > 1.
Now consider proving H†(z)H(z) ≥ I for ∣z∣ < 1. By using the property 

H(z)H( z) = I in (14.8.2), we can rearrange it as

(14.8.8)

By invoking the following facts (Problem 14.25): (a)P ≤ I, ⇔ P-1 ≥ I, 
(b) P ≤ I ⇔ PT ≤ I, and (c) P ≤ I ⇔ P* ≤ I for any Hermitian 
positive definite P, we can verify that (14.8.8) implies H†(z)H(z) ≥ I for 
∣z∣ < 1 indeed.

For p × r lossless systems a similar property is true.
Are the Inequalities Strict?

In Sec. 3.4.1 we found that the above inequalities were strict, unless the 
allpass function was just a constant. In the matrix case, however, this is not 
true. For the M × M case, we now explore the significance of the equality

(14.8.9)

This is possible if and only if the inequality in (14.8.6) holds with equality. 
This means, in particular, that y(n) = 0 for all n > L. In other words, the 
output y(n) ceases as soon as the input u(n) becomes zero!

This is equivalent to saying that if h(n) denotes the (causal) impulse 
response of H(z) then h(n)v = 0 for n ≠ 0 (Problem 14.26). In other words, 
H(z)v = c for all z. That is, the system H(z) acts like a memoryless system 
(i.e., just a constant) for inputs in the direction v [i.e., for inputs of the form 
f(n)v where f(n) is scalar]. If H(z) is not memoryless in any direction, then 
(14.8.2) holds with strict inequality. We then say that H(z) is a full-memory 
lossless system.

14.9 STRUCTURES FOR IIR LOSSLESS SYSTEMS
All the structures developed so far were for FIR lossless systems. We now 
consider the IIR case. It turns out that the main factorization results of Sec. 
14.4 can be extended to the IIR case simply by replacing the fundamental 
building block Vm(z) [eqn. (14.4.1)], with

(14.9.1)



where ∣am∣ < 1 [Doğanata and Vaidyanathan, 1990]. The main results 
of this section depend on the properties of this building block, which are 
summarized next.
Properties of Vm(z)

1. Vm(z) has been obtained by replacing z-1 in (14.4.1) with the stable 
allpass function G(z) = (-a*m + z-1)∕(1 - amz-1). The structure for 
Vm(z) is shown in Fig. 14.9-1.

2. The pole of Vm(z) is at am so that it is stable.
3. Vm(z) is a degree-one lossless system satisfying (a) Vm(z)Vm(z) = I, 

and (b) [det Vm(z)] = (-a*m + z-1)∕(1 -amz-1). These can be proved 
precisely as in Sec. 14.4.1.

14.9.1 Structures for M×M IIR Lossless Systems
We now show that any M × M causal lossless transfer matrix HN(z) with 
degree N can be factorized as
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Figure 14.9-1 Implementation of the degree-one IIR lossless building block 
Vm(z).

(14.9.2)

where H0 is M × M unitary, and Vm(z) are as in (14.9.1) with ∣am∣ < 1. 
This results in the structure of Fig. 14.4-3 with building blocks as in Fig. 
14.9-1. Conversely, it is dear that the above structure represents a lossless 
system of degree N as long as v†mvm = 1 and ∣am∣ < 1 for all m.

Remarks. (a) The resulting structure has N delays (one per Vm(z)) 
so that it is minimal. (b) The above result also covers the FIR case, since 
we can set am = 0 for all m.



Evidently this is paraunitary. Suppose we choose aN to be a pole of HN(z). 
From Sec. 14.7 it then follows that HN(z) has a zero at 1/a*N. But any 
zero of HN(z) is also a zero of its determinant (Theorem 14.7.1). This 
means that there exists a column vector v ≠ 0 such that v†HN(1∕a*N) = 
0†. Choosing vN = v∕∣∣v∣∣ we see that v†NHN(z) will then have the factor 
(—a*N + z-1) which, therefore, cancels the “unstable pole” of VN(z). With 
the only unstable pole canceled, HN-1(z) is stable and hence lossless.

From Theorem 14.7.1 we know that the determinant of HN(z) has the 
factor (—a*N + z-1) in its numerator and the factor (1 — aNz-1) in the 
denominator. Since VN(z) is lossless, these same factors appear in the 
determinant of VN(z). When we take determinants of (14.9.3), these factors 
therefore cancel on the right hand side. So [det HN-1(z)] has degree N - 1. 
And since HN-1(z) is also lossless, Theorem 14.7.1 can be applied again to 
conclude that its degree is equal to N — 1.

Summarizing, we have extracted the degree-one lossless system VN(z) 
from HN(z) to obtained the 'remainder' lossless system HN-1(z) with degree 
N - 1.

Obtaining the complete factorization. By repeated application of 
the degree reduction step we eventually obtain the remainder H0(z). This 
is a lossless system with constant determinant. By Theorem 14.7.1 this is 
therefore a constant. This establishes the factorization (14.9.2).

14.9.2 M×1 IIR lossless systems
M × 1 lossless systems find application as power complementary filter banks. 
An M × 1 IIR system can be represented as HN(z) = PN(z)∕DN(z) where 
PN(z) is M × 1 causal FIR and

(14.9.4)

To avoid redundancies we assume zk ≠ 0 and that PN(z)∕DN(z) is an 
irreducible representation, that is, the greatest common factor of DN(z)
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The Degree Reduction Step
The proof of the above factorization is based on a successive degree- 

reduction technique. In all discussions we will freely use the fact that the 
degree of HN(z) is equal to the degree of the determinant (Theorem 14.7.1). 
Consider the function

(14.9.3)



and all the elements of PN(z) is a constant. As a result the system HN(z) 
has exactly N nonzero poles (zk ≠ 0). It should be kept in mind, however, 
that the entries of the numerator PN(z) can have degree ≥ N. So there may 
be an arbitrary number of poles at the origin, representing the FIR part.

Degree-Reduction Step
We will first establish the following: Let Hm(z) be M × 1 causal lossless 

with irreducible representation Hm(z) = Pm(z)∕Dm(z) where Dm(z) = 
Πmk=1(1 zkz-1). Let am = zm, and

since am = zm. With vm chosen as in (14.9.5a) we have

(14.9.6)

(14.9.7)

This means that (I — vmv†m)Pm(z) has the factor (1-zmz-1). So the factor 
(1 — zmz-1), which is also present in Dm(z), gets canceled in the right hand 
side of (14.9.6).

We now face the second main issue: the quantity (—z*m + z-1) in the 
denominator of (14.9.6) represents an unstable pole at z = i∕z*m, and must 
be canceled. It turns out, however, that the choice (14.9.5a) also results in 
such a cancelation - a consequence of losslessness!

To show this, we will prove that v†nPm(z) has the factor (—z*m + z-1). 
Losslessness of Hm(z) implies

(14.9.8)

The right hand side is zero for z = zm (due to Dm(z)) and for z = l∕z*m 
[due to Dm(z)]. So Pm(1∕zm)Pm(1∕zm) = 0. By rearranging this, one can 
conclude that
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(14.9.5a)

so that Vm(z) in (14.9.1) is completely defined. We can then write

(14.9.5b)

where Hm-1(z) is M × 1 causal lossless with irreducible representation 
Hm-1(z) = Pm-1(z)∕Dm-1(z) where Dm-1(z) = Πk=1m-1(1 - zkz-1).

Proof: Since Vm-1(z) = Vm(z), the relation (14.9.5b) can be rewritten 
as Hm-1(z) = Vm(z)Hm (z), that is,



so that v†mPm(z) does have the factor (—z*m + z-1).
Summarizing, Hm-1(z) is M x 1 causal, and is stable because the poles 

are zk, 1 ≤ k ≤ m — 1, ∣zk∣ < 1. Evidently, Hm-1(z) is paraunitary (from 
(14.9.5b)). Moreover Pm-1(z)∕Dm-1(z) is irreducible (otherwise, as seen 
from (14.9.5b), Pm(z)∕Dm(z) cannot be irreducible). So the remainder 
Hm-1(z) has all the claimed properties. ▽ ▽ ▽

Remarks. (a) The remainder Hm-1(z) therefore has only m — 1 poles 
zk ≠ 0 (subset of the original set of m poles). Thus the number of nonzero 
poles has been reduced by one. (b) Since Dm(zm) = 0, we are assured that 
Pm(zm) ≠ 0 (by irreducibility of Pm(z)∕Dm(z). So the above expression 
(14.9.5a) for vm is well-defined.

Obtaining the complete factorization. By repeated use of this 
reduction-step, we obtain the complete factorization, which is summarized 
as follows: Let HN(z) be M × 1 causal IIR lossless having N poles zk, with 
∣zk∣ > 0. Then it can be expressed as

(14.10.1)
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(14.9.9)

where Vm(z) are as in (14.9.1) with am = zm, ∣|vm∣∣ = 1, and G(z) is M × 1 
causal FIR lossless.

The ordering of the N poles zk in (14.9.4) is arbitrary. So we obtain a 
number of equivalent structures simply by renumbering the poles.
Real Coefficient Systems

Recall the FIR versions of the above results, which were given in Sec. 
14.4. In the FIR case, whenever the coefficients of HN(z) were real, the 
vectors vm turned out to be real so that we could obtain a structure with 
real multipliers.

In the HR case, this is not necessarily so because the poles zm are not 
necessarily real. It is, however, true that the poles occur in complex con- 
jugate pairs. The corresponding pairs of Vm(z) can be combined to obtain 
real coefficient structures. But the structures lose the beautiful simplicity of 
the individual building blocks Vm(z).

14.10 MODIFIED LOSSLESS STRUCTURES
In this section we obtain two new structures, by modifying the structures 
obtained earlier. The main results are summarized below.

♠ Main points of this section. We start with the familiar cascaded 
lossless structure of Fig. 14.10-1 with building blocks Vm(z) as in Fig. 14.9- 
1. By performing some simple matrix manipulations, we will arrive at two 
new structures. These are cascaded interconnections of fundamental unitary 
matrices (e.g., Householder matrices), separated by a diagonal matrix of the 
form



where

(14.10.2)

1. The first structure (which, we believe, has not been reported before) 
has the form shown in Fig. 14.10-4, were Wm are Householder unitary 
matrices (defined in Sec. 14.6.2). This shows that any lossless system 
can be implemented as a cascade of Householder matrices separated by 
Φm(z). This structure has the advantage that it requires fewer additions 
compared to the earlier structures. It is also conceptually simpler, and 
is given entirely in terms of the very well-known Householder matrix.

2. The second structure has the form shown in Fig. 14.10-5. Once 
again it is a cascade of unitary matrices Θm separated by Φm(z), but 
the unitary matrices are not of Householder type. Instead they are 
based on planar rotations as shown in Fig. 14.10-5(b). This structure 
will be derived only for the FIR real coefficient case, and is the precise 
generalization (to the M × M case) of the lattice structure developed 
in Sec. 14.3.1 for the 2 × 2 FIR case (Fig. 14.3-2). This structure was 
derived in [Doğanata, et al., 1988] using a different procedure.

14.10.1 Lossless Structures Based on Householder Matrix
In earlier sections, we developed structures for FIR and IIR lossless systems. 
Both M × M and M × 1 cases were covered. We saw that the basic building 
block in all these cases had the same form, viz.,

where xm is as in (14.10.2), and v†mvm = 1. All the structures had the 
common form reproduced in Fig. 14.10-1, where N is the degree of the 
transfer matrix H(z). The size of H0 is equal to that of H(z).

The matrix Vm(z) has all the properties studied in Sec. 14.4.1 (with 
z-1 replaced by xm). In particular, therefore eqn. (14.4.5) holds, that is, 
there exists an M × M matrix Um with U†mUm = I, such that

(14.10.4)

We can thus redraw Fig. 14.10-1 as in Fig. 14.10-2, where Rm≜U†m+1Um 
for 1 ≤ m ≤ N - 1, RN = UN, and R0 = U†1H0. Clearly Rm are normalized 
unitary. Even though each of these matrices has M2 degrees of freedom (Sec.
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(14.10.3)



14.6), they can be replaced with much simpler unitary matrices (Householder 
matrices), as we now show.

Figure 14.10-1 General form of all lossless structures. Vm(z) can be FIR or 
IIR. H0 is M × M or M × 1.

Figure 14.10-2 An equivalent structure for Fig. 14.10-1.

Figure 14.10-3 Further simplification of Fig. 14.10-2.

Figure 14.10-4 The simplified equivalent structure for Fig. 14.10-1.

Given any normalized unitary matrix S, we can find unit norm u1 such 
that (14.6.18) holds. We will use this idea, with RN in place of S. By a 
slight modification, we can show that there exists unit norm wN such that

(14.10.5)
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Since WN-1 = WN, we can write (14.10.5) as

(14.10.6)

The cascade of the building blocks RN-1, ΦN(z), and RN which appears 
in Fig. 14.10-2 can now be manipulated as follows: (a) replace RN with 
(14.10.6) (Fig. 14.10-3(b)), (b) interchange ΦN(z) with Q (Fig. 14.10-3(c)), 
and (c) combine RN-1 with Q and obtain a new normalized unitary matrix 
R'N-1 = QRN-1 [Fig. 14.10-3(d)]. The second step is possible because

(14.10.7)

Since R'N-1 is just another normalized unitary matrix, we can repeat the 
above three operations on the cascade of RN-2, ΦN-1(z), and R'N-1. This 
process can be repeated until we obtain the cascaded structure of Fig. 14.10- 
4 where the building blocks Wm have the form
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(Householder matrix). (14.10.8)

The leftmost matrix G0 continues to be a unitary matrix. In general this is 
different from H0 or R0, but has the same size viz., M × M or M × 1 as the 
case may be.

Summarizing, we have proved the following: Any M × M causal loss- 
less system H(z) can be implemented as in Fig. 14.10-4 where Wm are 
Householder matrices, Φm(z) is as in (14.10.1) and G0 is an M × M unitary 
matrix. The quantity xm is as in (14.10.2) with ∣am∣ < 1. (For the FIR case 
just set am = 0 for all m.) The same holds for the M × 1 case, but now G0 
is M × 1.

A second (more direct) proof of this result without the above manipu- 
lations is developed in Problem 14.23. It is clear that each building block 
Wm requires one less addition than Vm(z) used in Fig. 14.10-1. Also, the 
structure is conceptually simpler.

The above manipulations do not affect the number of delays so that the 
structure continues to be minimal. Also the number of parameters in the 
structures are unchanged, viz., N unit norm vectors and a unitary matrix.

14.10.2 Structures Based on Givens Rotations
For the FIR real coefficient case, a slight modification of the preceding ar- 
guments results in a different structure, based on Givens rotations. Recall 
that Fig. 14.10-1 is equivalent to Fig. 14.10-2. When the lossless system 
H(z) is FIR with real coefficients, the unitary matrices Rm are real. We



know that a real normalized-unitary matrix can be factorized into the form
(14.6.5) with S†S = I, and μ = ±1, where Θ is a sequence of M — 1 Givens 
rotations (Fig. 14.6-2). Suppose we factorize RN like this, that is, as

(14.10.9)

Once again we can perform the above type of manipulations: (a) replace RN 
with (14.10.9), (b) interchange ΦN(z) with Q and (c) combine RN-1 with 
Q. Repeating this N times, we arrive at the equivalent structure shown in 
Fig. 14.10-5(a) where each Θm is a sequence of M — 1 Givens rotations as 
shown in Fig. 14.10-5(b). The matrix E0 isM×M (orM× 1) unitary. (In 
the M × M case it can further be expressed as a sequence of M(M — 1)∕2 
Givens rotations.)

Figure 14.10-5 (a) The equivalent structure for Fig. 14.10-1, when the lossless
system is real coefficient FIR. (b) Details of the building block Θm.

Summarizing, we have proved this: Let H(z) be an M × M FIR real 
coefficient lossless system. It can then be implemented as in Fig. 14.10-5(a) 
where
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and where Θm represents a sequence of M — 1 Givens rotations as shown in 
Fig. 14.10-5(b). The leftmost matrix E0 is M×M unitary, that is, a sequence 
of M(M- 1)∕2 Givens rotations as in Fig. 14.6-3 (possibly followed by a 
fixed scale factor α on all lines). For the M × 1 case, the same result is true 
except that E0 is now a nonzero column vector.
Remarks

1. Once again, the structure of Fig. 14.10-5(a) is minimal. Notice also that 
the number of parameters involved in the new structure (for M × M 
case) is equal to N(M — 1) + M(M — 1)∕2 plus a possible scale factor. 
This is the same as the number of degrees of freedom in Fig. 14.10-1 
with real vm and H0.

2. For the real-coefficient HR case, the above unitary building blocks are 
not guaranteed to be real. The above results can however be easily ex- 
tended to the case where the matrices are complex. The only significant 
additional complication is that the Givens rotation should be replaced 
by its complex version.

14.11 PRESERVING LOSSLESS PROPERTY UNDER QUANTIZATION
In Chap. 9 we discussed finite wordlength (FWL) effects in the digital 
implementation of filters. We considered three effects, namely (a) roundoff 
noise, (b) limit cycles, and (c) coefficient quantization. When implementing 
filter banks, another important FWL effect comes to play. This is the effect 
of coefficient quantization on such properties as alias cancelation and perfect 
reconstruction (PR). It turns out that by careful implementation of the filter 
bank system, one can ensure that the alias cancelation and/or PR property 
are not affected by coefficient quantization. We saw examples of this in 
Chap. 5 and 6. Thus, in Sec. 5.3.5 we saw that the two channel IIR 
power symmetric QMF bank can be implemented such that aliasing as well 
as amplitude distortion are eliminated in spite of coefficient quantization. 
In Sec. 6.4.1 we saw that the two channel FIR QMF lattice has the PR 
property even when the coefficients are quantized.

We now show that these “robustness properties” hold also for the M 
channel case. We know from Sec. 6.2 that an M channel FIR filter bank 
can be designed to have the PR property by forcing E(z) to be paraunitary 
and taking the synthesis filters to be fk(n) = h*k(N — n). We show how the 
paraunitary (or lossless) property can be preserved in presence of quantiza­
tion. This in turn shows how to perserve the PR property of the filter bank 
in presence of coefficient quantization.

14.11.1 Quantization of Unitary Matrices
An M × M unitary matrix R satisfies (14.6.1). Let the columns of R be 
denoted as rk, 0 ≤ k ≤ M - 1. Then unitariness implies

(14.11.1)
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Moreover, all columns have same norm, that is,

(14.11.2)

These two properties completely summarize the features of unitary matrices. 
If we quantize the elements of the matrix R directly then it is not possible 
to satisfy unitariness. For example, if the elements of the column r0 are 
quantized independently of r1, the mutual orthogonality is not preserved.
Limitations of Planar Rotation Building Blocks

First consider real unitary matrices. From Sec. 14.6.1 we know that 
these can be completely characterized by M(M - 1)∕2 angles θk and a real 
scalar c ≠ 0. For example, a 3 × 3 real unitary matrix R can be represented 
as in (14.6.4).

If we are interested only in storing the matrix in quantized form, we can 
store the angles θk. Then an approximate version of R can be recovered by 
computing (using higher precision) the cosines and sines of these angles and 
evaluating the above product, which will remain unitary to the extent that 
the effect of quantizations of sines and cosines can be neglected.

But if R is implemented as a cascade as in (14.6.4), then ck and sk are 
the multipliers in this structure, and their quantization will result in loss 
of unitariness. To see this note that if we multiply two matrices satisfying 
(14.11.1) and (14.11.2), the result also satisfies (14.11.1) and (14.11.2). But if 
we multiply two matrices satisfying only (14.11.1), the result does not satisfy 
even (14.11.1) (try it!). So the property (14.11.2) (equality of column-norms) 
is crucial for the building blocks. However the columns in the 3 × 3 matrix 
factors in (14.6.4) have unequal norms after the ck and sk are quantized 
because

(14.11.4)

and remains orthogonal. The two columns have same norm after quantiza­
tion, even though this norm is not unity.

In the more general M×M case, the implementation of unitary matrices 
in terms of Given’s rotations is such that unitariness is not preserved under
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(14.11.3)
in general. The value of the left hand side above depends on θk, and on the 
details of quantization. [If we attempt to replace those entries in (14.6.4) 
which have value '1' by the norms of the quantized columns, this would 
require infinite precision because norms involve square-roots.] Because of 
this, after the three 3 × 3 matrix factors are multiplied, the result does not 
satisfy either (14.11.1) or (14.11.2).

A lucky exception to this difficulty is the M = 2 case. In this case the 
real orthogonal matrix after quantization becomes



coefficient quantization. For the same reason, structures for lossless transfer 
matrices based on Givens rotations (Fig. 14.10-5) do not preserve losslessness 
when the coefficients are quantized (except for the 2 × 1 and 2 × 2 cases).

Preserving Unitariness with Householder Building Blocks
Instead of using Givens rotations, suppose we implement R using the 

Householder factorization (14.6.16). Here the vectors uk and the parame- 
ters dii (diagonal elements of D) can be varied (say, quantized) completely 
independent of each other and yet the form (14.6.16) represents a unitary 
matrix as long as uk have unit norm, and ∣dii∣ are same for all i.

The unit norm requirement on uk cannot be satisfied when the com­
ponents are quantized to a given precision. To overcome this difficulty, we 
rewrite (14.6.16) as
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(14.11.5)
where

(14.11.6)

In (14.11.6) we do not require uk to have unit-norm any more. The matrix 
Gk is a scaled version of a unitary matrix and is unitary for arbitrary non- 
zero uk. So the product (14.11.5) is unitary even after quantization as long 
as the diagonal elements dii of D have same magnitude after quantization. 
If this is not the case, then the product (14.11.5) does not satisfy (14.11.2) 
even though (14.11.1) holds. For the real case we have ∣dii∣ = √d∕α for all 
i so that even this minor difficulty does not arise.

Summarizing, the form (14.11.5) permits us to generate every unitary 
matrix by independently varying the complex parameters uk, and the di- 
agonal entries of D. In particular if these are quantized independently, the 
property (14.11.1) still holds. (Notice that ∣∣uk∣|2 in (14.11.6) requires higher 
precision, but it is still finite). For real R, the unitary property [i.e., both 
(14.11.1) and (14.11.2)] is itself preserved. So (14.11.5) leads to a structurally 
unitary system.

14.11.2 Preserving Losslessness under Quantization
The simplest structure which we can discuss under this topic is the lattice 
structure of Figs. 14.3-2 and 14.3-3 for the real-coefficient FIR lossless case. 
Recall that each Rm is the Givens rotation (14.3.9a). When this is quantized 
as in (14.11.4), it remains unitary with equal norm for both columns. So the 
cascaded structure continues to be lossless, and the QMF bank of Fig. 6.4-1 
preserves the PR property, as already seen in Sec. 6.4.1.

For the M × M case, rotation based structures do not preserve lossless 
property, as explained earlier. Consider however the diadic based FIR build- 
ing block in Fig. 14.4-1. This represents a degree-one lossless system if and



only if the column vector vm has unit-norm. Now the unit-norm property is 
usually lost when the elements of vm are quantized, and Vm(z) does not re- 
main lossless. To overcome this difficulty, note that Vm(z) can be rewritten 
as

(14.11.11)

where a0(z) and a1(z) are unit-magnitude allpass. So E(z) is paraunitary. 
The allpass filters ai(z) can be written as products of first order filters 
(5.3.25) with real coefficients αj,i. These filters remain unit-magnitude all- 
pass in spite of quantization of αj,i. So E(z) remains lossless. As a result, 
the system of Fig. 5.2-5 is free from aliasing and amplitude distortion in 
spite of multiplier quantization.

14.12 SUMMARY AND TABLES
The main points of the chapter are summarized in Tables 14.12.1, 14.12.2 
and 14.12.3. References on lossless systems were cited in Sec. 14.1, and a 
list can be found in the Bibliography at the end of the text.
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(14.11.7)

where vm is an arbitrary nonzero vector. Define Um(z) = ∣∣vm∣|2Vm(z), 
that is,

(14.11.8)
so that

(14.11.9)
Evidently Um(z) is lossless regardless of the value of the (nonzero) vector 
vm. The unit-norm constraint on vm has now been dropped so that its com­
ponents can be quantized to any precision without violating losslessness of 
Um(z). Of course, the quantities ∣∣vm|∣2 and vmv†m require higher precisions, 
but these are finite precisions.

Now rewrite the cascade (14.4.10) as
(14.11.10)

If we implement the unitary matrix H0 using Householder building blocks as 
explained above, then H0H0 remains a constant diagonal matrix, inspite of 
coefficient quantization. Consequently HN(z)HN(z) is a constant diagonal 
matrix. This is as good as saying HN(z)HN(z) = c2I, for most applications.
IIR Lossless Systems

The above discussions can be generalized for the IIR lossless structures 
developed in Sec. 14.9. We will now recall a particularly simple system 
studied in Sec. 5.3, viz., IIR power symmetric QMF banks (Fig. 5.2-5). 
Here the polyphase matrix of the analysis bank is



TABLE 14.12.1 Losslessness at a glance.

Definitions.
1. Paraunitary property. H(z) is paraunitary if H(z)H(z) = c2Ir, ∀z, where c2 > 

0. (Note: this requires p ≥ r.) In particular this means H†ejω)H(ejω) = 
c2Ir, ∀ω.

2. Losslessness. H(z) is lossless if it is stable and paraunitary.
3. LBR (Lossless Bounded Real) property: implies lossless with real coefficients.
4. Normalized-lossless. Implies lossless with c2 = 1, that is H(z)H(z) = Ir.
5. Unitariness. R is unitary if R†R = dI,d > 0 {normalized if d = 1).

Basic properties of lossless systems.
1. Output energy = c2× Input energy, i.e.,

2. Σ∞n=0h†(n)h(n + k) = c2Irδ(k).
3. h†(0)h(L) = 0 (FIR case), assuming L > 0.
4. For p = r case, [det H(z)] = A(z) = allpass (= az-μ, μ > 0, for FIR case).
5. Let p = r. The degree of H(z) (i.e., the minimum number of delays required to 

implement H(z)) is equal to the degree of determinant, i.e.,

This follows from Section 14.4.2 for FIR case, and is proved in Section 14.7 for 
the general case.

For summary of further properties see Table 14.12.3.
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In what follows, H(z) is a p × r causal transfer matrix:

State-space manifestation.

Recall state space equations:

1. H(z) normalized lossless ⇒ there exists minimal realization for which the ma­
trix R≜ (realization matrix) is normalized unitary.

2. Let (A,B,C,D) describe some structure of H(z). Let A be stable and R 
defined above be normalized unitary. Then (i) the structure is minimal if 
p = r, and (ii) H(z) is normalized-lossless (even if p ≠ r).



TABLE 14.12.2 Lossless systems: factorizations and structures.

In what follows HN(z) denotes a causal lossless system.
Basic building blocks.

1. Vm(z) = I - vmv†m + z-1vmv†m, where vm is a unit norm vector. Fig. 14.4-1 
shows the structure. Vm(z) is degree-one lossless, and [det Vm(z)] = z-1.

2. Householder matrix Hk = I — 2uku†k, where uk is a unit norm vector. Fig. 
14.6-4(b) shows the structure.

Structures for FIR lossless system HN(z).
1. Rotation based. If HN(z) is 2 × 2 FIR with real coefficients, it can be imple­

mented using planar rotations as in Fig. 14.3-2. Corresponding 2 × 1 lossless 
structure is shown in Fig. 14.3-3. Generalizations of rotation-based structures 
for M × M (and M × 1) real coefficient case is given in Section 14.10 (Fig. 
14.10-5).

2. Diadic-based. If HN(z) is M × M or M × 1 degree-N FIR, it can be factorized 
into the form

Structures for unitary matrices.
1. Rotation based. Any real M × M matrix R with RTR = I can be factorized 

into the form shown in Fig. 14.6-3(a), involving M(M — 1)∕2 planar rotations.
2. Diadic based. Any M × M matrix R with R†R = I can be factorized into the 

form

where Hk are Householder matrices, and D is diagonal with ∣dii∣ = 1. If R is 
real, then Hk and D are real.
Variations. Variations of the above structures are given in Section 14.10, along 

with structures for the IIR case. See Table 14.12.3 for summary.
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where H0 is M × M unitary or M × 1 nonzero as the case may be. If coefficients 
of HN(z) are real, the vectors vm in Vm(z) and the matrix H0 are real.

3. Minimality. All structures mentioned above are minimal in delays.



TABLE 14.12.3 Lossless systems: further properties.

In what follows, H(z) is a causal transfer matrix:
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Smith McMillan form
Let H(z) be M × M with Smith-McMillan form Λ(z). The diagonal elements 

of Λ(z) are of the form λi(z) = αi(z)∕βi(z), where αi(z) and βi(z) are relatively 
prime polynomials in z. Assume further that H(z) is lossless. Then the following 
are true.

1. When H(z) is FIR, λi = z-ni, where ni are integers with n0 ≥ n1 ≥ . . . ≥ 
nM-1 ≥ 0.

2. In general if p is a pole of H(z) then 1∕p* is a zero, and vice versa. So all zeros 
are outside unit circle. The polynomials αi(z) and βj(z) are relatively prime 
for all pairs of i, j.

3. The degree of H(z) is the same as the degree of [det H(z)]. Every pole of H(z) 
is a pole of [det H(z)]. The same holds for zeros.

Modulus property
Let H(z) be M × M lossless with H(z)H(z) = I. Then H†(z)H(z) ≤ I for 

∣z∣ > 1. And H†(z)H(z) ≥ I for ∣z∣ < 1.
Structures.

1. Let H(z) be M × M lossless, with degree N. Then it can be factorized as

where (i) Vm(z) is the degree-one building block (14.9.1), (ii) Wm is the 
Householder unitary matrix (14.10.8), (iii) Φm(z) are diagonal matrices as 
in (14.10.1), and (iv) H0 and G0 are unitary matrices. In the real coefficient 
FIR case, H(z) can further be written as

where each Θm is a sequence of M — 1 planar rotations (Fig. 14.10-5(b)).
2. Let H(z) be M × 1 lossless. Then it can be factorized as

where Vm(z) are as in (14.9.1) and G(z) is causal FIR M × 1 lossless.



PROBLEMS

14.1. Let H(z) be a rational transfer function satisfying (14.2.1a). Prove then that 
(14.2.1b) holds.

14.2. Show that any p × L submatrix of a p × r lossless matrix is lossless.
14.3. Let H(z) = Σ∞n=0h(n)z-n, h(0) ≠ 0, be M × M lossless with degree > 0. For 

FIR H(z) we know that h(0) is singular. For IIR H(z), h(0) may or may not 
be singular. Give examples of both types.

14.4. Consider the following structure where T(z) is normalized lossless.

Figure P14-4

Let G(z) be stable with ∣G(ejω)∣ < 1 for all ω. Prove that (i) H(z) is stable 
and (ii) ∣H(ejω)∣ ≤ 1 for all ω.

14.5. Consider the following structure where ∣α∣ < 1.

Define H(z)≜Y1(z)∕U0(z). What is the maximum possible value of ∣H(ejω)∣ 
subject to the constraint that T(z) is normalized lossless?

14.6. Shown below is a feedback-cascade of 2 × 2 transfer matrices. The cascade has 
N building blocks, and is terminated at the right with a multiplier G0. An 
example of this type was presented in Chap. 3, viz., the lattice structures for 
allpass functions (e.g., see Fig. 3.+8).

Figure P14-6
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We assume that the cascaded feedback connection does not generate delay 
free loops. This assumption is valid for the lattice structures. Assume that 
each 2 × 2 building block above is normalized-lossless, and that the transfer 
function GN(z) is stable. Show that GN(z) is allpass when ∣G0∣ = 1 and that 
|GN(ejω)| ≤ 1 when ∣G0∣ < 1.

14.7. Consider the 2 × 2 lossless system

(P14.7)

Clearly its degree ≥ 2.
a) Verify that the determinant of H(z) is αz-2 for some α ≠ 0 so that 

[deg H(z)] = 2 exactly.
b) Obtain the cascaded structure based on planar rotations (Sec. 14.3.1).
c) Obtain the diadic-based cascaded structure (Sec. 14.4.2).

14.8. Consider the lossless system

(P14.8)

a) Find the vectors vm and P0 in the diadic based factorization given by 
(14.4.12).

b) Suppose we are given a M × 1 causal FIR lossless system PN(z). We know 
this can be factorized as in (14.4.12). Suppose we construct a unitary 
matrix H0 whose 0th column is P0. Consider now the product (14.4.10). 
This is evidently lossless, with 0th column equal to PN(z). So we have 
embedded the M × 1 lossless system PN(z) into an M × M lossless system 
HN(z). As a demonstration of this, let PN(z) be as in (P14.8). Find a 
3 x 3 lossless matrix HN(z) with 0th column equal to PN(z).

14.9. Let H(z) = . This is evidently lossless with degree two. Formally
perform the degree reduction steps to arrive at the cascaded structure in terms 
of planar rotations (Sec. 14.3.1).

14.10. Show that any 2 × 2 causal lossless system (not necessarily FIR) has the form

(P14.10)

where (i) the 0th column is lossless, and (ii) F(z)F(z) = 1. Note that (14.3.15) 
is a special case of this.

14.11. Let P(z) be M × 1 casual FIR lossless, factorized as P(z) = S(p)(z)P0 where 
S(p)(z) is a product of finite number of building blocks of the form (14.4.1). 
We know that if the factorization is minimal, then S(p)(z) is unique (Sec. 
14.4.4). However if the degree of S(p)(z) exceeds that of P(z) (nonminimal 
factorization) then there exist infinite number of matrices S(p)(z) satisfying
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P(z) = S(p)(z)P0. Prove this! [Hint. (I — vv† + z-1vv†)P0 = P0 for any v 
orthogonal to P0.]

14.12. Show that any 2 × 2 real unitary matrix has the form (14.3.2).
14.13. Consider the lossless structure of Fig. 14.3-2 based on planar rotations. Assume 

N = 1 and α = 1. Find the matrices (A, B, C, D) which occur in the state space 
description. Verify that the realization matrix (14.5.1) satisfies R†R = I.

14.14. As a generalization of Problem 14.13, consider the following cascaded structure

Figure P14-14
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where Rm are M x M with R†mRm = I, and

(P14.14)

With (A,B,C,D) denoting the state space description, show that the realiza­
tion matrix R defined in (14.5.1) satisfies R†R = I.

14.15. Give example of a structure for an M × 1 causal lossless system such that (i) the 
realization matrix defined in (14.5.1) satisfies R†R = I, and (ii) the structure 
is not minimal. This demonstrates that the result of Sec. 14.5.2 does not hold 
hold unless H(z) is M × M.

14.16. Suppose (A,B,C,D) is the state-space description of a minimal structure for 
some system. Let the R-matrix (14.5.1) be such that R†R = I. Prove that A 
is stable.

14.17. Let R be M × M so that it has M2 entries, that is, 2M2 real degrees of freedom 
in absence of further constraints. Suppose we impose the constraint R†R = I.
So the columns Rk satisfy (i) R†kRm = 0 for k ≠ m and (ii) ∣∣Rk∣∣ = 1 for all 
k. Since the M2 complex entries are constrained by these two conditions, the 
number of freedoms in choosing these M2 elements is less that 2M2. Show by 
direct counting (i.e., without using any factorization result) that the number 
of freedoms is M2.

14.18. Let H(z) be a stable rational transfer function such that (14.2.3) holds for 
every input sequence u(n). Prove that H(z) is lossless. {Hint. Use Sec. 14.5.)

14.19. Consider the unitary matrix
(P14.19)

Identify the vectors uk, and the quantities d and D in the Householder factor­
ization (14.6.16).



14.20. Repeat Problem 14.19 for the unitary matrix

(P14.20)

14.21. Consider the two-input two-output structure shown below, where 0 < σ < 1.

Figure P14-21

a) Show that the transfer matrix is given by

(P14.21)

and that it is lossless.
b) Find the Smith-McMillan form Λ(z). Also find appropriate unimodular 

W(z) and V(z) such that T(z) = W(z)Λ(z)V(z).
14.22. We know that the IIR lossless example in Problem 14.21 can be expressed as 

Vm(z)H0 where Vm(z) is as in (14.9.1). Identify am, H0, and the unit norm 
vector vm.

14.23. Let Hm(z) = ΣLn=0 h(n)z-n with h(0) ≠ 0 (i.e., Hm(∞) ≠ 0) be an M × M 
lossless system with degree = m.

a) We wish to find an M × 1 vector wm with ∣∣wm∣∣ = 1 such that

(P14.23)

where Hm-1(z) is causal FIR lossless with Hm-1(∞) ≠ 0 and with degree 
m — 1. Show that there exists a Wm satisfying all these requirements. 
Explain how this wm can be found.

b) Using this result show that any M × M causal FIR lossless system with de- 
gree N can be factorized as in Fig. 14.10-4 where (i) Φm(z) =

(ii) Wm = I — 2wmw†m with ∣∣wm∣∣ = 1, and (iii) G0 is M × M unitary.

778 Chap. 14. Paraunitary and lossless systems



(P14.24a)

14.24. Consider the lossless system

a) Verify that [det H(z)] = αz-1 for some α ≠ 0, so that H(z) has degree 
one.

b) We know from Sec. 14.10 that H(z) can be factorized as

(P14.24b)

where G0 is unitary and W1 = I — 2w1w†1, with ∣∣w1∣∣ = 1. Find w1 and 
G0.

c) We know from Sec. 14.4 that H(z) can also be factorized as H(z) = 
V1(z)H0 where V1(z) is as in (14.4.1) with ∣∣v1∣∣ = 1, and H0 is unitary. 
Find v1 and H0.

14.25. Let P be M × M Hermitian positive definite, and let λi be its eigenvalues. We 
know that λi > 0. Prove the following:

a) P ≤ I ⇔ λi ≤ 1, ∀i.
b) P ≤ I ⇔ P-1 ≥ I.
c) Ρ ≤ I ⇔ PT ≤ I.
d) Prove that (14.8.8) implies H†(z)H(z) ≥ I for ∣z∣ < 1.
e) Now let k be a column vector with k†k < 1. Show that kk† < I, that is, 

I - kk† > 0.
Note that since P is Hermitian, PT = P* so that (c) also holds with PT 
replaced by Ρ*.

14.26. Let H(z) be a causal stable transfer function. Let the input (14.8.3) (∣a∣ > 1) 
produce an output which satisfies y(n) = 0 for n > L. Prove then that the 
impulse response h(n) of the system H(z) satisfies h(n)v = 0 for n > 0.

14.27. We now consider the state space description (A,B,C,D), and the matrix

(P14.27)

for some IIR lossless structures.
a) Write down R for the example in Problem 14.21. Is R unitary?
b) Consider Fig. 14.9-1. Assume ∣∣vm∣∣ = 1 and ∣am∣ < 1. Write down the 

state space matrices (A, B, C,D) and hence R. Is R unitary?
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14.28. Consider the structure shown below.

This is the normalized IIR lossless building block.

a) Write down the realization matrix R and show that R†R = I.

b) Suppose we use this building block in place of Vm(z) in Fig. 14.10-1. 
Assume H0 is p x r with H†0H0 = I. Show that the realization matrix for 
the entire system satisfies R†R = I.

14.29. Consider Problem 14.6 again. In particular let each 2 × 2 building block be as 
in Problem 14.21. There are N building blocks, and each is characterized by 
a parameter σm. Each building block requires 3 multipliers. Now suppose we 
replace each building block with the following modified version.

Figure P14-29

This requires only one multiplier (and four adders). Show that its transfer
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(P14.29)

matrix is given by

and that GN(z) is unaffected (as long as the values of σm and G0 are un­
changed) . This structure requires only N + 1 multipliers. Evidently the in- 
equality |GN(ejω)| ≤ 1 continues to be true as long as 0 ≤ σm < 1 and 
∣G0| < 1. In other words, we have a strcturally bounded implementation, which 
therefore enjoys low passband sensitivity (Sec. 9.7).
Note: Low sensitivity structures of the above form can be used to implement a 
restricted class of filters for example, Butterworth filters. More general filters 
(such as elliptic) can be obtained by introduction of degree-two lossless build- 
ing blocks; see Swamy and Thyagarajan [1975] for details. These are closely 
related to wave digital filters, as elaborated in Vaidyanathan [1985a]. They 
are, however, of restricted use because of the lack of pipelineability in VLSI 
implementations; see Kung, et al. [1985].

14.30. We now give another proof of the matrix version of the maximum modulus 
theorem (suggested to the author by Prof. John Doyle at Caltech). This is 
perhaps more direct, and works for any closed contour, not just the unit circle.

a) Let A be any M × M matrix. Let μ be the maximum magnitude of the 
quantity x†Ay, as x and y are varied over ail unit-norm vectors. Let λ 
denote the maximum eigenvalue of A†A. Show that μ2 = λ.

b) Let H(z) be an M x M matrix function of the complex variable z. Assume 
that each entry Hkm(z) is analytic on and inside a closed contour C, and 
let H†(z)H(z) ≤ I on the contour. Show then that H†(z)H(z) ≤ I every­
where inside the contour. (You can use the scalar version of the maximum 
modulus theorem, Sec. 3.4.1).
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Appendix A

Review of Matrices

A.0 INTRODUCTION
There are several excellent references on matrices, e.g., MacDuffee [1946], Gant- 
macher [1959], Bellman [1960], Franklin [1968], Halmos [1974], Horn and Johnson 
[1985], and Golub and Van Loan [1989], to name a few. Our aim here is to review 
those results from matrix theory which have direct relevance to this text. Most 
proofs can be found, or deduced from, the above texts. The material here is some­
what dense, as it is primarily meant to be a reference. Most of the deeper results 
mentioned here are required only in Chap. 13 and 14.

A.1 DEFINITIONS AND EXAMPLES
A p × r matrix A is a collection of pr elements (real or complex numbers) arranged 
in p rows and r columns. Thus

(A.1.1)

One often writes A = [Aij] (or with a comma, as in [Ai,j]), and Aij = [A]ij. So i 
is the row index and j the column index, both starting at zero. A p x 1 matrix is 
said to be a p-vector or column vector (or just a vector). A 1 × r matrix is called a 
row vector. Thus,

(A.1.2)

To save space, one often writes a column vector as the 'transpose' of a row vector. 
Thus [1 2j]T stands for the column vector

(A.1.3)

782



(See below for definition of transpose). The elements of a vector v are commonly 
denoted as vi or v(i). Whether v is a row or a column is usually clear from the 
context.

A square matrix is a matrix with p = r. Thus the first matrix in (A.1.2) is 
square. If a matrix is not square, it is said to be rectangular. A 1 × 1 matrix (i.e., 
just a single element) is said to be a scalar. A p × r null matrix, denoted 0, has all 
elements equal to zero. If A = 0, A is said to be zero or null.

If two matrices have the same number of rows p and same number of columns 
r, they have the same size.

Diagonal matrices. The elements Aii of a matrix A are called its diagonal 
elements. A matrix for which all elements are zero except possibly the diagonal 
elements is called a diagonal matrix. Examples are

(A.1.4)

The set of diagonal elements is sometimes called the main diagonal. Note that a 
diagonal matrix need not be square. A square diagonal matrix with all diagonal 
elements equal to unity is said to be the identity matrix, denoted as I. Examples
are

(A.1.5)

which are 3 × 3 and 2 × 2 respectively. If the size of I is not clear from the context, 
a subscript will be used. The above examples represent, respectively, I3 and I2.

The notation

stands for a N × N diagonal matrix A with diagonal elements Aii = di.
Triangular matrices. A lower triangular matrix is one for which the elements 

above the main diagonal are equal to zero. An upper triangular matrix is one for 
which the elements below the main diagonal are equal to zero. Examples are:

(A.1.6)

A.2 BASIC OPERATIONS
A number of operations, including arithmetic, can be performed with matrices.

Transpose and transpose-conjugate. Given A = [Aij], we denote its trans­
pose as AT. It is defined by [AT]ij = Aji. In other words, the (i, j) entry of the 
transpose is same as the (j, i) entry of A. The transpose-conjugate of A, denoted
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A† , is obtained by conjugating every element of AT. For example with A equal to 
the 2 × 2 matrix in (A. 1.2), we have

(A.2.1)

Note that if A is p × r then AT as well as A† are r × p. Thus the transpose of a 
column vector is a row vector, and vice versa.

For a square matrix A, the notation A-1 stands for its inverse (defined and 
discussed in Sec. A.4). The notation A-T stands for (A-1)T. Similarly, A-† stands 
for (A-1)†.

Submatrices. A submatrix of A is any matrix formed by deleting an arbitrary 
set of rows and an arbitrary set of columns.
Arithmetic Operations

Addition and scalar multiplication. Two matrices with the same size 
can be added or subtracted by adding or subtracting corresponding elements. The 
notation cA stands for a matrix which is obtained from A by multiplying each 
element Aij with c. This operation is called scalar multiplication. Thus, cA = 
[cAij]. Given two matrices A and B of the same size, the matrix P = cA + dB 
has elements Pij = cAij + dBij. Matrix addition is evidently commutative, that is, 
A + B = B + A. Note also that [A + B]T = AT + BT.

Matrix multiplication. Given two matrices A and B with sizes p × m and 
m x r the product C = AB is defined by defining the elements of C as

(A.2.2)

Schematically,
(A.2.3)

Note that the number of columns of A has to be the same as the number of rows 
of B (this is called compatibility requirement), and that C is p × r. For example,

Whenever we write AB, the sizes of A and B are understood to be appro­
priate to make the product valid. The product PQR of three matrices is defined 
as (PQ)R provided that the sizes of the matrices are compatible. Note that ma­
trix multiplications is associative, that is, (PQ)R = P(QR). However, it is not 
commutative, i.e., in general AB ≠ BA. For example if A is 2 × 3 and B is 
3 × 4, then AB is well-defined but BA is not defined at all. It can be shown that 
(AB)T = BTAT and (AB)† = B†A†. The notation An stands for the product 
AAA . . . A (n times).

784 App. A. Review of matrices



The reversal matrix. Matrices of the form

are said to be reversal matrices. The general notation for an M × M reversal matrix 
is JM with subscript omitted when obvious. The matrix JA is obtained from A by 
renumbering the rows in reverse order. Similarly AJ is obtained by renumbering the 
columns in reverse order. Given a diagonal matrix Λ, the product JΛJ represents 
a new diagonal matrix with diagonal elements in reverse order. For example

Trace of a matrix. The trace of a square matrix A, denoted Tr(A) is defined 
to be the sum of the diagonal elements, i.e., ∑i Aii. It can be shown that Tr(AB) = 
Tr(BA) as long as both products are meaningful.

Norms, Inner Products and Outer Products
Given two N-vectors u and v, consider α = u†v. This is a scalar quantity 

and is called the inner product of u with v. The vectors are said to be (mutually) 
orthogonal if u†v = 0.

The inner product of u with u, that is, u†u is called the energy of u. Denoting 
the elements of u as ui, we see that u†u = ΣN-1i=0 ∣ui∣2 ≥ 0. For example

The quantity u†u is nonzero (hence positive) unless u = 0.
The norm ∣∣u∣∣ of u is defined as the positive square root of its energy, i.e.,

(A.2.4)

Sometimes this is also called the ℒ2 norm, and denoted as ||u∣∣2.
Given a p-vector u and an r-vector v, the quantity A = uv† is a p × r matrix 

and is called the outer product of u with v. This quantity is also called a diadic 
matrix. Example:

(A.2.5)

Cauchy-Schwartz inequality. Given two column vectors u and v, it can be 
shown that
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with equality if and only if v = cu for some scalar c. For example,

and (A.2.6) holds with strict inequality.

A.3  DETERMINANTS
There are several equivalent definitions of the determinant of a p × p matrix A. We 
will conveniently define it recursively as follows:

(A.3.1)

where m is a fixed integer in 0 ≤ m ≤ p - 1. Here Mkm is the determinant of the 
(p — 1) × (p - 1) submatrix obtained by deleting the kth row and mth column of A.

Minors and cofactors. The quantity Mkm is said to be the minor of the 
element akm. The quantity (-1)k+mMkm is said to be the cofactor of akm. In 
(A.3.1), the fixed column-index m is arbitrary.

In the above formula, the determinant has been computed by working with the 
mth column. Similarly, one can work with the mth row and obtain the determinant 
as

Here are some examples:

Determinants of block-diagonal matrices. Let A be a square matrix of 
the form

Then we can show that [det A] = [det P][det Q].
Principal and leading-principal minors. In general, the determinant of 

any square submatrix of A is said to be a minor of A. Let A be square. A principal
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(A.3.2)

Whenever we write [det A], it is implicit that A is square. The determinant of A 
is denoted either as [det A] or as ∣A∣.

For 2 × 2 matrices the above formula is simplified to



minor is any minor whose diagonal elements are also the diagonal elements of A. 
Thus for a 3 x 3 matrix A the principal minors are

A.4 LINEAR INDEPENDENCE, RANK, AND RELATED ISSUES
Let vk, 0 ≤ k ≤ m — 1 be a set of m column vectors. A linear combination of 
these vectors is an expression of the form Σm-1k=0 αkvk, and is clearly a vector of 
the same size. (Here αk are, in general, complex numbers.) The set S of all linear 
combinations of these vectors is said to be the space or vector space spanned by 
these vectors.

Another way to define a vector space in our context is this: a vector space is 
a collection of vectors of a given size such that every possible linear combination 
from this collection also belongs to this collection. In particular, the null vector 
(the vector with all components equal to zero) is a member of the vector space.

Linear independence. We say that the vectors vk, 0 ≤ k ≤ m - 1 are 
linearly dependent if there exists a set of m scalars αk, not all zero, such that 
Σm-1k=0 αkvk = 0. The set of vectors is linearly independent if they are not linearly 
dependent. For row vectors, we have an identical definition.

Basis vectors. The set of all vectors of the form Σm-1k=0 αkvk is said to be 
the space spanned by the m column-vectors vk. If S is the space spanned by a set 
of linearly independent vectors, then these vectors are said to form a basis for this 
space. The minimum number of basis vectors required to span the space under 
question is called the dimension of the space. The basis set is not unique. For
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Next, a leading principal minor of A is a principal minor such that if akk is an 
element, then so is aii for all i < k. Thus, the leading principal minors for a 3 × 3 
matrix are:

(A.3.3)

Properties of Determinants
a) Let C = AB. Then [det C] = [det A][det B].
b) If B is obtained from A by interchanging two rows (or two columns), then 

[det Bl = —[det A].
c) [det AT] = [det A].
d) For a p x p matrix A, [det cA] = cp[det A], for any scalar c.
e) The determinant of a diagonal matrix is the product of its diagonal elements.

The same is true for lower or upper triangular square matrices.
f) If any row is a scalar multiple of another row, the determinant is zero. If any 

row is zero, the determinant is zero. These statements also hold if 'row' is 
replaced with 'column' everywhere.
Singular and nonsingular matrices. A square matrix is said to be singular 

if [det A] = 0, and nonsingular if [det A] ≠ 0. The product AB of two square 
matrices is nonsingular if and only if each of A and B is nonsingular (since the 
determinant of AB is the product of individual determinants).



(A.4.1)

Rank of a Matrix
There are several equivalent ways to define rank (even though the equivalence 

is not obvious). We define the rank of a p × r matrix A to be an integer ρ(A) 
(denoted just p when there is no confusion) such that there exists a ρ×ρ nonsingular 
submatrix of A but there does not exist a larger nonsingular submatrix. If ρ1 
denotes the largest number of columns of A that form a linearly independent set, 
we say that ρ1 is the column rank of A. Evidently ρ1 ≤ r, and if ρ1 = r = number 
of columns, we say that A has full column rank. Similarly we can define row rank 
ρ2, and full row-rank matrices. It turns out that, for any matrix, ρ = ρ1 = ρ2. It is 
also clear from the definition that a p x p matrix is nonsingular if and only if it has 
full rank p.

♠Fact A.4.1. Important properties of rank. We now list the key features 
of rank.

a) ρ = ρ1 = ρ2, as stated above.
b) A p x p matrix is nonsingular if and only if the rank p = p.
c) ρ(AB) ≤ min(ρ(A),ρ(B)).
d) If ρ(A) = 0 then A = 0.
e) Suppose A is N × N with rank ρ < N. This means that there are ρ linearly 

independent columns, from which all columns can be generated by linear com­
bination. As a result, A can be written as

(A.4.3)
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example, either of the following two sets of vectors spans the entire space of two- 
component vectors:

(A.4.2)

Any N × N matrix A with rank ρ can be factorized like this.
f) Sylvester’s inequality. Let P and Q be M × N and N x K matrices with ranks 

ρp and ρq. Let ρpq be the rank of PQ. Then,
ρp + ρq - N ≤ ρpq ≤ min(ρp, ρq).

g) Given two square matrices A and B, the products AB and BA may not have
the same rank. However the matrices I — AB and I — BA do have the same 
rank. See Problem A.13. ◊

Diadic matrices. If p(A) = 1, then every column of A is a scalar multiple 
of every other column. The same is true of the rows. In this case we can write 
A = uv† where u and v are column vectors (so that v† is a row vector). In 
other words, any rank-one matrix is an outer product of two column vectors, and 
is sometimes called a diadic matrix. Here is an example:



so that

(A.4.4)

in this example.
Range space and null space. Given a p × r matrix A, the space spanned by 

its columns is said to be the range space (or column space) of A. This space is the 
set of all vectors of the form Ax where x is any r-component column vector. The 
dimension of the range space is equal to the rank of A. Note that the elements of 
the range space are p-vectors. The null space of A is the set of all r-vectors y such 
that Ay = 0. It can be shown that the set of all linear combinations from the range 
space of A and the null space of A† is equal to the complete space of all vectors of 
size p.

Orthogonal complements. Let t0, t1 . . . tρ-1 be a set of linearly independent 
N-vectors and let V be the vector space spanned by them. (Clearly, ρ ≤ N). 
Now consider the set V⊥ of all N-vectors orthogonal to all the vectors in V (i.e., 
orthogonal to all the above ti). The set V⊥ is itself a vector space, and is called 
the orthogonal complement of V. It has dimension N — ρ. Any N-vector x can be 
expressed as a linear combination of one vector in V and one in V⊥. That is,

Moreover, for a given x, the components x0 and x1 are unique. Letting tρ . . . tN-1 
denote a basis for V⊥, the matrix

is N x N nonsingular. Its columns span the space of all N-vectors.
The annihilating vector. Given a matrix A, any vector y such that Ay = 0 

is called an annihilating vector for A. Evidently, the set of all annihilating vectors 
is equal to the null space of A defined above. A nonzero annihilating vector exists 
whenever the column rank of A is less than full, so that a linear combination of the 
columns can be made zero. For square matrices, this is equivalent to the condition 
that the determinant be zero.
Inverse of a Square Matrix

Given a p × r matrix A, we say that the r × p matrix L is a left inverse if 
LA = Ir. We say that the r × p matrix R is a right inverse if AR = Ip. Inverses 
may or may not exist, and in general are not unique. For the case of square matrices, 
however the following are true: (a) An inverse exists if and only if A has full rank, 
i.e., A is nonsingular, and (b) when they exist, the left and right inverses are the 
same, and unique.

There is a closed form expression for the inverse of a nonsingular square matrix, 
given by

(A.4.5)

where [Adj A] is the adjugate of A (referred to as adjoint in some texts), defined as
(A.4.6)
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In other words, the (i, j) element of the adjugate is equal to the cofactor of the (j, i) 
element of A.

The matrix-inversion lemma. The following inversion formula, which holds 
whenever P and R are nonsingular, is very useful in system theoretic work. (Q and 
S need not be square).

Linear Equations
Consider an equation of the form Ax = b, where A is N × N, and b and x are 

N-vectors. Given the quantities A and b, we wish to find x satisfying this equation. 
Basically we have a set of N linear equations in N unknowns (the elements of x). 
Given A and b, there are several possibilities:

1. If A is nonsingular, there exists a unique solution given by x = A-1b.
2. If A is singular, then there are two possibilities: either there does not exist 

a solution, or there is an infinite number of solutions. (Since A is singular, 
Av = 0 for some v ≠ 0 which shows that if x is a solution, then x + cv is also 
a solution for any scalar c.)

More generally, consider the equation

A.5 EIGENVALUES AND EIGENVECTORS
Given a N × N square matrix A, consider D(s) = det [sI — A]. This is a polynomial 
in s with order N, called the characteristic polynomial. The N roots of D(s) are 
said to be the N eigenvalues of A. If a particular root λ0 has multiplicity K, that is, 
if D(s) has the factor (s — A0)K, then the eigenvalue λ0 is said to have multiplicity 
K. From the above definition, one can verify that λ is an eigenvalue of A if and 
only if there exists a nonzero vector v such that

(A.5.1)
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(A.4.7)

(A.4.8)

where A is N × M. The following are true.
1. If A has rank N (which implies N ≤ M), then there exists x such that (A.4.8) 

holds.
2. If the rank of A is less than N, then depending on b there may or may not 

exist x satisfying (A.4.8).
3. In any case, if a solution exists, it is unique if and only if the rank of the matrix 

A equals the number of columns M.

The vector v is said to be an eigenvector of A corresponding to the eigenvalue λ.
For example, let A = [ 3 1 13 ]. Then



so that the eigenvalues are λ0 = 4 and λ1 = 2. Furthermore

so that the corresponding eigenvectors are

Properties of Eigenvalues and Eigenvectors
a) If v is an eigenvector of A, then so is cv for any scalar c ≠ 0.
b) If v1 and v2 are eigenvectors corresponding to distinct eigenvalues λ1 and λ2, 

then v1 and v2 are "distinct". More accurately, we cannot write v1 = αv2 for 
any scalar α.

c) Let A be N x N with N distinct eigenvalues λk, 0 ≤ k ≤ N-1. In other words, 
none of the eigenvalues is a multiple root of D(s). Then the corresponding 
eigenvectors vk, 0≤ k ≤ N—1 are linearly independent. Also, each eigenvector 
vk is unique (except, of course, for a scale factor). Notice, in general, that if 
A has less than N distinct eigenvalues, then there may or may not exist a set 
of N linearly independent eigenvectors.

d) Suppose λ is a complex eigenvalue of a real matrix A. Then its conjugate λ* is 
also an eigenvalue. Also if an eigenvalue of a real matrix is complex then the 
corresponding eigenvector is necessarily complex.

e) A has an eigenvalue equal to zero if and only if it is singular.
f) The eigenvalues of A are same as those of AT.
g) For a square (lower or upper) triangular matrix, the eigenvalues are equal to the 

diagonal elements. (The same is true of a diagonal matrix, which is a special 
case.) This follows by noting that, in these cases, [det (sI — A)] = ∏(s — aii).

h) Let A be N x N with eigenvalues λi. Then the determinant and trace can be 
expressed as

i) For nonsingular A, the eigenvalues of A-1 are reciprocals of those of A.
j) If λk are the eigenvalues of A, the eigenvalues of A + σI are equal to λk + σ. 

Proof. Let Av = λv, then (A + σI)v = Av + σv = (λ + σ)v.
It is possible for all eigenvalues to be equal to zero, even if A ≠ 0. An example 

is a triangular matrix with all diagonal elements equal to zero.
This appears to be a good place to summarize the various ways in which sin­

gularity of a matrix can manifest:
♠Fact A.5.1. On singularity. Let A be N × N. Then the following state­

ments are equivalent:
a) A is singular.
b) [det A] = 0.
c) There exists an eigenvalue of A equal to zero.
d) There exists a nonzero vector v such that Av = 0.
e) The rank of A is less than N.
f) The N columns (and rows) of A are not linearly independent.
g) A has no inverse.
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h) The equation Αx = b has no unique solution x (i.e., it has either no solutions, 
or an infinite number of them). ◊

Eigenspaces. Suppose the N eigenvalues of A are not distinct. It is then 
conceivable that an eigenvalue, say λ0, has more than one eigenvector. Suppose, 
for example, that {v0, v1, v2} is a set of three linearly independent eigenvectors 
corresponding to λ0, i.e., Avk = λ0vk for k = 0, 1, 2. Then any linear combination 
of v0, v1 and v2 (i.e., any vector in the space spanned by v0, v1 and v2) is an 
eigenvector for λ0. This vector space spanned by v0, v1, and v2 is the eigenspace 
corresponding to λ0.

Similarity transformations. Given a square matrix A, suppose we define 
A1 = T-1AT where T is some nonsingular matrix. It turns out that A1 and A 
have the same set of eigenvalues. (Proof: Av = λv ⇒ T-1AT(T-1v) = λ(T-1v). 
This transformation of A to A1 is said to be a similarity transformation.
Diagonalization

Suppose A is N × N, and assume that it has N linearly independent eigenvec­
tors tk. (This does not necessarily mean that there are N distinct eigenvalues.) We 
can write Atk = λktk, 0 ≤ k ≤ N — 1. We can compactly write these as one matrix 
equation:

(A.5.3)

This shows that if there exist N linearly independent eigenvectors, then we can 
diagonalize A by applying a similarity transformation. Conversely, whenever we 
can find T such that T-1 AT is diagonal, the columns of T are eigenvectors of A 
with corresponding eigenvalues appearing on the diagonals of T-1AT. For example,

. We have already computed the eigenvalues and eigenvectors above.
From these we obtain
let A =

An N x N matrix A is said to be diagonalizable if it can be written as in (A.5.3) 
for some diagonal Λ and nonsingular T. The following points are worth noting.

1. Not every N × N matrix is diagonalizable. For example suppose A is a nonzero 
matrix such that the only possible eigenvalue is λ = 0. (An example is A =

If A is diagonalizable, then A = TΛT-1 with Λ = 0 so that A = 0, 
which is a contradiction.

2. Every matrix with N distinct eigenvalues is diagonalizable because there are 
N linearly independent eigenvectors.
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(A.5.2)

where Λ is an N × N diagonal matrix with kth diagonal element equal to λk. We 
can rearrange this as



3. There is a class of matrices called normal matrices (defined below), which are 
diagonalizable even if the eigenvalues are not distinct.

Cayley-Hamilton Theorem
Recall that the characteristic polynomial D(s) is defined as [det (sI — A)] and 

has the form D(s) = sN + dN-1sN-1 + . . . + d0. The equation D(s) = 0 is called 
the characteristic equation (its solutions being the eigenvalues). It turns out that 
the N × N matrix A satisfies this equation, that is,
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This result is called the Cayley-Hamilton theorem. This says that the matrix AN 
can be expressed as a linear combination of the lower powers.

A.6 SPECIAL TYPES OF MATRICES
We now discuss a number of special types of matrices which arise in our discussions 
throughout the text.

Hermitian matrix. H is said to be Hermitian if H† = H. This implies 
Hij = H*ji. Note that a Hermitian matrix, by definition, is square. A real Hermitian 
matrix is symmetric (i.e., HT = H). Variations of this class are the skew-Hermitian 
matrix (H† = —H), and antisymmetric matrix (HT = —H).

Any matrix A can be written as

where Ah is Hermitian and As is skew-Hermitian. For this, just define

Unitary matrix. U is said to be unitary if U†U = cI for some c > 0. This 
means that every pair of columns is mutually orthogonal, and that all columns 
have the same norm √c. If the unitary matrix is square, then UT as well as U† 
are unitary. Thus, for a square unitary matrix UU† = U†U = cI. If c = 1, U 
is normalized unitary. A real unitary matrix is usually said to be an orthogonal 
matrix (orthonormal if UTU = I). In Chap. 14 one can find more details about 
unitary matrices, planar rotations, Householder forms, and factorizations.

Let y = Ux. If U is unitary, it is clear that y†y = cx†x, for any choice of 
X. So a unitary matrix changes the norms of all vectors by the same factor √c. 
Conversely, suppose a matrix U is such that y†y = cx†x for all vectors x. Then U 
is unitary (Problem A.17).

Circulant matrices. A square matrix is right circulant if each row is obtained 
by a right circular shift of the previous row. Example:

(A.6.1)



The left-circulant property is similarly defined. Unless mentioned otherwise, 'circu­
lant' denotes right circulants.

Normal matrix. A is said to be normal if AA† = A†A. By definition, A 
has to be a square matrix. It can be verified that the following matrices are normal: 
(a) Hermitian and skew-Hermitian matrices, (b) square unitary matrices and (c) 
circulants.
The DFT and IDFT Matrices

A matrix of special interest in digital signal processing is the Discrete Fourier 
Transform (DFT) matrix. This is a N × N matrix defined as WN = [WNkm] where 
WN = e-j2π/N. In other words, the entry at the kth row and mth column is equal 
to e-j2πkm/N. Evidently this is a symmetric (but complex) matrix. Examples are:

The subscripts N on W and W are usually omitted if they are clear from the 
context. The matrix W satisfies the property W†W = NI so that it is unitary. 
Given a finite length sequence x(n), 0 ≤ n ≤ N -1, suppose we define the vector 
x = [x(0) x(1)... x(N — 1)]T, and compute the vector X = Wx. Then the
components of X, viz., X(k),0 ≤ k ≤ N — 1 are said to form the DFT coefficients 
of the sequence x(n). The sequence x(n) is the inverse DFT (abbreviated IDFT) of 
the sequence X(k). The matrix W-1 (which is equal to W†∕N) is called the IDFT 
matrix. Notice that W is symmetric, that is, WT = W so that W† = W*.

The DFT and IDFT relations are more commonly written as

(A.6.2)

Toeplitz matrices. An N × N matrix A is said to be Toeplitz if the elements 
Aij are determined completely by the difference i — j. For example,

(A.6.3)

is Toeplitz. Pictorially, if we draw a line parallel to the main diagonal, then all 
elements on this line are equal. Thus, a Toeplitz matrix is completely determined 
by the 0th row and 0th column, that is, by 2N — 1 elements. Notice that circulants 
are Toeplitz.

If we replace each of the 2N — 1 elements in a Toeplitz matrix by a (possibly 
rectangular) matrix, we obtain a block-Toeplitz matriz. An example is

(A.6.4)
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where ai are themselves 2 × 2 matrices.
Vandermonde matrices. An N × N matrix, each of whose rows has the form

The transponse of a Vandermonde matrix, for example,

(A.6.5)

is a Vandermonde matrix. Example:

(A.6.6)

(A.6.7)

is also said to be a Vandermonde matrix. Note that the DFT matrix is Vander­
monde. The determinant of a Vandermonde matrix is given by

(A.6.8)

For example, if A is as in (A.6.6),

(A.6.9)

It follows that a Vandermonde matrix is nonsingular if and only if the ai's are 
distinct.
Eigenstructures of Special Matrices

Some of the above mentioned special matrices satisfy special properties related 
to eigenvalues and eigenvectors.

♠ Fact A.6.1. Normal matrices. The N × N matrix A is normal if and 
only if we can find N × N unitary U such that U-1AU is diagonal, that is, if and 
only if we can write

(A.6.10)
for diagonal Λ and unitary U. This means that normal matrices are precisely 
those for which there exists a complete set of mutually orthogonal eigenvectors (i.e., 
unitary diagonalization is possible). Without loss of generality we can assume the 
columns of U to have unit norm. Then (A.6.10) is the same as

(A.6.11)
This is identical to (A.5.3) with T = U. ◊

Notice, as a corollary, that if all the eigenvalues of a normal matrix are identical, 
then it has the form A = λI (where λ is this common eigenvalue). The same is not 
true for arbitary matrices, for example, A =
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♠ Fact A.6.2. Special normal matrices. Since Hermitian, unitary and 
circulant square matrices are normal, they can be written as in (A.6.11). In addition, 
the following are true.

a) If A is Hermitian, all eigenvalues are real. Moreover, v†Av is real for all 
vectors v.

b) If A is unitary (A†A = cI, c > 0), then all the eigenvalues have magnitude √c.
c) If A is M × M circulant, then we can write (A.6.10) with U = W∕√M, where

W is the DFT matrix. The eigenvalues of A are the DFT coefficients of the 
0th row of A. The eigenvectors are the columns of W∕√M.

Quadratic Forms and Positive Definite Matrices
For any N × N matrix P, the scalar v†Pv is said to be a quadratic form. In 

particular when P is Hermitian we know that v†Pv is real. If this is positive for all 
nonzero v, we say that P is positive definite. Notice that this property is defined 
only for Hermitian matrices.

Based on the properties of v†Pv we can in fact identify a number of definitions 
as follows:

(positive definite)
(positive semidefinite or nonnegative definite)
(negative definite)
(negative semidefinite).

(A.6.12)

Here are some examples:

.) In other words, it is

possible that v†Pv has different signs for different v. In that case, P is said to be 
indefinite..

Matrix inequalities. If P is positive definite, we indicate it as P > 0 (P ≥ 0 
for semidefinite). Given two Hermitian matrices P and Q of the same size, we write 
P > Q if P — Q is positive definite (P ≥ Q if P — Q is positive semidefinite). 
Notice however that, in general, the difference matrix P — Q can be indefinite, even 
though P and Q are definite.
Properties of Positive Definite Matrices

For convenience of reference we now list a number of properties of positive 
(semi)definite matrices. We encourage the reader to verify these for the examples 
shown above.

a) All diagonal elements of a positive definite (semidefinite) matrix are positive 
(nonnegative).
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(See test for positive (semi)definiteness below). By definition, a positive definite 
matrix is also positive semidefinite. Notice that P is positive definite (semidefinite) 
if and only if — P is negative definite (semidefinite). It is possible that P does not 
belong to any of these categories. (Example: P =



b) The Hermitian matrix P is positive definite (semidefinite) if and only if all the 
eigenvalues are positive (nonnegative).

c) Test for positive definiteness. The Hermitian matrix P is positive definite if and 
only if ail leading principal minors of P are positive, and positive semidefinite 
if and only if all principal minors are nonnegative.

d) If P ≥ 0 and Q ≥ 0, then P + Q ≥ 0. If in addition Q > 0 (or P > 0), then
P + Q > 0.

e) Square roots. Given a positive number a, we know that we can find a real 
square root. The beauty of positive definite matrices is that we can define 
square roots in a similar way. Given a Hermitian matrix P, if we can factorize 
it as P = Q†Q for some Q (possibly rectangular), we say that Q is a square 
root. For example, consider A =
already calculated its eigenvalues to be 4 and 2, so that it is positive definite. 
By using the diagonalization result for this, we obtain

. This is Hermitian, and we have

Square roots are not unique. For example, suppose Q is a square root, then UQ 
is also a square root for any normalized unitary U. It is clear that if there exists 
a square root for P, then P is nonnegative definite because v†Pv = v†Q†Qv = 
w†w ≥ 0. Conversely, it can be shown that any N × N nonnegative definite P 
with rank ρ can be factorized as q†q where Q is ρ × N. One technique to find 
such a factor Q is called Cholesky decomposition [Golub and Van Loan, 1989], 
which produces a lower triangular square root.

f) Suppose Q is p × r, with p ≥ r. Evidently the rank of Q ≤ r. Define the r × r 
positive semidefinite matrix P = Q†Q. This is nonsingular (hence positive 
definite) if and only if Q has full rank r.

g) Determinant and diagonal elements. Let P be N × N Hermitian positive defi- 
nite, and let Pii denote its diagonal elements. Then

with equality if and only if P is diagonal. See Problem A.19 for a proof. 
♠ Fact A.6.3. Positive definite matrices. Let P be N × N Hermitian.

Then the following statements are equivalent.
a) P is positive definite (i.e., v†Pv > 0 for all vectors v ≠ 0.)
b) All eigenvalues of P are positive.
c) There exists an N × N nonsingular square root Q.
d) There exists an N x N nonsingular lower triangular square root Δℓ.
e) There exists an N × N nonsingular upper triangular square root Δu.
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f) All leading principal minors of P are positive. ◊

A.7 UNITARY TRIANGULARIZATION
It should be noticed that an arbitrary square matrix may not be diagonalizable [i.e., 
expressible in the form (A.5.3)]. The class of matrices which can be diagonalized 
by unitary matrices [i.e., which can be expressed as in (A.6.11)] is even smaller 
(namely normal matrices). However, every square matrix can be triangularized by 
a unitary transformation, as stated next.

♠ Fact A.7.1. Let A be an arbitrary N × N matrix. Then, we can always 
write it in the form

Since triangular matrices play an important role in many applications, it is useful 
to summarize some of their properties.

♠ Fact. A.7.2. Properties of triangular matrices. Let A and B be N×N 
lower triangular. Then,

a) The product AB is lower triangular.
b) [det A] is equal to the product of diagonal elements Aii.
c) The eigenvalues of A are equal to the diagonal elements Aii.
d) If all diagonal elements are such that ∣Aii∣ < 1, then An → 0 as n → ∞.
e) If all diagonal elements are equal to zero then AN = 0. ◊

Property (d) above finds application in stability analysis (Chap. 13). Property 
(e) is useful in the study of FIR systems. The above results hold if “lower triangular” 
is replaced with “upper triangular” everywhere.

A.8 MAXIMIZATION AND MINIMIZATION
Suppose A is Hermitian. Consider the quadratic form v†Av. If we constrain v to be 
a unit norm vector, then this quadratic form cannot take arbitrarily large or small 
values. The extreme values are determined by the eigenvalues of A as summarized 
in the following result.

♠ Fact A.8.1. Rayleigh’s principle. Let A be N × N Hermitian. We 
know that the eigenvalues are real. Let λmin and λmax be the smallest and largest 
eigenvalues. Then the maximum value of v†Av, as we vary v over all unit norm
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(A.7.1)

where U is N × N normalized unitary (i.e., U†U = I), and Δ is lower triangular. 
(A.7.1) can be regarded as a similarity transformation of A into Δ. So the eigen- 
values of A are the same as those of Δ, which in turn are the diagonal elements of 
Δ. Note that the columns of U are not necessarily the eigenvectors of A, unlike in 
diagonalization. ◊

This result, due to Schur, is of great importance. As an example,



vectors, is equal to λmax and occurs if and only if v is an eigenvector corresponding 
to λmax. Similarly the minimum value of v†Av over unit norm v is equal to λmin 
and occurs if, and only if, v is an eigenvector corresponding to λmin. ◊

Note that λmax may have multiplicity > 1, in which case the eigenvector which 
maximizes the quadratic form is any vector from the corresponding eigenspace.
The "power method" for computing λmax and its eigenvector

Let A be Hermitian positive semidefinite. So λmin ≥ 0 and λmax ≥ 0. Suppose 
we perform the following iteration
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with the initial vector v0 chosen arbitrarily. Unless v0 is orthogonal to every vector 
in the eigenspace of λmax, this iteration eventually converges to an eigenvector cor­
responding to λmax. This technique is called the power method. Once an eigenvector 
v is so computed, we compute λmax from Av = λmaxv.

If we are interested in computing λmin and a corresponding eigenvector, there 
are several tricks we can use. If A is nonsingular, we can invert it (so that 1∕λmin 
is its largest eigenvalue. If we wish to avoid inversion (which is time consuming) 
we can first compute λmax and define B = λmaxI - A. This is positive semidefinite 
with largest eigenvalue λmax — λmin which can be computed by the power method. 
So λmin can be found.

A.9 PROPERTIES PRESERVED IN MATRIX PRODUCTS
Let A and B be N x N matrices satisfying a given property. It is often important 
to know whether the product C = AB satisfies the same property. For example, 
the product of two unitary matrices is unitary, but the product of two Hermitian 
matrices is not necessarily Hermitian.

Properties preserved under matrix multiplication. (a) Unitariness, (b) circulant 
property, (c) nonsingularity, (d) lower (hence upper) triangular property.

Properties not necessarily preserved. (a) Hermitian property, (b) positive def­
initeness, (c) Toeplitz property, (d) Vandermonde property, (e) normal property, 
and (f) stability (i.e., all eigenvalues inside the unit circle). See Problem A.16.



PROBLEMS

A.1. We know that matrix products do not commute, that is, in general AB ≠ BA.
a) Demonstrate this with an example when A and B are (i) 2 × 2 and (ii) 

3 × 3.
b) Find examples of 2 × 2 matrices A and B such that AB = BA. (To avoid 

trivial answers, make sure the matrices are non diagonal.)
A.2. Which of the following matrices is diagonalizable?

A.3. Consider the Toeplitz matrix

a) Compute the quantity A2 and verify that it is not Toeplitz. This shows 
that the product of Toeplitz matrices may not be Toeplitz.

b) Compute the determinant and verify that this is nonsingular. Find the 
inverse.

A.4. Verify Cayley-Hamilton theorem (A.5.4), for A =

A.5. Let A and B be N × N lower triangular matrices. Thus, Aij = 0 for j > i and 
Bjk = 0 for k > j. Using these prove that AB is lower triangular.

A.6. Check whether each of the following matrices has any of these properties: (a) 
Hermitian, (b) positive definiteness, (c) unitariness, and (d) normal property.

A.7. Find the eigenvalues and eigenvectors of the matrix 
positive definite?

. Is the matrix

A.8. Evaluate all the leading principal minors of the matrices

Which of these matrices are positive definite?

A.9. Let A = vv† where v is an N × 1 matrix, i.e., a column vector. 
a) Show that v†v is an eigenvalue of A, with corresponding eigenvector v.
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b) Show that the remaining N — 1 eigenvalues are equal to zero. Find a set 
of N independent eigenvectors for A.

A.10. Let H be Hermitian and S skew-Hermitian. Show that v†H v is real and v†Sv 
imaginary for any choice of v.

A.11.

is such an example.
a) It is possible for a nonzero matrix A to be such that vTAv = 0 for all v. 

Show that A =

b) Next show that if v†Av = 0 for all vectors v, then A = 0. (Hint: Write 
A = Ah + As where Ah is Hermitian and As is skew Hermitian.)

A.12. Show that a lower triangular matrix cannot be unitary unless it is diagonal.

a) Compute AB and BA and verify that they do not have the same rank.
b) Compute I — AB and I — BA and verify that these have the same rank.
c) (This is tricky.) More generally, let A and B be arbitrary square matrices 

of the same size. Show that I — AB and I — BA have the same rank.
A.14. Find examples of Hermitian positive definite matrices P and Q such that P —Q 

is indefinite. (Avoid trivial answers by finding non diagonal examples!)
A.15. The product of two right-circulant matrices is right-circulant. Prove this for 

the 3 × 3 case.
A.16. Let A and B be square matrices with a certain property in common (e.g., 

unitary, circulant, and so on.) If the product AB also has this property, we 
say that the property is preserved under multiplication. Prove by examples that 
the following properties are not necessarily preserved under multiplication: (i) 
Hermitian, (ii) Vandermonde, (iii) normal property, and (iv) stability (i.e., all 
eigenvalues of A have magnitude less than unity).

A.17. Let U be a square matrix, and let y = Ux. Let U be such that y†y = x†x for 
all vectors x. Show that U†U = I.

A.18. Prove the following matrix identity

where (A, B, C, D) are matrices of appropriate dimensions, A and D are square 
(hence R is square), and D is nonsingular. Hence prove that

A.19. Let P be N × N Hermitian positive definite. Partition it as

(PA.19a)

Problems 801

A.13. Let A = , B =



Here P00 is scalar, whereas P11 is (N - 1) × (N - 1). Evidently p10 is a column 
vector.

a) Using the definition of positive definiteness, show that P00 is real and 
positive. Also show that P11 is Hermitian positive definite.

b) Using the previous problem, show that
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(PA.19b)

c) Using some or all of the results proved above, show that

(PA.19c)

with equality if and only if p10 = 0.
d) Let Pii denote the diagonal elements of P. By repeated application of the 

above result, prove that

(PA.19d)

with equality if and only if P is diagonal.
A.20. Let P be as in Problem A.19. We now provide a second proof of the inequality 

in (PA.19d).
a) Prove that P can be written as P = DQD† where D is a diagonal matrix 

of positive elements, and Qii = 1 for all i.
b) Hence show that [det P] = [det Q] × [Πi=0N-1 Pii].
c) Now show that det Q ≤ 1, with equality if and only if Q = I. This 

establishes the desired result (PA.19d). [Hint. The determinant is the 
product of eigenvalues and the trace is the sum of eigenvalues. Use this 
along with the arithmetic/geometric mean inequality, which can be found 
in Appendix C; see discussion around Eq. (C.2.3).]



Appendix B

Review of 

random processes

B.0  INTRODUCTION
This appendix reviews some results from the theory of random processes, which will 
be essential when analyzing roundoff noise in filter banks (Chap. 9). These results 
will also be used in studying the effects of subband quantization in Appendix C. 
Detailed treatements of random processes can be found in a number of references, 
e.g., Papoulis [1965], Davenport [1970], Oppenheim and Schafer [1975], Peebles 
[1987], and Therrien [1992].

B.1  REAL RANDOM VARIABLES

We assume familiarity with the notions of probability and random variables, which 
are basic to all further discussions. Let X be a real random variable (abbreviated 
as rv or r.v.). † We will deal with continuous random variables. This means that 
X can take any value in a continuous range such as a ≤ X ≤ b, where a and b may 
not be finite. In this case, we have to describe the r.v. by a probability density 
function (rather than just probability), denoted as fχ(x). This function is defined 
such that the integral

(B.1.1)

represents the probability that X is in the range x1 ≤ x ≤ x2. It satisfies the 
following properties: (a) fχ(x) ≥ 0 and (b) ∫∞-∞ fx(x)dx = 1.

Figure B.1-1 shows an example of fχ(x) called the uniform density function. It 
is easy to see that this satisfies the property ∫∞-∞ fx(x)dx = 1. The density function 
fx(x) can exceed unity, since it is not a probability by itself. In the example shown, 
if (b - a) < 1, the value of fχ(x) exceeds unity. Fig. B.1-2 shows another popular

† Formally, an r.v. is defined to be a mapping from a sample space to the real 
line (more generally the complex plane); see Papoulis [1965].
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(B.1.2)

density called the Gaussian density. This is analytically given by

The meanings of mX and σX will be explained below. For the moment note that 
as mX decreases, the center of the plot shifts to the left, whereas as σX decreases 
the plot gets narrower and taller. †

Figure B.1-1 The uniform 
probability density function.

Figure B.1-2 The Gaus- 
sian density function.

Expected Values
Let g(X) be a function of an r.v. X (e.g., g(X) = X2, sinX etc.). In general 

g(X) is itself a random variable. The expected value of g(X) is defined to be
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(B.1.3)

Here are some standard examples: mX ≜ E[X] is the expected value of the r.v. X. 
The quantity E[X2] is called the mean square value of X. The quantity E[(X — 
mX)2] which is the mean square value of the r.v. (X — mX) is called the variance 
of X, denoted σ2X. Summarizing,

(B.1.4)

† In this section we have used upper case letters such as X for the random 
variables, and lower case letters such as x,x1 for the values assume by the random 
variables. This is a useful notation, but sometimes becomes infeasible because 
of conflicting notational conventions, and other demands for upper case letters. 
In many cases we will leave it to the reader’s judgement to make the distinction 
between an r.v. and the value assigned to it.



These are related as

mX is also called the mean value or mean of X. The quantity σX (square root of 
variance) is called the standard deviation of X. From these definitions one can 
verify that for the Gaussian density, the mean and variance are indeed given by 
mX and σ2X appearing in (B.1.2). Refering to Fig. B.1-2 we see that the mean mX 
agrees with the center of the plot. (This is not in general true for arbitrary density 
functions.) For the uniform density function one can verify that

(B.1.6)

fγ(y) can be obtained similarly. fX(x) and fγ(y) are said to be marginal density 
functions.

Given a function g(X,Y) of the two random variables, we define its expected 
value as
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(B.1.5)

In general, the function fX(x) can have impulses (Dirac delta functions) in it. 
These are required to take care of the discrete nature of the density function in 
some applications; for example, if the probability for X to take the value 7 is a 
half, then fX(x) must have a term 0.5δa(x — 7). In this text, we have no need to 
accomodate such impulses, so we assume fX(x) to be impulse-free.
Collection of Random Variables

Suppose X and Y are two random variables. These are jointly described by 
the joint probability density function fXY(x, y). This is defined such that

(B.1.7)

is equal to the probability that X and Y are in the range x1 ≤ X ≤ x2 and 
y1 ≤ Y ≤ y2. The joint density is nonnegative and such that if we set x1 = y1 = —∞ 
and x2 = y2 = ∞, the above integral reduces to unity. Moreover, the density 
function of one of the random variables, say that of X, can be recovered from 
fXY(x, y) by integrating over the other r.v. Y, that is,

(B.1.8)

(B.1.9)

The quantity
(B.1.10)

is called the cross correlation between the real random variables X and Y. The 
quantity

(B.1.11)
is called the cross covariance between X and Y These are related as

(B.1.12)



(B.2.2)
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a generalization of (B.1.5).
Depending on the behavior of fXY(x, y), RXY and CXY, two random variables 

are often classified into useful types. We say that X and Y are
1. statistically independent if fXY(x,y) = fX(x)fγ(y).
2. uncorrelated if E[XY] = E[X]E[Y], that is, RXY = mXmY i.e., CXY = 0.
3. orthogonal if E[XY] = 0.

Note that uncorrelatedness and orthogonality are identical, if one of the random 
variables has zero mean. It can be shown that statistical independence implies 
uncorrelatedness but the converse is in general not true. For example, let X = cos θ 
and Y = sin θ where θ is a real r.v., with uniform density function in the range 
0 ≤ θ < 2π. Then X and Y are uncorrelated but not statistically independent. 
If fXY(x,y) is Gaussian (Sec. B.5), then it can be shown that the uncorrelated 
property implies independence.

In a manner identical to the above, if we are given several random variables 
X0, X1, . . . XM-1, we can define a joint density function and various expected values. 
See Sec. B.5.

B.2 REAL RANDOM PROCESSES
Let {X(n)} be a real sequence such that each sample X(n) is a random variable. 
We say that {X(n)} is a random process (with braces ususally omitted). (Once 
again a formal definition based on a mapping from a “sample space” to the space 
of functions can be found in the references mentioned before). We use X(n) to 
indicate the random process and x(n) to denote a particular realization, i.e., x(n) 
is the value taken by the random variable X(n) in a particular measurement.

When we attempt to characterize the random process, several practical diffi- 
culties arise. Each sample X(n) is characterized by a density function, and pairs of 
samples such as X(n — 1),X(n) are characterized by two dimensional joint density 
functions. In fact, given any set of samples such as X(n1), X(n2), . . . X(nM), we 
have to characterize them by a M dimensional joint density. One can see that the 
complete characterization becomes very complicated. Note also that in general x(n) 
does not have finite energy, and its z-transform defined in the usual way may not 
converge anywhere. So we require a different tool to understand and characterize 
these waveforms.

However, as we will see, a partial characterization based on expected values is 
sufficient for many applications, for example, noise analysis in digital filter banks. 
We can define various kinds of expected values for any random process. The quantity 
E[X(n)] is the mean of the random process, and in general depends on n. The 
quantity

(B.2.1)
is the cross correlation between the real random variables X(m) and X(n).
Wide sense stationary (WSS) processes

A wide sense stationary (WSS) random process is one for which E[X(n)] is 
independent of n and R(m, n) depends only on the difference m—n. We can therefore 
define the functions



The quantity k in RXX(k) is called the lag variable (as it describes a difference in 
time index). We say that RXX(k) is the autocorrelation of the WSS process at lag 
k.

For applications such as noise analysis in linear systems, the noise source (such 
as the output noise of a roundoff quantizer), can often be modeled satisfactorily as 
a wide sense stationary random process [Oppenheim and Schafer, 1975]. In these 
applications, the quantity of main interest is noise variance at the system output. 
This can be calculated from the autocorrelation RXX(k) of the noise source. It is 
not necessary to know the higher dimensional density functions (or even the two 
dimensional density function) in order to perform this analysis. This simplifies our 
study of random processes, as well as noise analysis to a large extent. From this 
point on, we will concentrate entirely on WSS random processes.

From RXX(k) we can define several useful quantities: the energy of the random 
process is

The covariance squence CXX(k) is defined as
(B.2.5)

CXX(k) is the autocorrelation of the zero mean process X(n) — mX.
Power Spectral Density

The power spectrum (or power spectral density) of the WSS process is defined 
as the Fourier transform of RXX(k), that is,

(B.2.8)

For a real process, RXX(k) is symmetric (that is, RXX(-k) = RXX(k)), so that 
SXX(ejω) is real-valued. In fact it can be shown that SXX(ejω) ≥ 0 (whether the 
process is real or complex). Note that we can write SXX(ejω) as a sum of two 
terms:

(B.2.9)

From the relation (B.2 8), we can express RXX(0) as

(B.2.10)
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(B.2.3)
and the variance of the process is

(B.2.4)

These quantities are related as

(B.2.6)
and leads to

(B.2.7)



In particular, for a zero mean WSS process, the variance is equal to the above 
integral.

In many cases, the correlation between the samples x(n) and x(n - k) becomes 
weaker as k grows. (This is not always true, for example if RXX(k) has periodic 
components). This means that CXX(k) → 0 as k → ∞, i.e., RXX(k) → m2x as 
k → ∞. So SXX(ejω) has an impulse component 2πm2Xδa(ω), and a nonimpulsive 
component due to CXX(k) (Fig. B.2-1).

For our applications, SXX(ejω) will be assumed to be free from impulse func- 
tions except possibly at ω = 0. This means that RXX(k) does not have any periodic 
components except the m2X term which has period one. In this case, Fig. B.2-1(a) 
is a typical plot of RXX(k).

Figure B.2-1 (a) A typical autocorrelation sequence, asymptotically tending to
m2x, and (b) the corresponding power spectrum, revealing an impulse at ω = 0, 
representing nonzero mean.

White Random Process
A random process is said to be white if any pair of samples are uncorrelated, 

i.e., E[X(n)X(m)] = E[X(n)]E[X(m)] for m ≠ n. If a white process is WSS, then

(B.2.11)

This can be compactly expressed as

(B.2.12)
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Evidently the covariance sequence is CXX(k) = σ2Xδ(k). The power spectrum of a 
white WSS process is given by

Figure B.2-2 (a) The autocorrelation sequence of a white WSS process, and (b) 
corresponding power spectral density.

Joint Description of Two or More Random Processes
In many applications, it is necessary to deal with the effect of several random 

signals at a time. In a digital filter structure, for example, there may exist a number 
of noise waveforms, generated by a number of quantizers, and it is necessary to find 
the effective noise power at the filter output.

Suppose X(n) and Y(n) are two real random processes. These are said to be 
jointly WSS if each process is WSS and if E[X(n)Y(n — k)] is a function only of 
the lag k. In this case we define

(B.2.14)

which is called the cross-correlation between the processes. The two processes are 
said to be uncorrelated if RXY(k) = E[X(n)]E[Y(n — k)] = mXmY for all k. If one 
of the processes has zero mean, then uncorrelatedness implies RXY(k) = 0 for all 
k.

Ergodicity. A WSS process is said to be ergodic if the statistical averages (such 
as E[X(n)], E[X2(n)] etc.), are equal to the corresponding time averages over any
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(B.2.13)

in — π ≤ ω < π, and repeats with period 2π. In other words, it has a constant compo- 
nent with height σ2X representing the variance of X(n), and an impulse component 
representing m2X. A zero-mean WSS white random process is therefore characterized 
by a flat power spectrum (height σ2X) and an autocorrelation RXX(k) = σ2Xδ(k). 
Fig. B.2-2 summarizes these. If a WSS process is not white, it is said to be colored.



Figure B.3-2 Two uncor- 
related WSS processes going 
through two systems.

Fig. B.3-2 shows another application of the concepts introduced above. Here 
H1(z) = Σn h1(n)z-n and H2(z) = Σn h2(n)z-n are two stable LTI systems with
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single realization of the process. The ergodicity assumption enables us to estimate 
these expected values by using time averages.

B.3 PASSAGE THROUGH LTI SYSTEMS
Consider Fig. B.3-1 where H(z) = Σn h(n)z-k represents the transfer function of 
a (stable) LTI system with real impulse response h(n). Suppose the input X(n) is 
a real WSS random process with mean mX, autocorrelation RXX(k), and power 
spectral density SXX(ejω). Then Y(n) is a WSS random process. Letting mY, 
RYY(k) and SYY(ejω) be its mean, autocorrelation and power spectrum, we can 
make the following statements.

a) mY = mX Σn h(n).
b) SYY(ejω) = SXX(ejω)∣H(ejω)∣2.
c) RYY(k) = Σn Rhh(n)RXX(k - n) where Rhh(k) = Σn h(n)h(n - k).

Rhh(k) is called the (deterministic) autocorrelation of h(n). All summations 
above are from —∞ to ∞. Thus RYY(k) is the convolution of Rhh(k) with RXX(k).

As an application of this, suppose x(n) is zero mean WSS white with variance 
σ2X. Then

(B.3.1)
so that

(B.3.2)

In other words, the output power spectrum is precisely equal to the magnitude- 
squared response of H(z) (scaled by σ2X). The output process Y(n) is therefore not 
white but becomes 'colored' by the LTI system H(z) (unless H(z) is allpass). The 
variance of the output process is

(B.3.3)

In other words, the variance gets amplified by the energy in the impulse response 
h(n).

Figure B.3-1 Passing a ran­
dom process through an LTI 
system.



real impulse responses. Suppose the inputs X1(n) and X2(n) are zero mean, white, 
real, jointly WSS random processes. Assume further that the two processes are 
uncorrelated as defined in the previous section. It can then be shown that Y1(n) 
and Y2(n) are zero mean, (possibly colored), real, jointly WSS random processes, 
uncorrelated to each other. The variances of Y1(n) and Y2(n) are, respectively,
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(B.3.4)

Because of the fact that Y1(n) and Y2(n) are uncorrelated, it can be shown that the 
variance of Y(n) in Fig. B.3-2 is the sum of variances of Y1(n) and Y2(n). So Y(n) 
is a zero mean WSS random process with variance

(B.3.5)

This kind of an analysis finds applications in studying roundoff noise in filter banks 
(Chap. 9).

B.4 THE COMPLEX CASE
A complex r.v. X = Xr + jXi is a complex quantity whose real and imaginary parts 
are random variables, possibly correlated. We can define the joint density function 
fxr, xi(xr, xi) to describe the pair of random variables (xr, xi). In defining the 
expected value of functions of X (such as E[X], E[∣X∣2] and so on, we merely use 
this joint density in the appropriate integral. Quantities such as mean and variance 
generalize nicely. For example the variance is defined now as E[∣X — mX∣2]. To 
make the presentation more efficient, we shall discuss the joint properties of two 
complex random variables X and Y (such as cross correlation etc.), and set X = Y 
to obtain the single complex r.v. case. The following is a summary of definitions 
and properties.
Definitions

1. mX ≜ E[X] = mean value of X.
2. RXY ≜ E[XY*] = cross correlation between X and Y.
3. CXY ≜ E[(X — mX)(Y — mY)*] = cross covariance between X and Y.
4. σ2X ≜ CXX = variance of X.
5. X, Y uncorrelated if RXY = mXm*Y.
6. X, Y orthogonal if RXY = 0.
7. X, Y (statistically) independent if fXY(x,y) = fX(x)fY(y).

Properties
1. RXX = σ2X + ∣mX∣2.
2. RXY = R*YX and CXY = C*YX.
3. RXY = CXY + mXm*Y.
4. RXX = E[XX*] = E[∣X∣2] = mean square value.
5. X, Y uncorrelated if and only if CXY = 0. Statistical independence implies 

uncorrelatedness, but converse is not true. Uncorrelatedness is same as orthog- 
onality if mX or mY is zero.



Complex Random Processes
A complex random process is defined in the same way as a real process except 

that X(n) is now complex. We define the mean to be E[X(n)] and autocorrelation 
to be E[X(n)X*(n — k)]. The process is called WSS if the mean is constant and 
the autocorrelation is independent of n. Two processes X(n) and Y(n) are jointly 
WSS, if each of them is individually WSS, and the cross correlation defined as 
E[X(n)Y*(n — k)] is independent of n. For the jointly WSS case, we summarize 
various definitions and properties next.
Definitions

1. mx = E[X(n)] = mean value.
2. RXY(k) = E[X(n)Y*(n — k)] = cross correlation between X(n) and Y(n).
3. CXY(k) = E[(X(n)-mX)(Y(n-k)-mY)*] = cross covariance between X(n) 

and Y(n).
4. SXY(ejω) = Σ∞k=-∞ RXY(k)e-jωk = cross power spectral density.

Properties
1. RXY(k) = CXY(k) + mXmY.
2. RYX(k) = R*XY(-k).
3. SYX(ejω) = S*XY(ejω).
4. In particular,

RXX(k) = CXX(k) + ∣mX∣2.
RXX(k) = R*xx(-k) (Hermitian symmetric sequence). 
Sxx(ejω) is real (in fact nonnegative).

Passage Through LTI Systems
Suppose X(n) is a complex WSS process. Let this be input to a stable LTI 

system H(z) = Σnh(n)z-n, to generate output Y(n). Then Y(n) is WSS. We will 
now state further properties of the process Y(n). For this define Rhh(k) to be the 
deterministic autocorrelation of h(n), that is,
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Or equivalently, Rhh(k) = Σnh*(n)h(n + k). Taking Fourier transforms on both 
sides, we get Σk Rhh(k)e-jωk = ∣H(ejω)∣2. The following properties are true.

1. mY = mX Σn h(n).
2. RYY(k) = Σn RXX(n)Rhh(k - n). (convolution)
3. SYY(ejω) = SXX(ejω)∣H(ejω)∣2.
4. RYX(k) = Σm h(m)RXX(k - m). (convolution)
5. SYX(ejω) = H(ejω)SXX(ejω).

We can obtain the case of real processes (with real LTI systems) by dropping 
the conjugate signs.

B.5. THE VECTOR CASE
At the end of Sec. B.1 it was mentioned that a collection of random variables 
X0 . . . XM-1 can be described by a joint density function. We denote this as fx(x)



where X = [X0 . . . XM-1 ]T. The vector X is said to be a random vector, or just 
r.v. for simplicity. fX(x) is a nonnegative scalar function of the vector x and has 
properties similar to fXY(x,y) in Sec. B.1.

The 'mean' or expectation E[X] is the vector [E[X0] . . . E[XM-1]]T. The vec­
tor X has zero mean if this expectation is the null vector. We define the cross 
correlation matrix between the vectors X and Y as E[XY†].

Note in particular that R = E[XX†] is the autocorrelation matrix of X. The 
autocorrelation of (X — E[X]) is said to be the covariance matrix of X, and is 
denoted C. Both R and C are M × M Hermitian positive semidefinite matrices. 
We sometimes use subscripts (e.g., Rxx) when it is necessary to distinguish between 
more than one random vector. Notice that the k,m element of C is the cross 
covariance between Xk and Xm. If every pair of components of X are uncorrelated, 
then C becomes a diagonal matrix. If in addition all components have same variance 
σ2 then C = σ2I.

Gaussian random vector. An M × 1 real random vector X with mean m 
and covariance C is said to be Gaussian if the joint density function is given by
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(B.5.1)

In this case we also say that the set of random variables Xk (components of X) 
are jointly Gaussian. The implicit assumption in the above definition is that C 
is nonsingular. If the components of X are uncorrelated, then C is diagonal, and 
the above function can be written as the product fX0(x0) . . . fXM-1(xM-1) where 
fxi(xi) are one-variable Gaussian density functions. This shows, in particular, that 
uncorrelated Gaussain random variables are also statistically independent.
Vector Random Processes

An M × 1 vector random process {X(n)} (with curly braces often omitted) 
is a sequence where all the samples X(n) are random vectors. This is said to 
be a wide sense stationary (WSS) process if the vector E[X(n)] and the matrix 
E[X(n)X†(n— k)] are independent of n. In this case, we define the autocorrelation 
to be

(B.5.2)
This is an M × M matrix sequence. The power spectrum of the WSS process X(n) 
is defined as

(B.5.3)

Thus, Sxx(ejω) is the Fourier transform of Rxx(k). Some of the key properties of 
these quantities are listed below.

1. Rxx(k) = R†xx(-k).
2. Sxx(ejω) = S†xx(ejω).
3. The matrix Rxx(0) is positive (semi)definite, and so is Sxx(ejω) for all ω.

Two random processes X(n) and Y(n) are said to be jointly WSS if (i) each 
of them is WSS, and (ii) E[X(n)Y†(n — k)] is independent of n. In this case, we



define the cross correlation Rxy(k) and cross power spectrum Sxy(z) as

(B.5.4)

Vector Processes from Scalar Processes
Suppose X(n) is a scalar process and we form the vector process X(n) by 

partitioning X(n) into successive blocks of M samples, that is,

According to the notations of Chap. 10, this is the 'blocked version' of X(n — M + 
1). If X(n) is WSS, then so is the blocked version X(n). Furthermore it can be 
shown that if X(n) is WSS, the power spectrum matrix Sxx(z) of X(n) has the 
pseudocirculant property (defined in Sec. 5.7.2).

Let X(n) be real WSS, with autocorrelation R(k). Let RM(k) be the autocor­
relation sequence of the blocked version X(n). (The subscript M is a reminder that 
X(n) is M × 1.) Then RM(0) is a (real) symmetric Toeplitz matrix (Appendix A). 
For example, with M = 3, we have

(B.5.10)

RM(0) is said to be the M × M autocorrelation matrix associated with the scalar 
process X(n). This matrix plays a fundamental role in several problems, for exam­
ple, optimal linear prediction [Jayant and Noll, 1984]. Clearly R0(0) = R(0) > 0 
and is nonsingular. However, RM(0) may become singular for sufficiently large Μ.
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(B.5.5)

Passage through LTI systems. Let X(n) be a r × 1 WSS random process.
Let this be the input to a p × r LTI system H(z). Then the output Y(n) is a p x 1 
vector WSS process. The power spectra of the processes are related as

(B.5.6)

An interesting example occurs when X(n) is a zero-mean process with

(B.5.7)

This means that (a) any two samples X(k) and X(m) are uncorrelated, (b) any two 
components of X(k) (for any fixed k) are uncorrelated, and (c) each component of 
X(k) has the same variance σ2. We can abbreviate (B.5.7) as Rxx(k) = σ2δ(k)I. In 
this case, Sxx(z) = σ2I, so that

(B.5.8)

(B.5.9)



If RM(0) is singular then so is Rn(0) for any n > M (since RM(0) is the upper left 
submatrix of Rn(0)).

Harmonic processes. A scalar WSS process is Harmonic(N) if its power 
spectrum Sxx(ejω) is zero everywhere except at N frequencies ωm in the range 
0 ≤ ω < 2π. In other words,
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(B.5.11)

with cm ≠ 0 for any m. Thus the autocorrelation is a sum of 'single frequency 
terms', that is,

(B.5.12)

It can be shown that X(n) is Harmonic(N) if RN+1 is singular but RN nonsingular.



Appendix C

Quantization of 

Subband Signals

C.0  INTRODUCTION
In this appendix we study the quantization in the subbands of subband coders (Sec. 
4.5) and transform coders (Sec. 6.6). In both of the above coders, the main aim 
is to quantize a set of “derived” signals (subband signals) rather than the original 
signal directly. The benefits to be gained by such quantization can be quantified by 
using the concept of “coding gain.” In this appendix we will study the coding gain. 
We will also consider the problem of optimal bit allocation among the subbands, 
and obtain expressions for the optimal coding gains for subband coding as well 
as orthogonal transform coding. We also briefly review a coding technique called 
differential PCM, and state the connections to the so-called rate-distortion function 
in information theory.

Some of the early references on these topics are Huang and Schultheiss [1963], 
and Segall [1976]. More recent references include Ramstad [1982], Woods and O’Neil 
[1986], Westerink, et al. [1988], Jain [1989], Mallat [1989a], Akansu and Liu [1991], 
Pearlman in Woods [1991], and Gersho and Gray [1992]. A detailed and systematic 
treatment can be found in Chap. 11 and 12 of Jayant and Noll [1984], with many 
practical examples and illustrations. Our aim here is to provide a brief review.

We will assume that the input x(n) is a real zero-mean wide sense stationary 
(WSS) random process. So all the filtered and decimated signals will share this 
property. The results reviewed in Appendices A and B will be freely used here. 
The abbreviation r.v. stands for “random variable.”

C. 1 QUANTIZER NOISE VARIANCE
First consider Fig. C.1-1 where a real r.v. x is quantized to b bits, to obtain the 
signal v. Let the most significant (leftmost) bit have weight 2ℓ. So the permissible 
range for x is -2ℓ+1 < x < 2ℓ+1 (there is a sign bit which we will never show 
explicitly).

The rightmost bit has weight 2-(b-1)2ℓ. The quantization step size is therefore 
Δ = 2-(b-1)2ℓ, that is, Δ = 2(ℓ+1)2-b. Note that this agrees with (9.2.1) where we 
considered the special case of ℓ = —1 (fixed point fraction). Essentially ℓ determines 
the allowed size of the number whereas b determines the accuracy or precision used
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for its representation. In Fig. C.1-1 we do not indicate the binary point any more 
as it will be irrelevant for our discussion.

The quantization error (or noise) is q = v — x. We assume that this is an 
r.v., uniformly distributed in —Δ∕2 ≤ q ≤ Δ∕2, as in a roundoff quantizer. (This 
assumption is reasonable only when b is sufficiently large.) Then, its variance is 
σ2 = Δ2∕12, that is,

(C.1.1)

Fig. C.1-2 shows a 2-bit example, for two choices of ℓ. There are seven levels 
because of the unshown sign bit. Thus for ℓ = 1, the 2-bit number can take the 
values 0, ±1, ±2 and ±3.

Figure C.1-1 Quantization of a real random variable to b bits.

We see that the choice of ℓ governs the range over which x can vary without 
causing overflow (i.e., this range is the dynamic range). If we increase this range by 
increasing ℓ, the quantizer noise variance σ2 increases.

There is an elegant way in which we can mathematically relate the quantizer 
noise variance, the signal variance σ2x (that is, variance of x) and b. This is done by 
relating ℓ to σ2x, and then eliminating ℓ from (C.1.1). The details of this depends 
on the statistics of x. We now demonstrate this with two examples.

Sec. C.1 Quantizer noise variance 817

Figure C.1-2 Two cases of quantization with b = 2. (a) ℓ = 0 and (b) ℓ = 1.



Uniform input. First suppose that the input x is a uniformly distributed 
r.v., in the permissible range -2ℓ+1 < x < 2ℓ+1. Then its variance is

C.2 THE IDEAL SUBBAND CODER
Consider the M-channel QMF bank reproduced in Fig. C.2-1. Here the decimated 
subband signals vk(n) are quantized as in any practical system. Let the quantizer 
Qk in the kth channel be a bk bit quantizer (in the same sense as in Fig. C.1-1). 
Let 2ℓk denote the weight on the left most bit. We can replace the quantizer with a 
noise source qk(n) as shown by the broken lines. We will assume that qk(n) is wide 
sense stationary (WSS) and white, and is uniformly distributed with zero mean and 
variance σ2qk. Also, any two noise sources are assumed uncorrelated†.

† These assumptions are easy to criticize, because bk is often small. However, 
without such assumptions, it is not possible to gain much theoretical insight into 
the operations of the system.

‡ This implies, in particular, that the subband signals are uncorrelated with each 
other - recall Problem 9.12. For further comments on this see Sec. C.4.1.
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Imagine that the filters are ideal and nonoverlapping, with equal bandwidths 
(Fig. C.2-2). ‡ We consider the real coefficient case for simplicity, so that only the

(C.1.2a)

so that the quantization error variance is

(C.1.2b)

Gaussian input. As a second example, let x be a zero mean Gaussian r.v. 
with variance σ2x. In this case its range of values is unlimited. Since the permissible 
range is only -2ℓ+1 < x < 2ℓ+1, there is a nonzero probability of overflow. (The 
probability of overflow in the preceding example was zero.) Let ℓ be chosen such 
that 2(ℓ+1) = 3σx. This means that the probability that x will exceed the permitted 
range is equal to 0.0026 [pp. 314, Peebles, 1987]. Using the value σx = 2(ℓ+1)/3 
and the expression (C.1.1) we find the quantization error variance to be

(C.1.3)

In both the above examples, we see that, for a given number of bits b, the 
quantization error variance is proportional to signal variance, and to the factor 
2-2b, that is,

(C.1.4)
This relation is in fact true for a broader class of signals than the above examples 
[Chap. 4, Jayant and Noll, 1984]. The constant of proportionality c depends on 
the statistics of x and on the allowed overflow probability. If we increase ℓ to 
reduce the overflow probability, then the noise variance σ2 increases. This is said 
to be the noise/dynamic range interaction. We will repeatedly use the expression 
(C.1.4) in this appendix. We will implicitly assume that c is the same for all the 
random variables entering a particular discussion. This is reasonable if all the 
density functions have the same form, for example, Gaussian.



frequency region 0 ≤ ω ≤ π is shown. This system will be called the ideal subband 
coding (SBC) system. We assume Hk(ejω) = Fk(ejω) for all k, and that Hk(ejω) = 
√M in the passband and Hk(ejω) = 0 in the stopband. The ideal nature of filters 
ensures that there is no aliasing due to decimation. The distortion function T(z) 
[Eq. (5.4.14)] is unity so that we would have x(n) = x(n) (perfect reconstruction) 
if there were no quantizers. We will now analyze the effect of quantizers on the 
reconstruction error.

Figure C.2-1 The M-channel filter bank with quantizers in the subbands.

Even though qk(n) is WSS, the output of the expander is not (Sec. 9.3). It 
can be shown, however, that if the bandpass filters Fk(ejω) are ideal as above, then 
their outputs are WSS, and have power spectral density σ2qk ∣Fk(ejω)∣2∕M [Sathe and 
Vaidyanathan, 1993]. This therefore represents bandlimited white noise, confined 
entirely to the passband of Fk(z). Its variance is σ2qk∕M so that the total noise 
variance at the node of x(n) is

(C.2.1)
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Figure C.2-2 Magnitude responses of filters for the ideal subband coding system.



C.2.1 Optimum Bit Allocation
With bk denoting the number of bits per sample of the kth subband signal, the 
quantity

(C.2.2)

represents the average bit rate, that is, average number of bits per subband. Essen­
tially b represents the average number of bits per sample of x(n), transmitted by 
the decimated analysis bank.

Suppose the average bit rate b is fixed. How should we allocate the bits bk to the 
individual subbands so that the total output noise variance (C.2.1) is minimized? 
Qualitatively speaking, we have to allocate fewer bits (bk < b) for subbands with 
low energy, and more bits (bk > b) for dominant subbands. An extreme case occurs 
when most of the energy is in the lowpass subband, in which case we set b0 = Mb 
and bk = 0 otherwise. It is clear that this is much more efficient than assigning b 
bits per sample of the original signal x(n). To address the bit allocation problem 
more quantitatively, we use the following standard result.

The AM-GM inequality. [Beckenbach and Bellman, 1961]. Given a set of 
M nonnegative numbers ak, define the arithmetic mean (AM) and geometric mean 
(GM) to be

(C.2.3)

We then have AM ≥ GM with equality if and only if a0 = a1 = ... = aM-1. See 
Problem C.2 for a proof.

Assuming that the filter bank input x(n) is zero mean WSS with variance σ2x, 
the signal xk(n) [output of Hk(z)] is WSS with zero mean and variance

(C.2.4)

where Sxx(ejω) is the power spectrum of x(n). The decimated signal vk(n) is WSS 
with the same variance σ2xk. With ∣Hk(ejω)∣ as in Fig. C.2-2, one can verify that 
σ2x = Σk σ2xk∕M where σ2x is the variance of the input signal x(n). The quantizer 
variance σ2qk is related to the variance of vk(n) in a way similar to (C.1.4), so that

(C.2.5)

Here we have assumed that c is the same for all quantizers. This is valid if the 
quantizer inputs have identical statistical distribution (e.g., all of them Gaussian).
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According to (C.2.1) the output noise variance σ2q is the AM of σ2qk and so we have

The subscript SBC is used because we will soon compare this with other schemes.
Align the least-significant bits! If σ2qk is the same for all quantizers, the 

step sizes are identical. The optimal bit allocation strategy (C.2.7) therefore tells 
us that we must align the rightmost bits (least-significant bits) of the binary words 
representing the subbands. This is demonstrated in Fig. C.2-3.
More Explicit Expression for Bit Allocation

The optimal bit allocation scheme (C.2.8a) indicates that more bits are required 
for subband signals having higher variance. The reconstruction error variance σ2q 
has the optimum value given by (C.2.8b). Using this we can rearrange (C.2.8a) as

(C.2.9)
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(C.2.6)

So the smallest possible value of σ2q is given by the last line of the above equation. 
This quantity depends on the input signal x(n), and the average number of bits b. 
This lower bound is achieved if and only if the AM-GM inequality on the first line 
becomes an equality, which happens if and only if σ2qk is the same for all k, that is,

(C.2.7)

So the optimal bit allocation strategy is such that variances of all quantizer noise 
sources are equalized. We then have

(C.2.8a)

so that bk is proportional to log σ2xk. Under this condition, the minimized output 
noise variance is given by

(C.2.8b)



Some numerical examples will be considered in Problem C.9. Several comments 
are now in order.

1. The above bit-allocation strategy may not lead to integer valued solutions for 
bk. We can either round bk to an integer, or use a (periodically) time varying 
allocation which results in an average value of nearly bk bits.

2. From the above expression we see that if b is too small, then some of the 
bk might turn out to be negative. However, for a given variance distribution 
{σ2xk}, we can find a sufficiently large b so that bk > 0 for all k.

3. If some of the bk are very small, then the standard noise model assumptions 
(white, uncorrelated, uniform-distribution, etc.) will not hold, and the above 
analysis will not apply. This happens, for example, if some of the subband 
variances σ2xk are very small. Notice, in particular, that if σ2xk = 0 for some 
k, then the noise model assumptions are not meaningful any more. Many of 
the conclusions of this Appendix will be incorrect or meaningless under this 
situation. For example, the righthand side of (C.2.8b) becomes zero.

4. Assume that bk are large enough so that the above analysis is meaningful. If 
we now increment b by one bit, then according to (C.2.9) each of the subband 
bits bk is increased by one.

C.2.2 Coding Gain for the Ideal SBC System
In order to evaluate the usefulness of subband coding for a particular x(n), we 
compare it with the direct quantization scheme shown in Fig. C.1-1 (imagine now 
that x in this figure is replaced with the sequence x(n)). This is often called the 
PCM (pulse code modulation) scheme. Let the quantizer Q use b bits so that the 
average transmission rate is the same as the above SBC system. The quantization 
noise is given by (C.1.4) so that
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Figure C.2-3 Demonstration of optimal bit allocation. Here σx0 = 4σx1 = 8σx2 = 
16σx3.

(C.2.10)
The subband coding gain is defined as

(C.2.11)



Note that this is a function of M. In the optimal case

(C.2.12)

So the coding gain can be interpreted in two ways: first it is the ratio of the input 
variance σ2x to the geometric mean of the subband signal variances σ2xk. Second, it 
is the ratio of the arithmetic to geometric mean of the subband signal variances. 
By the AM-GM inequality, we have 

so that subband coding can never be worse than PCM (under the above assumptions 
on filters and statistics). As explained earlier, we will assume that σ2xk is nonzero 
for all k, so that the denominator in (C.2.12) is nonzero.

We have the least coding gain (i.e., GSBC(M) = 1) if and only if all the 
subband signals have the same variance (i.e., the integral in (C.2.4) is the same for 
all subbands). This happens, for example, when x(n) is white (i.e., when Sxx(ejω) 
is constant); in this case GSBC(M) = 1 for all M.
Coding Gain in dB, and the “6 dB per bit” Rule

The coding gain is a measure of improvement obtained by subband coding over 
traditional quantization, for fixed bit rate. Instead of fixing the bits, suppose we fix 
the reconstruction error variance. Thus, suppose we use b bits per sample for the 
subband coder, and b' bits per sample for the direct (PCM) quantizer. If we wish 
to make σ2q,PCM = σ2q,SBC, then the coding gain GSBC(M) is related to b and b' as
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For example if GSBC(M) = 4, then b' — b = 1, that is, we gain one bit per sample 
by using subband coding.

It is often convenient to express the coding gain in dB. This is given by

Thus a coding gain ≈ 6 dB implies that we have gained one bit per sample. In Sec. 
4.5.2 we mentioned that there exist speech coding systems which operate at rates 
such as 2 to 4 bits per sample. Thus, an improvement in the coding gain by about 
6 dB is considered to be relatively significant in these applications.
Behavior of GSBC(M) as M Increases

Is GSBC(M) a nondecreasing function of M? In most practical applica­
tions, the coding gain increases (at least, it does not decrease) as the number of 
subbands M increases. However, there is no ‘theorem’ which asserts that this is 
always the case. We can in fact construct a simple counter example as follows. 
(Also see Problem C.4).



Example C.2.1: GSBC(M) Can Decrease with Increasing M

Consider an input process x(n) with power spectrum as in Fig. C.2-4. Suppose 
we apply a three-band ideal SBC system to this input. In this case, the area of 
Sxx(ejω) in each of the subbands is the same, that is, σ2x0 = σ2x1 = σ2x2 = 3. So 
GSBC(3) = 1. If we now apply the same input to a two-band ideal SBC, then we 
find σ2x0 = 11/3 and σ2x1 = 7/3 so that GSBC(2) > 1. In fact GSBC(2) ≈ 1.0256. 
In other words, GSBC(3) < GSBC(2) showing that the subband coding gain can 
decrease as M increases!

It can, however, be verified that if the number of bands is increased in 
integer multiples, then the gain can never decrease, that is, GSBC(nM) ≥ 
GSBC(M) for any positive integer n (Problem C.3).

Behavior as M tends to infinity. It will be interesting to see what happens 
to GSBC(M) as M → ∞. We can study this by rewriting the product in the 
denominator of (C.2.12) as follows:

(C.2.13)

The quantity σ2xk in the above expression was defined in (C.2.4). (Note. we have to 
integrate only the region 0 ≤ ω ≤ π since all time-domain quantities are assumed 
real). If M is sufficiently large then the passband of Hk(ejω) is sufficiently narrow 
and we can assume Sxx(ejω) is nearly constant in this passband. This gives σ2xk ≈ 
Sxx(ejωk) where ωk is the center frequency for Hk(ejω). So the above equation
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Figure C.2-4 An input power spectrum for which GSBC(3) < GSBC(2).



simplifies to

(C.2.14)

for sufficiently large M. Summarizing, we have

(C.2.15)

where Sxx(ejω) is the power spectrum (and σ2x the variance) of x(n). Note that we 
can rewrite this as

(C.2.16)

which is called the asymptotic coding gain. Thus, in the limit as M → ∞, the 
AM-GM ratio (C.2.12) is replaced with the above integral version! In obtaining 
this expression we have assumed that Sxx(ejω) is nonzero, i.e., Sxx(ejω) > 0, for all 
ω [so that loge Sxx(ejω) does not blow up].

The reciprocal of the quantity in (C.2.15), i.e.,

(C.2.17)

is said to be the spectral flatness measure for the process x(n). Notice that 0 ≤ 
γx ≤ 1 (since 1 ≤ GSBC(M) ≤ ∞). γx is largest (i.e., γx = 1) for a flat spectrum 
i.e., if x(n) is white. As γx gets smaller and smaller, the spectrum is considered 
to be more and more "nonflat.” Thus the asymptotic coding gain increases as the 
spectrum gets more and more 'nonflat'.
Deeper details about behavior of GSBC(M).

We now state further properties of the coding gain of the ideal subband coder. 
All of these are justified in Problems C.3-C.5.

1. First, it can be shown that GSBC(M) ≤ GSBC(nM) for any integer n > 0. By 
letting n → ∞ we see that GSBC(M) ≤ GSBC(∞) for any M, even though 
GSBC(M) may increase or decrease with M.
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2. Suppose we have a power spectrum with piecewise constant behavior as shown 
in Fig. C.2-5. In other words, Sxx(ejω) is constant within each passband of the 
M-channel subband coder. Then, for this value of M, we have GSBC(M) = 
GSBC(nM) for any integer n > 0 (Problem C.3). Letting n → ∞ we conclude 
GSBC(M) = GSBC(∞). Notice, however, that this does not imply GSBC(L) = 
GSBC(∞) for all L > M (Problem C.4). In any case, this example shows that 
the maximum coding gain GSBC(∞) can be achieved with finite number of 
subbands M, when Sxx(ejω) has certain properties [even if x(n) is not white].

3. Consider now the converse situation: suppose the power spectrum of x(n) is 
such that GSBC(nM) is the same for all integers n > 0, for some fixed Μ. Then 
Sxx(ejω) has the piecewise constant behavior as demonstrated in Fig. C.2-5 
(Problem C.3). As a corollary, if GSBC(M) — GSBC(∞) for some finite M, 
then GSBC(nM) = GSBC(∞) and Sxx(ejω) has this behavior.

4. Finally suppose that GSBC(i) = GSBC(M) for all i ≥ M. Then Sxx(ejω) is con- 
stant [i.e., x(n) is white] (Problem C.5). This means, in fact, that GSBC(i) = 1 
for all i.

Figure C.2-5 A piecewise constant power spectrum.

C.3 THE ORTHOGONAL TRANSFORM CODER

Transform coding was reviewed in Sec. 6.6. This is a special case of subband coding 
where the analysis and synthesis filters are FIR with length ≤ Μ. The responses of 
these filters are far from the ideal responses considered in the previous section.

We will consider only real signals and matrices for simplicity of discussions. Fig. 
C.3-1 shows the system with quantizers inserted in the subbands (i.e., the transform 
domain coefficients yk(n) are quantized). Since the matrix T is orthogonal with 
TTT = TTT = I, we have replaced T-1 with TT. In absence of quantizers this is 
a perfect reconstruction system with x(n) = x(n — M + 1).

C.3.1 Optimum Bit Allocation for Fixed Orthogonal T

We will assume that the quantizers are as in the previous section (i.e., bk bit quan- 
tizer for the kth subband, etc.). We also use the same assumptions about the noise 
model as in the ideal subband coding case. With the average bit rate b (defined 
as in (C.2.2)) fixed, what is the best allocation of bits among the subbands that 
minimizes the noise variance at the output node [i.e., node of x(n)]? It turns out 
that the answer does not depend on the orthogonal matrix T as we show next.
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Figure C.3-1 The orthogonal transform coding system.

As in the previous section, the quantizers can be replaced with noise sources 
qk(n) as shown in broken lines. These sources are at the input of the matrix TT, 
and generate a set of noise components, say qk(n), at the output of TT (This system 
is similar to Fig. 9.3-2, analyzed in Chap. 9). The noise component q(n) at the 
node of x(n) is the interlaced version of the noise components qk(n). So, the average 
output noise variance over a period of length M is given by

(C.3.1)

where σ2qk is the variance of qk(n). Since TTT = TTT = I, we can rewrite the 
above expression as
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(C.3.2)

where σ2qk is the quantizer noise variance (i.e., variance of qk(n)). To see this note 
that if we define the vectors

(C.3.3)

then q(n) = TTq(n), and

(C.3.4)

Taking expected values, we get Σ σ2qk = Σ σ2qk. †
We can now proceed exactly as in (C.2.6) to show that the output noise variance 

σ2q is minimized if and only if all the quantizer noise variances σ2qk are equalized 
[i.e., (C.2.7) holds]. Equivalently, the rightmost bits of the binary representations

† Notice that the above derivation does not assume that the quantizer noise 
sources are either white or uncorrelated.



(C.3.6)

(C.3.7)

(G3.8)
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for the transform coefficients yk(n) should be aligned (similar to Fig. C.2-3). This 
in turn is accomplished if bk are chosen according to 22bk = c × σ2yk∕σ2q where σ2yk 
is the variance of yk(n) (the kth output of T in Fig. C.3-1). Proceeding as in the 
previous section, we obtain the expression

(C3.5)

for the minimized average noise variance at the output node [i.e., node of x(n)]. 
Notice that the above derivations make use of the orthogonal nature of T; the 
results are therefore not necessarily valid for nonorthogonal T.

C.3.2 An Optimal Transform: the KLT
Note that the product of variances σ2yk depends on x(n) and on the orthogonal 
matrix T. Given the WSS input x(n), how should we choose T so that this product 
is minimized? We now answer this.

Defining the vectors

we see that y(n) = Tx(n) so that

If we take expected values on both sides, we obtain

where Rxx(0) = E[x(n)xT(n)] and Ryy(0) = E[y(n)yT(n)]. Note that Rxx(0) and 
Ryy(0) are Hermitian positive (semi) definite matrices. [Rxx(0) is also Toeplitz but 
that is irrelevant here.]

The diagonal elements of Ryy(0) are, by definition,

(C.3.9)

which represents the variance of yk(n) (since we assume zero mean). So the product 
in (C.3.5) is equal to the product of diagonal elements of Ryy(0), i.e., diagonal 
elements of TRxx(0)TT. Our aim therefore is to choose T (for a given Rxx(0)) 
such that this product of diagonal elements is minimized.

For this we will use an inequality which has to do with the product of diagonal 
elements of a positive definite matrix. First recall that Ryy(0) is positive semidefi­
nite by definition. From (C.3.8) we see that Ryy(0) is nonsingular as long as Rxx(0) 
is nonsingular. We will assume that Rxx(0) is nonsingular (otherwise x(n) would 
be a harmonic process; Appendix B). So Ryy(0) is a positive definite matrix, and 
we can apply the following result from Appendix A (Sec. A.6).

(C.3.10)



with equality if and only if Ryy(0) is diagonal. We will also use the fact that

(C.3.11)

which follows from (C.3.8), using [det T] = ±1. Summarizing the above discussions, 
we have

(C.3.12)

Note that Rxx(0) is completely determined by the random process x(n), whereas 
Ryy(0) depends on T. Equality holds on the second line above if and only if Ryy(0) 
is diagonal (i.e., yk(n) uncorrelated with ym(n) for k ≠ m). So we have to choose T 
such that it diagonalizes Rxx(0) [see (C.3.8)]. By comparing this with the discussion 
on eigenvectors (Sec. A.5) we see that TT should be chosen such that its columns 
are the orthonormal eigenvectors of the Hermitian matrix Rxx(0).

This T is called the Karhunen-Loeve Transform (KLT) for the signal x(n). 
Clearly it depends on the block size M of the transform. This choice of T, along with 
the bit allocation scheme described above results in the smallest possible average 
output noise variance σ2q,TC. This variance is obtained by substituting the minimum 
value of Πk=0M-1 σ2yk into (C.3.5):

(min. output noise var.) (C.3.13)

Even though this minimized variance is unique, the KLT matrix itself is not, since 
the set of orthonormal eigenvectors is not necessarily unique.

Suboptimal transforms. In practice, the KLT is inconvenient to implement 
for several reasons. First, the KLT matrix depends on the input statistics, and has 
to be estimated by numerical means. If the input statistics varies (i.e., input is not 
quite WSS, but slowly varying), then the KLT has to be somehow recomputed or 
updated. Finally, the KLT matrix in general does not have any specific structure 
(other than unitariness), and cannot be implemented in a 'fast manner'. In practice, 
there exist several suboptimal substitutes, which overcome these difficulties. For 
example, in speech applications, the DCT matrix (Sec. 8.4) provides good coding 
gain. There also exist fast techniques to implement this matrix [Yip and Rao, 1987]. 
For further details, see Sec. 12.6 of Jayant and Noll [1984].
Toeplitz Property

Since x(n) is WSS, the M × M matrix Rxx(0) has the Toeplitz property (Ap­
pendix A). For example if M = 4, one can verify that
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where R(k) = E[x(n)x(n — k)], that is, R(k) is the autocorrelation sequence of the 
real WSS process x(n). Note that R(0) = σ2x = variance of x(n). The signal x(n) is 
white if and only if Rxx(0) = σ2xΙΜ for any choice of the size Μ.

C.3.3 Coding Gain for the Transform-Coder
The transform coding gain GTC(M) is defined as the ratio of σ2q,PCM in (C.2.10) 
to σ2q,TC. Using (C.3.5)

(C.3.14)

As for the ideal SBC case, we can express this as an AM/GM ratio. For this note 
that the relation y(n) = Tx(n) implies yT(n)y(n) = xT(n)x(n). Taking expected 
values we get Σk σ2yk = Mσ2x so that

(C.3.16)

Since the diagonal elements of Ryy(0) are the variances σ2yk, the summation on the 
numerator is the trace of Ryy(0). By using the fact (Appendix A) that the trace 
of AB is same as that of BA (whenever the two products are meaningful) we can 
show from (C.3.8) that the trace of Ryy(0) is same as that of Rxx(0). As a result, 
we can rewrite (C.3.16) as

(C.3.17)

830 App. C. Quantization of subband signals

(C.3.15)

Thus, the coding gain is the ratio of the AM to GM of the variances of the subband 
outputs. This situation is precisely as in the ideal SBC case. This is interesting 
because the ideal SBC case and the orthogonal transform case use totally different 
assumptions on filters. In the former, we use ideal bandpass filters, whereas in the 
latter we use FIR filters of length ≤ M, having orthogonal polyphase matrix T.
Coding Gain in the Optimal Case

From Sec. C.3.2 we know that the maximum value of the coding gain is achieved 
when T is the KLT matrix. In this case we can rewrite (C.3.14) as



(C.3.18)

But the trace of a matrix is the sum of its eigenvalues, whereas the determinant is 
the product of eigenvalues. Denoting the eigenvalues of Rxx(0) as λk we therefore 
have

Thus, the optimal (maximized) transform coding gain is the ratio of the AM to 
GM of the eigenvalues of the input autocorrelation matrix Rxx(0) (i.e., the matrix 
E[x(n)xT(n)]). So this coding gain satisfies GKLT(M) ≥ 1.

The worst optimal coding gain (GKLT(M) = 1) occurs if and only if all eigen- 
values of Rxx(0) are equal. Since Rxx(0) is Hermitian, this will happen if and only 
if Rxx(0) itself is diagonal, that is, Rxx(0) = σ2xI. [This does not imply that x(n) 
is white.]

At the end of Appendix B we saw that for a Harmonic process, the autocorre­
lation matrix of appropriate size is singular. For a 'nearly' harmonic process (i.e., 
process with many sharp peaks in the power spectrum), the determinant of the 
autocorrelation matrix is very small, and the above coding gain can be quite large.
GKLT(M) is a Monotone Function of M

In the previous section we saw that the subband coding gain GSBC(M) (with 
ideal filters) may increase or decrease with Μ. It turns out, however, that the 
optimal transform coding gain GKLT(M) is monotone, that is,

(C.3.19)

We will now proceed to prove this. [The reader wishing to skip the proof can go to 
the next subtitle without loss of continuity.]

Proof that GKLT(M) is monotone. First let us replace the notation Rxx(0) 
with RM where the subscript indicates that this matrix has size M x Μ. Note 
that RM is completely determined by the WSS process x(n). Proving (C.3.19) is 
equivalent to proving

In order to prove this, we will need a result from the theory of linear prediction. (We 
use the result without proof, but will cite a precise reference.) In linear prediction 
theory, one tries to predict the sample x(n) using a linear combination of past 
values:

The parameter k above is the prediction order. The quantity ek(n) = x(n)-xp(n) is 
called the prediction error. Here x(n) is a real WSS process and ai are real valued 
prediction coefficients. In optimal linear prediction, these coefficients are chosen 
such that the mean-squared prediction error E[e2k(n)] is minimized. We use ℰk to
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(C.3.20)

that is,
(C.3.21)

(C.3.22)



denote the minimized mean-squared prediction error for the kth order predictor. 
As one would intuitively expect, it can be shown that ℰk+1 ≤ ℰk for any integer 
k ≥ 0. Also ℰ0 = E[x2(n)] = σ2x.

There is a fundamental connection between ℰk and the M × M autocorrelation 
matrices RM associated with x(n). It can be shown that

(C.3.25)

But this follows immediately from the fact that ℰk+1 ≤ ℰk for any k ≥ 0. Summa- 
rizing, we have proved that GKLT(M) is a monotone (nondecreasing) function of 
Μ.

Behavior as M tends to infinity. The behavior as M → ∞ can be studied 
by studying the behavior of [det RM]. Since x(n) is WSS, the matrix RM is Toeplitz 
(in addition to being Hermitian and positive definite). There is a theorem for such 
matrices [Grenander and Szego, 1958], [Gray, 1972], [Jayant and Noll, 1984] which 
says that, under fairly general conditions,

As a result, we have

(C.3.26)

(C.3.27)

This is the same as lim GSBC(M) so that GSBC(∞) — GKLT(∞) So for suf­
ficiently large M, the coding gain obtainable with ideal SBC is the same as the 
coding gain offered by the KLT!

Relation to linear prediction. By using (C.3.26) in (C.3.24) we see that 
the minimized prediction error ℰM has the following limit:
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(C.3.23)

This can be obtained, for example, by repeated use of Eq. (6.48), Jayant and Noll 
[1984]. From this we deduce

(C.3.24)

From the above two equations we see that proving (C.3.21) is equivalent to proving



Since ℰk+1 ≤ ℰk, the quantity ℰ∞ represents the smallest possible prediction error 
for a given Sxx(ejω). We can now write
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(C.3.28)

where ℰ∞ is the variance of the prediction error for infinite predictor order. Thus 
the asymptotic coding gains are the same for the ideal subband coder and the KLT. 
Recall that γ2x stands for the spectral flatness measure, and that 0 ≤ γx ≤ 1. 
The quantity σ2x∕ℰ∞ is called the prediction gain. Its significance is discussed in 
Sec. C.5.1 later, in the context of differential PCM (DPCM) techniques. Also see 
Problem C.8.

Autoregressive (AR) process. There exists a class of random processes for 
which ek(n) becomes white for some finite k, say k = N. When this happens, the 
error variance cannot be decreased further by increasing the prediction order. In 
other words, ℰN = ℰ∞, given by the expression presented above. Such a process x(n) 
is called an autoregressive process of order N, abbreviated as AR(N). Many real- 
life waveforms (e.g., speech) have been successfully approximated as AR processes 
[Jayant and Noll, 1984].
Deeper Details About Behavior of GKLT(M)

We know that GKLT(M) is monotone in M, and that GKLT(M) ≥ 1 with 
equality if, and only if, RM = σ2xI. Also, GKLT(M) ≤ GKLT(∞). We specifically 
proved GKLT(M + 1) ≥ GKLT(M). It turns out (Problem C.6) that if GKLT(M + 
1) = GKLT(M) then we will in fact have

(C.3.29)

This has some interesting corollaries.
1. If GKLT(i) > 1 then GKLT(M) > GKLT(M — 1) for any M ≥ i. Similarly if 

GKLT(i + 1) > GKLT(i) for some i, then GKLT(M + 1) > GKLT(M) for any 
M ≥ i. In other words, once GKLT(i) starts increasing, it is a strictly increasing 
function of i.

2. Unless x(n) is white, GKLT(M) cannot achieve the maximum value GKLT(∞) 
for finite Μ. (For, if it does, then GKLT(∞) = GKLT(i + 1) = GKLT(i) for 
arbitrarily large i. Using a relation like (C.3.29) we can then conclude that 
GKLT(i) = 1 for all i. So RM is diagonal for all M, that is, x(n) is white). This 
is unlike the ideal subband coder where we can achieve the maximum coding 
gain for finite M, with certain nonwhite inputs [e.g., if Sxx(ejω) is constant 
within each of the M subbands, then GSBC(M) = GSBC(∞).]

C.4 SIMILARITIES AND DIFFERENCES
It is often stated that transform coding (TC) is a special case of subband coding 
(SBC). This statement has its origin in the_fact that Fig. C.3-1 essentially represents 
a subband coder in which the filters are FIR with length ≤ Μ. However, when we 
compare an ideal SBC system (system with ideal bandpass filters as in Fig. C.2-2) 
with the optimal TC system (KLT), we notice some subtle differences.

For example, consider the coding gains GTC(M) and GSBC(M). We have 
shown that GTC(M) (with KLT) can never decrease with increasing M, whereas



a similar statement is not true for GSBC(M). It is important to realize that the 
optimal TC system should be redesigned as the input statistics changes. The ideal 
SBC system, on the other hand, does not exploit input statistics.

Notice that in both of the above systems, we are essentially transforming the 
signal in such a Way that the energy (or variance) tends to be concentrated (or 
compacted or packed) into a few subbands. This energy compaction is the key to 
subband coding as well as transform coding.
The De-correlating Property

The ideal SBC system has the property that the subband signals vk(n) and 
vℓ(m) are uncorrelated for k ≠ ℓ. This is true for arbitrary m,n. [This is a con- 
sequence of Problem 9.12.] The transform coding system with KLT is such that 
yk(n) and yℓ(n) are uncorrelated for k ≠ ℓ, since Ryy(0) is diagonal. However, we 
cannot in general say that yk(n) and yℓ(m) are uncorrelated for n ≠ m). In other 
words, for ideal SBC the random processes {vk(n)} and {vℓ(m)} are uncorrelated. 
For KLT, only the random variables yk(n) and yℓ(n) are uncorrelated.

Figure C.4-1 Power spectrum for the example where GTC(2) > GSBC(2).

Example C.4.1: Situation Where GKLT(M) > GSBC(M)
Consider a WSS input with power spectrum as in Fig. C.4-1, and let M = 2. 
The areas of Sxx(ejω) in the two subbands are equal, so that GSBC(2) = 1. 
However, we can show that GKLT(2) > 1. For this it is sufficient to show that 
the 2 × 2 matrix Rxx(0) is not diagonal. Now

(C.4.1)

The quantity E[x(n)x(n- 1)] is the autocorrelation sequence of x(n) evaluated 
at lag = 1, and is equal to

(C4.2)

showing that Rxx(0) is not diagonal. So GKLT(2) > 1 = GSBC(2).

C.4.1 Summary of Main Points
The subband coding system is shown in Fig. C.2-1 and the transform coding system 
in Fig. C.3-1. Here x(n) is a real zero mean, nonharmonic, WSS process. The 
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matrix T, as well as the filter coefficients in subband coding case are assumed to 
be real. The filters Hk(z) and Fk(z) in subband coding are ideal (hence we call it 
the ideal SBC) with responses as in Fig. C.2-2. The transform coding matrix T is 
an orthogonal matrix with TTT = TTT = I.

The quantizers Qk are bk bit quantizers (as in Fig. C.1-1). These can be 
replaced with noise sources qk(n) which are assumed to be white, pairwise uncor­
related, and zero-mean with variance σ2qk.

1. For both ideal SBC and TC, the (average) noise variance at the output node 
[node of x(n)] is given by (C.3.2). If the average number of bits per sample of 
x(n) is fixed, then this variance is minimized by allocating the bits to quantizers 
such that the quantizer noise variances σ2qk are equalized.

2. With bits allocated as above, the output noise variance is given by (C.2.8b) for 
ideal SBC and by (C.3.5) for TC. These expressions are identical, and have the 
common form c × 2-2b× (geometric mean of subband signal variances).

3. The coding gain GSBC(M) for the ideal SBC system is given by the ratio 
(C.2.12) which is the arithmetic to geometric mean of the subband signal vari- 
ances. We have GSBC(M) ≥ 1, with GSBC(M) = 1 if and only if all the 
M subband signals have same variance. GSBC(M) usually increases as M in- 
creases, but there are examples where it can decrease. For deeper details about 
variation of GSBC(M), see end of Sec. C.2.

4. The coding gain GTC(M) can also be expressed as the ratio of arithmetic to 
geometric means of the transform coefficient variances (eqn. (C.3.15)). So 
GTC(M) ≥ 1. For a given process x(n), this gain is maximized when T is 
chosen to be the KLT. In this case, GTC(M) is denoted as GKLT(M). This is 
given by (C.3.18) which is the ratio of the arithmetic to geometric means of 
the eigenvalues of Rxx(0) (which is the M × M autocorrelation matrix formed 
from x(n)). The maximized coding gain satisfies GKLT(M) > 1 and is equal 
to unity if and only if Rxx(0) is diagonal with Rxx(0) = σ2xI. When KLT is 
used, GKLT(M) can never decrease with increasing Μ. For deeper details, see 
end of Sec. C.3.

5. For ideal SBC, the subband signals vk(n) and vℓ(m) are uncorrelated for k ≠ ℓ, 
for any n,m. For transform coding with KLT, the random variables yk(n) and 
yℓ(n) are uncorrelated for k ≠ ℓ for each n.

6. For ideal SBC, the above uncorrelating property is true for any (WSS) input 
x(n). For the KLT case, it is true only for a specific input signal because T 
was computed from the autocorrelation matrix of x(n). Thus the KLT is a 
system optimized according to the input statistics. If the statistics of the input 
changes, the matrix T has to be readjusted to obtain the optimal coding gain. 
In many practical applications, the KLT is replaced with a fixed matrix such 
as the DCT, which is independent of the input. This results in a suboptimal 
transform coder.

7. If x(n) is white then GSBC(M) — GKLT(M) = 1, for all Μ.
8. As the number of subbands M grows indefinitely, the coding gains GSBC(M) 

and GKLT(M) approach each other, and

(C.4.3) 
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that is, GSBC(∞) = GKLT(∞) = σ2x∕S∞ where ℰ∞ is the variance of the 
infinite order linear-prediction error and σ2x is the variance of x(n). Thus the 
asymptotic coding gains for ideal subband coding and KLT coding are identical. 
The reciprocal of this asymptotic coding gain is the spectral flatness measure γ2x 
defined in (C.2.17). Moreover, the above coding gain is equal to the asymptotic 
coding gain of the ideal DPCM system (Sec. C.5.1). All of these, in turn, are 
equal to the information theoretic bound on the 'achievable coding gain' for a 
Gaussian process (see Sec. C.5.2).

9. It is possible for GSBC(M) to attain the maximum value GSBC(∞) for finite 
Μ. This happens when Sxx(ejω) is constant in each of the M subbands. (This 
does not necessarily mean that x(n) is white.) Such a situation is not possible 
in transform coding; if GKLT(M) = GKLT(∞) for finite M then GKLT(M) = 1 
for all M, and x(n) is white.

C.4.2 Relation to Paraunitary Filter Banks
It turns out that the ideal SBC and the orthogonal TC systems are two extreme 
cases of paraunitary filter banks. Recall that a paraunitary filter bank is a system 
having the form in Fig. 5.5-3(b), where E(z) is paraunitary (Chap. 6). If the 
matrix R(z) is chosen as E(z), the system has perfect reconstruction.

For the ideal SBC case (filters as in Fig. C.2-2) it is easily verified that E(z) is 
paraunitary. For this recall (Sec. 6.2.2) that E(z) is paraunitary if and only if the 
AC matrix H(z) is paraunitary. By using the nonoverlapping nature of the filters, 
it can be shown that H(z) is indeed paraunitary. Since ideal filters have infinite 
number of coefficients, the paraunitary matrix E(z) however has infinite 'order' and 
moreover is noncausal.

As another extreme, if we choose E(z) = T (i.e., a paraunitary system of degree 
zero) we obtain the orthogonal TC system. So we see that the ideal SBC system and 
orthogonal TC system are two extreme cases of paraunitary perfect reconstruction 
systems.
Maximizing the Paraunitary Coding Gain

For paraunitary perfect reconstruction systems, an analysis of coding gain can 
be found in Soman and Vaidyanathan [1991]. The fact that optimal bit allocation 
equalizes quantizer noise variances is a direct consequence of the paraunitary prop- 
erty. Ideal SBC and orthogonal transform coding therefore share this property. It 
turns out that the problem of determining the optimal FIR paraunitary E(z) of a 
given degree (in the sense of maximizing the coding gain) is much more complicated 
than the problem of finding the best constant unitary T. A discussion for the special 
case of degree-one paraunitary E(z) can be found in Malvar [1990]. In what follows, 
we give a flavor for the general maximization problem.

Figure C.4-2 shows the polyphase representation of an M channel maximally 
decimated filter bank, with quantizers in the subbands. We have represented the 
quantizers with noise sources qk(n). We will use the same statistical noise model 
assumptions as in Sec. C.2. Let E(z) be paraunitary with E(z)E(z) = I. Let 
R(z) = E(z) so that x(n) = x(n — M + 1). Clearly R(z)R(z) = I as well.

The study of coding gain here is similar to that in Sec. C.3.1 for unitary 
transform coding systems. Thus let q(n) and q(n) be as in (C.3.3), where qk(n) are 
the noise components at the outputs of R(z) caused by the noise sources qk(n). The 
noise reaching the output node x(n) is the interlaced version of qk(n) so that the
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average output noise variance over a duration of M samples is again as in (C.3.1)∙ 
We now show that the summation (C.3.1) again reduces to (C.3.2), by using 

the paraunitary property of R(z). For this first note that the summation in (C.3.2) 
is the trace of Rqq(0), where Rqq(0) is equal to E[q(n)qT(n)]. Since Rqq(k) is the 
inverse Fourier transform of the power spectral matrix Sqq(ejω), we have Rqq(0) = 
∫π-π Sqq(ejω)dω∕2π.

so that the average output noise variance is given by (C.3.2), as in orthogonal 
transform coding.†

With the number of bits per sample fixed as before, the quantizer variance σ2qk 
must again be the same for all k (in order to minimize σ2q). The minimized variance
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Figure C.4-2 Polyphase representation of the maximally decimated filter bank 
with subband quantizers.

Defining q(n) similar to (C.3.3), its power spectrum is (Appendix B)

(C.4.4)

Letting Tr (A) denote the trace of the matrix A, we have

(C.4.5)

Thus Tr [Sqq(ejω)] = Tr [Sqq(ejω)]. Integrating this, we obtain

† This analysis does not assume that the quantizer noise sources are either white 
or uncorrelated.



σ2q is then given by the righthand side of (C.3.5), where σ2yk is the variance of the 
signal yk(n) [kth output of E(z)].

Recall that the variance σ2yk is the kth diagonal element of Ryy(0). In view of 
the inequality (C.3.10), we once again conclude that the paraunitary E(z) which 
minimizes σ2q is such that Ryy(0) is diagonal. (However, unlike in transform coding, 
this diagonal property is not sufficient for optimality; see below). The coding gain 
is still given by the first line of (C.3.16), that is,

Figure C.4-3 Expressing the paraunitary matrix E(z) as a cascaded structure.
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(C.4.6)

The subscript PU stands for “paraunitary.” This coding gain is a function of the 
number of subbands M, and the degree N of the paraunitary system. If N = 0 we 
obtain the case of traditional transform coding.

Notice that we cannot rewrite this as in the second line of (C.3.16) because 
[det Ryy(0)] ≠ [det Rxx(0)] in this case. This is because the relation (C.3.8) is not 
true any more, but only the transform domain version

(C.4.7)

holds. The relation [det Ryy(0)] = [det Rxx(0)] is, therefore, replaced with

(C.4.8)

As a result, [det Ryy(0)] is not independent of E(z) (unlike in orthogonal trans- 
form coding). The purpose of E(z) is therefore two fold. First it has to minimize 
[det Ryy(0)] for a given Sxx(ejω). Second, it has to diagonalize Ryy(0). Finding such 
a theoretical solution for E(z) (subject to the degree-N paraunitary constraint) is 
not an easy task. This theoretical problem (i.e., the extension of the KLT solution 
for the case of degree N paraunitary E(z)) is still an open problem.

To obtain more insight, recall that an FIR paraunitary E(z) can be expressed 
as in Fig. C.+3 where Wm are householder (unitary) matrices, Λ(z) is diago­
nal with diagonal elements [1, 1, . . . 1, z-1], and T is a constant unitary matrix. 
(This structure is obtained by transposition of Fig. 14.10-4). The matrices Wm 
should be chosen so that [det Rvv(0)] (which equals [det Ryy(0)]) is minimized. 
The rightmost matrix T should then be chosen such that the autocorrelation ma­
trix Ryy(0) = TRvv(0)TT is diagonalized. That is, T is the KLT matrix for its 
input vector v(n). Notice that there is no change of determinant across the matri- 
ces Wm, but only across the matrices Λ(z). However, the choice of Wm affects the 
extent to which the determinants change across the succeeding Λ(z) blocks.



C.5 RELATION TO OTHER METHODS
We now present the relation between the above coding techniques and a technique 
called differential PCM. The connection to information theoretic bounds will also 
be discussed.

C.5.1 The DPCM Technique
Consider the system shown in Fig. C.5-1 where x(n) is a real WSS process, and Q 
is a b-bit roundoff quantizer as before. The filter C(z) is a linear predictor, which 
predicts the sample xq(n) based on its past values xq(n — k), k > 0. That is,

(C.5.1)

where N is the predictor order. Note that with this notation we have C(z) = 
-ΣNk=1 akz-k. The quantity xq(n) is the predicted value. This system is called a 
differential pulse code modulation (DPCM) system. At first sight this might appear 
to be a strange circuit, but the following simple observations reveal its operation as 
well as ingenuity.

Figure C.5-1 The differential PCM technique.

Observation 1
The signals in the structure satisfy the following equations:

(C.5.2)

If we add these two equations, then xq(n) is eliminated, and we get

(C.5.3)

Thus the difference between xq(n) and the input signal x(n) is equal to the error 
introduced by the quantizer. If the quantizer error is small, then x(n) ≈ xq(n).
Observation 2

Let eN(n) be the prediction error, that is, eN(n) = xq(n) — xq(n). It can then 
be verified that the quantizer input is
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Since q(n) is the error which results due to quantization of y(n), it is reasonable to 
assume that the variance of q(n) is negligible compared to the variance σ2y of y(n). 
Thus, from the above equation
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If the process xq(n) is highly predictable (i.e., its flatness measure (C.2.17) is small), 
it is therefore reasonable to assume

Combining these results, we conclude σ2y << σ2x. 
The quantizer error σ2q is given by

(C.5.4)

according to Sec. C.1. If x(n) were directly quantized as in PCM using b bits, the 
quantization error would be

(C.5.5)

which is much larger (since σ2y << σ2x). The quantity (C.5.4) is also the variance 
of the error xq(n) — x(n), in view of (C.5.3). Thus if we regard xq(n) as the 
reconstructed version of x(n), the reconstruction error has variance

(C.5.6)

so that σ2q, DPCM << σ2q,PCM.

Figure C.5-2 Binary patterns for (a) yq(n), (b) xq(n), and (c) output of PCM 
quantizer.

Figure C.5-2 depicts the situation in terms of binary representations. We have 
assumed that there is a quantizer at the output of C(z) to avoid infinite bit accumu- 
lation in the feedback loop. This new quantizer can be chosen to have its rightmost 
bit aligned with that of Q. So yq(n) and xq(n) have the same step size. However,



since x(n) has larger variance than y(n), the signal xq(n) uses more bits to the left 
than yq(n).

The binary pattern which would result if x(n) were directly quantized using 
b bits is shown in Fig. C.5-2(c). Since the stepsize here is larger than that in 
Fig. C.5-2(b), there is more quantization error with PCM, for a fixed number of 
bits b. Thus, even though xq(n) is an approximation of x(n), obtained by using a 
b-bit quantizer in a feedback loop, it is a better approximation than a direct b bit 
quantized version. In other words, the system provides an effective number of bits 
beff > b. To see this quantitatively, we rewrite (C.5.6) as

Figure C.5-3 (a) Generation of xq(n) from yq(n), and (b) equivalent circuit with 
A(z) = 1 - C(z).

Essentially we have incorporated a b bit quantizer Q in a feedback loop, to 
obtain an effective accuracy of beff bits. A variation of this idea has also been used 
in the design of high precision A/D converters, by properly incorporating a low 
precision A/D converter, a linear predictor, and a high precision D/A converter in 
the feedback loop.

The above heuristic explanation assumes that the signal x(n) has a small spec­
tral flatness measure γ2x (i.e., it is highly predictable). We can make these discussions 
more quantitative; see Jayant and Noll [1984]. In this section we will be content 
with presenting the coding gain which is

(C.5.8)
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Thus σ2q,PCM with beff bits is idential to σ2q,DPCM with b bits, where

(C.5.7)

Observation 3
We see that yq(n) requires fewer bits per sample than xq(n) because of its 

smaller variance. So it is more economical to transmit yq(n), and then recover 
xq(n). The circuit which recovers xq(n) from yq(n) is shown in Fig. C.5-3 (a). 
(This follows directly from Fig. C.5-1). This can be redrawn as in Fig. C.5-3(b) 
where A(z) = 1 — C(z). This figure represents an allpole IIR filter 1∕A(z). We can 
regard Fig. C.5-1 as the coder (or transmitter) and Fig. C.5-3(b) as the decoder or 
receiver.



This is precisely the prediction gain of an Nth order predictor. As N → ∞ this ap- 
proaches the asymptotic coding gains GSBC(∞) and Gτc(∞) [see (C.3.28)]. Thus, 
the coding gains of all the three schemes have identical asymptotic value! The cod- 
ing gain is unity if x(n) is white, since ℇN = σ2x in that case (Sec. C.3.3). The gain 
increases as the spectral flatness measure (C.2.17) decreases.

Thus, with the incorporation of an optimal linear predictor in a feedback loop, 
it is possible to achieve the same coding gain as obtained by ideal subband coding 
and KLT coding. It turns out that if an optimal predictor is used in an open loop, 
then there is nothing to be gained, that is, the coding gain is unity. This statement 
is clarified in Problems C.7 and C.8.

C.5.2 Information Theoretic Performance Bound
We have studied three techniques, viz., subband coding, transform coding, and 
DPCM. Each of these systems can be considered to be a "sophisticated quantizer.” 
For example the Transform coding system of Fig. C.3-1 "quantizes" x(n) into x(n). 
The DPCM system “quantizes” x(n) into xq(n). In each case, we have embeded 
traditional roundoff quantizer(s) Q into a sophisticated structure made of filters, 
decimators, linear predictors and so on.

It is intriguing to note that each of the above techniques gives the same asymp- 
totic coding gain under ideal conditions. It is, therefore, reasonable to expect that 
this asymptotic gain has a fundamental significance. This indeed is the case, and 
has its foundations in the results of Shannon in communication theory [Shannon, 
1949]. We will now state this connection. For further details, the reader should see 
Appendix D of Jayant and Noll [1984], and references therein.
Rate Distortion Bound

The specific theory which is applicable in this context is the so-called rate- 
distortion theory [Berger, 1971]. Given a WSS process x(n), suppose we wish to 
use an average of b bits per sample to transmit it. The technique which encodes 
the signal x(n) into a b bit version is the 'coding scheme'. Examples are subband 
coding, DPCM, and so on. We can conceive of an unlimited variety of such coding 
schemes, for example, a subband coder in which each subband quantizer itself is 
replaced with a sophisticated device such as a DPCM coder.

In any case, assume that we have obtained a reconstructed version xrec(n) 
of the signal x(n), from its coded version. (For example, xrec(n) = x(n) in the 
scheme of Fig. C.3-1, and xrec(n) = xq(n) in Fig. C.5-1.) The reconstruction 
error is e(n) = xrec(n) — x(n). Rate distortion theory provides a lower bound on 
the variance of e(n), as a function of b (average number of bits per sample). This 
bound is denoted as Dmin(b). This is the minimum possible distortion at bit rate 
b; there exists no coding technique which can result in a smaller distortion.

A plot of Dmin(b) versus b therefore provides a yardstick for the performance of 
practical coding systems. If a practical system has a D(b) plot well above Dmin(b), 
then there is much room for improvement in terms of coder design. (Fig. C.5-4
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The argument N denotes the predictor order. From the above discussion we see 
that σ2y is nearly equal to the variance ℇN of the Nth order optimal prediction error 
(x(n) — x(n)). So the coding gain is

(C.5.9)



shows some qualitative plots). On the other hand, if the D(b) curve is very close 
to this bound, then any further improvement will usually require excessive cost for 
coder design. That is, the additional cost for coder design is excessive in relation 
to the reduction in the cost of transmission. (The latter cost refers to the bits per 
second resulting after coding.)

which agrees with GSBC(∞), GKLT(∞) and GDPCM(∞). In other words, the ben­
efits to be gained from each of these coding systems approach the theoretical rate 
distortion limit as the number of bands (or the predictor order in the DPCM case) 
approaches infinity. Notice that the bound Gmax has the form c∕γ2x where γ2x is the 
spectral flatness measure (C.2.17).

The reader will notice that the theoretical bound (C.5.11) does not fully agree 
with (C.3.28) because of the constant c. We will not specify c more exactly, since 
it has to do with the probability of overflow (Sec. C.1). Our main aim is to draw 
attention to the fact that the formula (C.5.11) has the same functional dependencies 
on σ2x and Sxx(ejω), as do the asymptotic coding gains GKLT(∞), GSBC(∞), and 
GDPCM(∞).

Rate distortion theory tells us that if we are allowed to use b bits per sample 
then the mean squared distortion cannot be smaller than Dmin(b). Now consider

(G.5.11)
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Figure C.5-4 Qualitative plots of rate distortion functions.

The case of a Gaussian process. We now give the functional form of D(b) 
for a specific case. Let x(n) be a zero mean real WSS Gaussian process, with power 
spectral density Sxx(ejω). For 'sufficiently small' distortions (i.e., assuming that b 
is 'sufficiently' large), we have

(C.5.10)

This quantity appeared several times during our discussions of subband and trans- 
form coding gains. It also appeared in the spectral flatness measure (C.2.17). The 
maximum coding gain obtainable (using any scheme whatsoever) is theoretically 
bounded by



a subband coding system, where we are allowed to use bk bits per sample in the 
kth subband. The overall bit rate b is related to bk as in (C.2.2). Instead of using 
a simple roundoff quantizer in each subband, suppose we use a DPCM coder or 
an even more sophisticated device. No matter how we perform this coding of each 
subband, the overall reconstruction error will never be smaller than Dmin(b), even 
if the quantization error in each subband is as low as its own rate distortion bound 
Dmin(bk).

In particular, if we are allowed to use quantizers of arbitrary degree of sophis- 
tication, then a PCM coder with such an 'advanced' quantizer can even be better 
than a subband coder with similar quantizers in each subband. (Of course, we 
will not think of it as a PCM coder any more, according to traditional language.) 
Techniques such as subband coding, transform coding, and DPCM are superior to 
PCM, if we perform the comparison under the condition that all the boxes labeled 
Q in their flow diagrams are simple roundoff quantizers.
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PROBLEMS

Note. Unless mentioned otherwise, the input x(n) is real WSS with zero mean, and 
all filters have real coefficients.

C.1. Consider the expression (C.1.4) which relates the quantizer noise variance σ2 
to the signal variance σ2x. We know that c depends on statistics of x, and we 
evaluated c for a number of statistical distributions.

a) Now assume x has the following density function:

Figure PC-1

How would you choose ℓ to prevent overflow? Evaluate c.
b) Next let x be Gaussian, and suppose we choose ℓ such that 2ℓ+1 = 4σx. 

What is the probability of overflow? What is the value of c?
C.2. The AM-GM inequality says that if ak are nonnegative numbers then

(PC.2a)

with equality if and only if a0 = a1 = . . . = aM-1. We now outline a proof. 
(This appears to be Cauchy’s original proof! [Bellman, 1960]).
a) Let x0, x1 ≥ 0. Prove that 0.5(x0 + x1) ≥ √x0x1. (Hint. Use (√x0 — 

√x1)2 ≥ 0.) When does equality occur?
b) Prove AM-GM inequality for M = 4. [Hint. Set x0 = (a0 + a1)∕2, x1 = 

(a2 + a3)∕2 in part (a).]
c) Hence prove, by induction, that such an inequality holds for M = 2m, for 

all positive integers m.
d) It remains to complete the proof for arbitrary positive integers Μ. For this 

it is sufficient to show that it holds for M — 1 if it holds for Μ. Thus, let 
b0, . . . bM-2 ≥ 0. Define ai = bi for 0 ≤ i ≤ M — 2 and

(PC.2b)

Assuming (PC.2a) to be true, show that

(PC.2c)

Also prove that equality holds if and only if all bi are equal. (This technique 
is called the backward induction.)
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C.3. Consider the subband coder with ideal filters (as in Sec. C.2).
a) Show that the coding gain satisfies GSBC(nM) ≥ GSBC(M).
b) Suppose the power spectrum Sxx(ejω) of the input x(n) is constant in 

each of the M subbands (e.g., as in Fig. C.2-5). Show that GSBC(nM) = 
GSBC(M) for all positive integers n.

c) Conversely, suppose GSBC(nM) = GSBC(M) for all positive integers n. 
Argue that Sxx(ejω) is constant in each of the M subbands.

C.4. Let the power spectrum of x(n) be as shown below.

With ideal subband coding filters as in Sec. C.2, explicitly evaluate the cod- 
ing gains GSBC(2) and GSBC(∞), and verify that they are the same. Argue 
(without explicit evaluation) that GSBC(3) < GSBC(2).

C.5. Let the input x(n) to the ideal subband coder of Sec. C.2 be such that 
GSBC(i) = GSBC(M) for all i ≥ M for some integer M > 1. Show that 
x(n) is white!

C.6. For the KLT transform coder, suppose GTC(M + 1) = GTC(M) for some 
M > 0. Show then that (C.3.29) holds. Hint. Use (C.3.25).

C.7. Consider the system shown below where Q is a roundoff quantizer satisfying 
the standard assumptions of Sec C.1. Let x(n) be real, zero mean, and WSS 
with power spectrum Sxx(ejω). Let σ2q denote the quantizer noise variance.

Figure PC-7(a)

a) Find an expression for the variance of the reconstruction error x(n) — x(n).
b) Find an expression for the coding gain in terms of Sxx(ejω) and H(ejω).
c) For fixed Sxx(ejω) find a filter H(ejω) which maximizes the coding gain. 

Hint. Use Cauchy Schwartz inequality, that is,

(PC.7)

for real u(α) and v(α), with equality if and only if u(α) = Kv(α) for some 
constant K.

d) What is the maximized coding gain? Evaluate it for the example where 
Sxx(ejω) has the form shown in Fig. PC-7(b).
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Figure PC-7(b)

Plot this coding gain as a function of θ for 0 < θ < π. You will see that the 
gain is very large for a 'peaky' spectrum and small for a relatively 'flat' 
spectrum.

Note. In general, the optimal H(ejω) and its inverse may not be realizable 
filters. One has to replace these filters with practical (causal, stable) approxi­
mations, which result in suboptimal coding gains.

C.8. Consider the linear prediction equation (C.3.22). With ek(n) denoting the 
prediction error x(n) - xp(n), we see that ek(n) and x(n) can be generated 
from each other as shown below, where Ak(z) = 1 + Σki=1 aiz-i.

Figure PC-8

Consider the case where the predictor coefficients are optimal, that is, E[e2k(n)] 
is minimized. It is then well known in linear prediction theory that Ak(z) has 
all zeros inside the unit circle (unless x(n) is a special process called 'harmonic 
process'). So 1∕Ak(z) is stable IIR, and the structure of Fig. PC-7(a) is 
realizable with H(z) = Ak(z). Let ℇk denote the minimized prediction error 
variance E[e2k(n)]. It is known that the variance σ2x of x(n) and the quantity 
ℇk are related as
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(PC.8)

(This ratio is called the 'prediction gain'). Assuming the truth of (PC.8), show 
that if H(z) = Ak(z) in Fig. PC-7(a), then the coding gain is unity.
Comment. Thus, if the linear prediction system is used in an open loop config- 
uration, we do not gain anything. On the other hand, if we use it in a closed 
loop as in DPCM, then the coding gain is nearly equal to the prediction gain 
(PC.8), as we saw in Sec. C.5.
Note. The result (PC.8) is obvious when ek(n) is white [from Fig. PC-8(b)], 
but is rather subtle in the general case. It can be proved by using some of 
the deeper properties (e.g., the autocorrelation matching property, [Makhoul, 
1975]) of the optimal predictor.

C.9. Consider the optimum bit allocation formula (C.2.9). With M = 2, σ2x0 = 64 
and σ2x1 = 1, what is the minimum b that ensures b0 ≥ 1 and b1 ≥ 1? Assume 
that b is chosen to be two times this minimum value. What are optimal values



of b0 and b1? Are these integers?
C.10. Consider the ideal subband coder. Let the coding gain be such that GSBC(M) 

= GSBC(N) = GSBC(∞) for two relatively prime integers M and N where 
M,N > 1. Show then that the input x(n) is white.
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Appendix D

D.0 INTRODUCTION
In Sec. 3.2.5 we defined the spectral factor H0(z) of a FIR transfer function H(z) 
with nonnegative frequency response H(ejω). This section should be reviewed at 
this time. The spectral factor H0(z) is not unique, and we can find all possible 
solutions by finding the zeros of H(z) and grouping them appropriately. We will 
now describe an algorithm, reported in Mian and Nainer [1982], for computing a 
spectral factor H0(z) without finding the zeros of H(z). The spectral factor given by 
this algorithm has minimum phase (and is therefore unique). Moreover, the method 
works even if H(z) has zeros on the unit circle, unlike some other techniques that 
have been reported in the literature.

D.1 THE COMPLEX CEPSTRUM

The technique to be described here uses some fundamental properties of the so-called 
complex cepstrum of a sequence. A detailed treatment of this topic, along with 
references to poineering work in this area, can be found in Chap. 12 of Oppenheim 
and Schafer [1989]. Here we will present the definition and only those properties 
that are relevant for the spectral factorization algorithm.

Let x(n) be a sequence with z-transform X(z). In general this converges in some 
annulus in the z-plane. We shall specify this region explicitly only when it becomes 
relevant later on. Consider the function X(z)=[ln X(z)]. This is in general complex 
valued [as is X(z)]. Assuming that this has a nontrivial region of convergence, we 
can find its inverse z-transform x(n). This sequence x(n) is said to be the complex 
cepstrum of x(n). † We also say "complex cepstrum of X(z)" when that is more 
convenient.

† x(n) is not necessarily a complex sequence; the term 'complex' is used to em­
phasize the fact that a complex logarithm is involved.
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We will now consider some examples to bring out a few key properties.

Spectral factorization 

techniques



Example D.1.1
Let X(z) = 1 — αkz-1 which is the z-transform of the causal FIR sequence x(n) 
whose nonzero samples are {1, -αk}. Then X(z) = ln(1 — αkz-1). By using the 
expansion

D.1.1 Minimum and Maximum Phase Fitters
Let H0(z) = ΣNn=0 h0(n)z-n be a causal minimum phase FIR filter (i.e., no zeros 
outside the unit circle). Let ak, 1 ≤ k ≤ na be the zeros on the unit circle, and let 
bk, 1 ≤ k ≤ nb be those inside. Then,
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(D.1.1)

we obtain the power series expansion

(D.1.2)

Note that the region of convergence is ∣z∣ > ∣αk∣. The complex cepstrum x(n) 
of the sequence x(n) is the inverse z-transform of X(z) i.e.,

(D.1.3)

where U(n) denotes the unit-step function. In this example x(n) is a causal 
sequence. If ∣αk∣ ≤ 1, then this sequence is bounded, and approaches zero for 
n → ∞. Note that x(n) is infinitely long, even though x(n) has finite duration.

Next consider the example Y(z) = 1 — βkz. This is the z-transform of the 
noncausal FIR sequence y(n) whose nonzero sample values are {-βk, 1}. The 
quantity Y(z) ≜ [lnY(z)] can be expressed as

(D.1.4)

The region of convergence is ∣z∣ < ∣βk-1∣, and the complex cepstrum of y(n) is

(D.1.5)

which is anticausal. If ∣βk∣ ≤ 1, y(n) is bounded, and approaches zero for 
n → —∞.

(D.1.6)

where we have assumed ho(0) = 1 for simplicity. Since ln XY = ln X + In Y, the 
quantity [ln H0(z)] is the sum of the logarithms of the first order factors in (D.1.6).



(D.1.7)

If H0(z) has real coefficients, then complex zeros are accompanied by their conju- 
gates so that the summations above are real.

As a second example, consider the filter

(D.1.8)

This has the zeros ak on unit circle, and the zeros 1∕bk outside the unit circle. This 
is a maximum phase filter. Its logarithm can be expressed as

(D.1.9)

Using Example D.1.1 we see that the first summation converges for ∣z∣ > 1 and 
the second summation for ∣z∣ < mink ∣bk-1∣. So the above z-transform has region of 
convergence 1 < ∣z∣ < mink∣bk-1∣. Its inverse transform, that is, the cepstrum of 
h1(n) is given by

(D.1.10)

Thus the complex cepstrum of h0(n) is causal (see (D.1.7)) whereas that of h1(n) 
has an anticausal part cb(-n) (contributed by the zeros 1∕bk outside the unit circle).

An intriguing relation. Since ln XY = ln X + ln Y, the complex cepstrum 
of G(z) ≜ H1(z)H0(z) is given by

(D.1.11)

On the other hand, the complex cepstrum of H20(z) is equal to 2h0(n). From (D.1.7) 
we have

(D.1.12)
We can therefore obtain h0(n) from g(n) as follows: simply fold the anticausal part 
cb(-n), add to the causal part, and divide by two. We will use this idea later.

D.1.2 Subtleties in the Computation
There are some subtle issues which must be carefully considered when computing 
the complex cepstrum. Consider X(z) = [ln X(z)]. If the region of convergence of
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Using the ideas in Example D.1.1, we see that the function H0(z) ≜ [ln H0(z)] con- 
verges in the region ∣z∣ > 1, and that the complex cepstrum of h0(n) is the causal 
sequence



this quantity includes the unit circle, we can evaluate X(ejω) = ln X(ejω), and then 
find x(n) by performing an inverse Fourier transformation.

If, on the other hand, X(z) does not converge on the unit circle, we can always 
take care of this as follows: define x1(n) = ρ-nx(n) so that X1(z) = X(ρz). For 
appropriate choice of ρ, the quantity X1(z) ≜ [ln X1(z)] will converge on the unit 
circle. Having computed its inverse Fourier transform x1(n), we can then obtain the 
complex cepstrum of the original sequence x(n) using the relation x(n) = ρnx1(n). 
In what follows, we shall therefore assume that X(z) converges on the unit circle, 
that is, that X(ejω) exists.
Subtleties About the Phase Response

Let X(ejω) = ∣X(ejω)∣ejφ(ω). Then its complex logarithm can be expressed as

(D.1.13)

We know that the phase function φ(ω) is not uniquely determined by X(ejω) since 
we can replace φ(ω) with φ(ω) + 2πk for integer k, without changing X(ejω). How­
ever, [ln X(ejω)] is affected by the choice of k.

In Sec. 2.4.1 we stated that there are two kinds of phase responses, unwrapped 
and wrapped, denoted respectively as φu(ω) and φω(ω). For many applications, 
we need not distinguish between these, and the subscript is omitted. But in the 
computation of [ln X(ejω)], one uses the unwrapped phase φu(ω) (which is free 
from discontinuities in φω(ω) caused by the modulo 2π operation on phase). The 
reason for this is the following: whenever we consider the complex cepstrum of a 
product [e.g., equation (D.1.6)], we would like the result to be the sum of individual 
complex cepstra (e.g., as in (D.1.7)). From (D.1.13) we see that this will happen 
only if we consistently use unwrapped phases everywhere. (The sum of unwrapped 
phases gives the total unwrapped phase.)

The unwrapped phase φu(ω) can be computed using the algorithm in Tribo­
let [1977] (which we will not repeat here). Furthermore, a computer program for 
computation of the complex cepstrum, which incorporates phase unwrapping, is 
available in Tribolet and Quatieri [1979].

When is the unwrapped phase periodic? The wrapped phase response 
φω(ω) is periodic with period 2π whereas the unwrapped phase response φu(ω) is 
not necessarily so. (Example: let H(z) = z-K, then φu(ω) = -Κω). This will 
create some difficulties in (D.1.13) because the Fourier transform X(ejω) of the 
sequence x(n) is supposed to be periodic.

It can be shown (Problems D.1 and D.2) that if we have a transfer function of 
the form (1 — αz-1) where α is a possibly complex number with ∣α∣ < 1, then the 
unwrapped phase is still periodic with period 2π. This is also true of (1 — az) for 
∣α∣ < 1. More generally, this is true for products of the form

Thus, the factors corresponding to the zeros inside the unit circle should be rep- 
resented as (1 — αz-1), ∣α∣ < 1 rather than as (1 — α'z), ∣α'∣ > 1. Similarly the 
zeros outside the unit circle must be represented by (1 — βz), ∣β∣ < 1 rather than as 
(1 — β'z-1), ∣β'∣ > 1. This will ensure that the unwrapped phase is periodic.
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Elimination of the nonperiodic component. Notice that any FIR transfer 
function with no zeros on the unit circle can be written as
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(D.1.15)

where K is an integer, αk are the zeros inside the unit circle and (1∕βk) are the 
zeros outside. The unwrapped phase φu(ω) of this system is not periodic, because 
of the factor z-K. So the Fourier transform [ln H(ejω)] is not periodic if we use 
the unwrapped phase. On the other hand, if we use the Wrapped phase, then the 
imaginary part of [ln H(ejω)] has discontinuities (jumps of 2π).

in practice, this situation is avoided by estimating K and then replacing H(z) 
with zK H(z). This eliminates the nonperiodic component of the unwrapped phase. 
Given the quantity H(z), the algorithm in Tribolet and Quatieri [1979] first obtains 
the unwrapped phase, and then estimates K, and actually computes the complex 
cepstrum of zK H(z). As a result, the output of this algorithm is unaffected if the 
input to the algorithm [i.e., H(z)] is replaced with z-L H(z) for arbitrary integer L.

The computation of K in (D.1.15) is performed as follows: suppose the un- 
wrapped phase φu(ω) has been found. Compute the difference φu(π) — φu(-π). 
Since the nonperiodicity comes only from e-jωK, this difference is equal to — 2Kπ. 
From this K can be found.

D.2 A CEPSTRAL INVERSION ALGORITHM
It is possible to recover x(n) uniquely from x(n). Techniques for such inversion can 
be found in Chap. 12 of Oppenheim and Schafer [1989]. We now present a procedure 
for the case where X(z) is rational, and x(n) satisfies the following properties.

1. x(n) is real, causal, and stable (i.e., all poles of X(z) are inside the unit circle).
2. X(z) has no zeros outside the unit circle (i.e., it is a mimimum phase function).
3. x(0) > 0.

In this case the cepstral sequence x(n) has the form (D.1.7), and is causal, as 
well as real. (The poles of X(z) give rise to terms similar to those in (D.1.7), except 
for sign). Both X(z) and X(z) converge for ∣z∣ > 1. In this region, we can write

(D.2.1)

where X(z) = x(0) + x(1)z-1 + x(2)z-2 + . . . Equating the constant coefficients on 
both sides of (D.2.1), we get

(D.2.2)

Suppose we are given the causal sequence x(n). Then we can compute x(0) from the 
above equation, and obtain the remaining samples of x(n) by using the recursion

(D.2.3)

To see this note that the equation X(z) = eX(z) implies X'(z) = X(z)X'(z) (where 
prime denotes derivative with respect to z). Using the fact that zX'(z) is the



z-transform of - nx(n), we obtain nx(n) = x(n) * nx(n), where * stands for convo- 
lution. Eqn. (D.2.3) follows from this. This equation also shows that if x(n) has 
finite duration (say L), we can compute it from the first L samples of x(n) even 
though x(n) itself does not have finite duration.

D.3 A SPECTRAL FACTORIZATION ALGORITHM
Suppose we are given the coefficients of the FIR filter H(z), with frequency re­
sponse H(ejω) ≥ 0 (which, in particular, has zero-phase). We will assume that 
the coefficients are real i.e., H(ejω) is even (as in most filter bank applications). 
Thus if zk is a zero of H(z), then so is z*k. Recall that the minimum-phase spectral 
factor H0(z) is obtained by retaining all the zeros inside the unit circle, and one 
out of every double zero on the unit circle. (See Sec. 3.2.5.) So H0(z) has real 
zeros and complex-conjugate pairs of zeros, and therefore has real coefficients. We 
now present a method to extract this real-coefficient minimum-phase spectral factor 
H0(z).

H(z) is a zero phase filter, and has the form H(z) = ΣNn=-Ν h(n)z-n. We can 
write this function as

(D.3.3)

From this we first compute the complex cepstrum f(n). This can be done by 
inverse transformation of [ln F(z)]. But we have to be careful: [ln F(z)] does not 
converge on the unit circle (since F(z) has zeros there). Fortunately, however, F(z) 
does not have any zeros in the region 1 < ∣z∣ < mink  (1/|bk|) so that we can choose
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(D.3.1)

with ∣ak| = 1 and ∣bk∣ < 1. In writing (D.3.1) we have used the following facts: 
(a) if α is a zero of H(z) then so is 1∕α*, (b) the zeros on the unit circle have 
even multiplicity (since H(ejω) ≥ 0), and (c) if α is a zero then so is α* (since the 
coefficients are real).

The minimum phase spectral factor has the form

(D.3.2)

From this we have h0(0) = B so that B is real. It can be shown that A = B2 > 0. 
(Proof. Evaluate H(z) and H0(z) at z = 1 and use H(1) = H0(1). This gives 
A = B2 as long as H(ej0) ≠ 0, which is a valid assumption for the lowpass case).

Our aim is to compute H0(z) [i.e., its coefficients h0(n)] from H(z), by first 
computing the complex cepstrum of h(n). The program in Tribolet and Quatieri 
[1979] can be adapted for this purpose. As explained at the end of Sec. D.1, this 
program will automatically estimate and eliminate zK. In this sense the program is 
insensitive to a time-shift of the input data. So we will focus our attention only on 
the effective input function



this to be the region of convergence of [ln F(z)]. Then, the function F1(z) ≜ F(ρz) 
which is the z-transform of
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(D.3.4)
converges on the unit circle, for ρ in the range

We can therefore work with [ln F1(ejω)] and compute the inverse Fourier transform 
f1(n), and then obtain f(n) = ρn f1(n). This has the form

(D.3.5)

where ca(n) and cb(n) are real valued causal sequences defined in (D.1.7) and cb(-n) 
is anticausal. (Clearly f(n) is real as long as A > 0. See comments below.) By 
folding the anticausal part cb(-n), adding to the causal part, and dividing by two, 
we therefore obtain

(D.3.6)

But the complex cepstrum h0(n) of the minimum phase spectral factor H0(z) [eqn. 
(D.3.2)] is also given by this expression (using A = B2). Thus if we use the causal 
sequence (D.3.6) as x(n) in (D.2.3), then the inverted sequence x(n) will be equal 
to h0(n). In other words, the spectral factor H0(z) has been determined.

D.3.1 Computational Issues

The program in Tribolet and Quatieri [1979] computes the complex cepstrum f1(n) 
of f1(n). The user has the responsibility of choosing ρ and supplying f1(n) defined 
in (D.3.4). The program first evaluates F1(ejω) for a finite number (say L) of 
values of ω. This is done by computing the DFT of the sequence f1(n). This gives 
the sequence

(D.3.7)
The inverse DFT of [ln F1(ej2πk/L)] is then obtained [by using the unwrapped 
phase of F1(ejω) for the purpose]. This gives an approximation of f1(n) [complex 
cepstrum of f1(n)]. The accuracy of this approximation depends on L. Once f1(n) 
is thus obtained, the user proceeds as described above, in order to complete the 
spectral factorization.

The DFT and IDFT are typically done by using the fast Fourier transform 
(FFT). For further discussion on the choice of L and ρ, see [Mian and Nainer, 
1982]. Usually the choice L = 8N gives acceptable results. The choice of ρ is tricky 
because the zeros bk are not given. In practice, this choice might require trial and 
error. Once the spectral factor H0(z) is identified, one can plot ∣H0(ejω)∣2 and 
compare with the plot of H(ejω), to check the accuracy as well as to make sure that 
there have been no fatal errors.

D.3.2 Summary of the Spectral-Factorization Procedure
In the above derivation, we have provided several computational details, so that 
the user is well-informed about these. However, the implementaion itself is very



simple, and does not require many of the above details. Here is a summary of the 
procedure.

1. Given the function H(z) = ΣNn=-Ν h(n)z-n with H(ejω) ≥ 0, define the causal 
sequence g(n) = ρ-nh(n — N), 0 ≤ n ≤ 2N, where 1 < ρ < mink 1∕∣bk∣. Since 
bk are unknown, this choice of ρ requires some guess work. In the author’s 
experience, the value ρ = 1.02 produced excellent results for most of half band 
filters H(z) used in the two-channel QMF problem. Note that the user need 
not know the quantity K in (D.3.1), since the program in Tribolet and Quatieri 
[1979] is insensitive to any time-shift of its input.

2. With g(n) used as the input to the program in Tribolet and Quatieri [1979], 
the output is g(n), which is the complex cepstrum of g(n). Notice that the 
length of g(n) is typically much longer than 2N + 1, since a much longer DFT 
is used in the computation. (Unlike g(n), the sequence g(n) is noncausal, and 
the values for negative n should be carefully identified from the output; see 
instruction in the program listing of Tribolet and Quatieri [1979].)

3. Fold the anticausal part of g(n), add it to the causal part, and divide by two. 
This gives the causal sequence (D.3.6). By using this causal sequence as x(n) in 
(D.2.2) and (D.2.3), evaluate the sequence x(n). This sequence is equal to h0(n). 
The spectral factor H0(z) = ΣNn=0 h0(n)z-n has therefore been determined.

Design Example D.3.1.
We now consider an example where H(z) is a zero phase FIR equiripple half- 

band filter with order 2N = 178. The response H(ejω) has been ensured to be 
nonnegative by first designing a causal linear phase filter G(ejω) by use of the 
McClellan-Parks program, and then defining H(z) = zNG(z) + δ where δ is the peak 
stopband ripple of G(ejω). Figure D.3-l shows the response H(ejω). The stopband 
edge is at ωs = 0.527π. The figure also shows the response ∣H0(ejω)∣ of the minimum 
phase spectral factor H0(z), computed using the above technique. The stopband 
attenuation of H(ejω) is about 80 dB and that of H0(ejω) is about 40 dB. The value 
ρ = 1.02 was used in the computation.

There have been other approaches for spectral factorization of FIR filters. See 
for example Friedlander [1983]. While these have some advantages over the one 
described above, they work only if there are no zeros on the unit circle.
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Figure D.3-1 Design example D.3.1. Magnitude responses of H(z) and its 
spectral factor H0(z).
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PROBLEMS

D.1. Consider the transfer function H(z) = 1 — αz, with 0 < α < 1. This can be 
written as H(z) = α(1/α — z) and the phase response φ(ω) is equal to the phase 
of 

It is convenient to use a vector diagram to trace the behavior of φ(ω). This is 
shown below.

Similar diagrams can be drawn for arbitray rational transfer functions. (For 
example, see pp. 220-221 of Oppenheim and Schafer [1989].) As ω varies from 
0 to 2π, the vector G(ejω) changes both in magnitude and angular orientation. 
Its angle φ(ω) can span a range exceeding 2π. So, the unwrapped phase φu(ω) 
can be conceptually obtained by tracing the variation of φ(ω), but carefully 
avoiding any “modulo 2π reduction.” (Thus, if φ(ω) is plotted with respect 
to ω, there will be no abrupt jumps of 2π.) In what follows, we therefore 
have φ(ω) = φu(ω). By using this diagram, we can also find out whether the 
unwrapped phase is periodic. For this note that φ(0) — φ(2π) = 2πm for some 
integer m, since G(ejω) is periodic. φ(ω) is periodic with period 2π if and only 
if m = 0.

a) For H(z) = 1 — αz, with 0 < α < 1, show that φu(ω) is periodic with 
period 2π.

b) Hence show that the same is true for H(z) = 1 — αz, where a is possibly 
complex with ∣α∣ < 1. (Hint. Try a frequency shift.)

c) Hence show that the same is true for H(z) = 1 — αz-1, where a is possibly 
complex with ∣α∣ < 1.

Note. Part (b) takes care of zeros outside the unit circle, whereas part (c) takes 
care of zeros inside.

D.2. Let H(z) = 1 — αz with α > 1. Show that the unwrapped phase does not 
satisfy φu(0) = φu(2π). By a simple argument, extend this to the case where a 
is complex with ∣α∣ > 1. Show finally that the same is true for H(z) = 1 -αz-1, 
∣α∣ > 1. (Note. It helps to first read Problem D.1).
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Appendix E

Mason's Gain Formula

Mason's gain formula is a very convenient tool to obtain transfer functions of com­
plicated structures. It can be applied to any signal flow graph (see below), for 
example, the coupled form structure reproduced in Fig. E-1(a). We now state this 
result, and present some examples of its use. Further examples and details can be 
found in B. C. Kuo [1975]. For orginal work and theoretical developments see S. J. 
Mason [1953,1956].

Terminology
A signal flow graph is a collection of nodes interconnected by directed branches. In 
Fig. E-l(a) the nodes are indicated by circled numbers. Each node is associated 
with a signal, for example, node 1 is associated with
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where s2(n) is the signal associated with node 2. Each branch has a gain, for 
example, the branch from node 1 to node 2 in the above example has gain z-1. The 
gain is indicated adjacent to the branch. Whenever a branch is unlabeled, its gain 
is assumed to be unity.

The input and output nodes of the graph are typically labeled as u(n) and y(n) 
respectively. Notice that the signal associated with node 4 is also the output, i.e., 
s4(n) = y(n).

Paths. A path is merely a succession of branches, directed the same way. The 
path gain is the product of individual branch gains. (This explains why the gains are 
always indicated in terms of z-transforms rather than in time domain). The symbol 
Pk(z) denotes the gain for the kth path. In Figs. E-1(b),(c) we have indicated some 
paths of the flow graph of Fig. E-1(a). These paths have gains

(E.1)
If a path starts from the input node and ends at the output node with no node 
encountered more than once, it is said to be a forward path. In the above example 
P2(z) is a forward path. A signal flow graph can have many forward paths.

Deleting a path. The operatin of 'path deletion' is central to Mason’s gain 
formula. Deleting a path Pk(z) means (i) delete all branches in the path, and (ii)



Figure E-1 (a) Signal flow graph of the coupled form structure, (b), (c) two 
examples of 'paths', (d) graph that remains after deleting the path 'R sin θ.' (e) 
graph that remains after deleting the path z-1 which connects nodes 1 and 2.

delete all branches that touch any node on the path. Figs. E-1(d),(e) show examples 
of the remaining graph after deleting certain paths from Fig. E-1(a). Note that 
if we delete the horizontal path which connects nodes 1 and 4 in Fig. E-1(a), the 
resulting graph is empty!

Loops. A path which starts and ends at the same node with no other node 
encountered more than once is said to be a loop. The product of the branch gains 
is said to be the loop gain. In the above example, the loop labeled L1 has loop 
gain z-1 R cos θ. A signal flow graph can have any number of loops. Two loops are 
said to be touching if they share a common node, and nontouching if they do not. 
Figure E-2 shows examples of touching and nontouching loops.

Determinant of a Signal Flow Graph
The determinant of a signal flow graph is defined as
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Figure E-2 Examples of touching and nontouching loops. (a) Touching, (b) 
nontouching, (c) touching, and (d) both types.

To demonstrate this, consider Fig. E-2(d). We have 
Loops: a1b1, a2b2, a3b3, a1c1a2c2a3b4.
Nontouching pairs: (a1b1, a2b2), (a1b1, a3b3), (a2b2, a3b3). 
Nontouching triples: (a1b1, a2b2, a3b3).

So the determinant is

(E.3)

Notice that a graph with no loops has Δ = 1. This is true, in particular, for the 
“empty graph,” that is, graph with no nodes.

Mason’s formula
Let H(z) denote the transfer function Y(z)∕U(z) of a signal flow graph. Define the 
following notations:

1. Δ(z) = determinant of the graph.
2. L = number of forward paths, with Pk(z), 1 ≤ k ≤ L denoting the forward 

path gains.
3. Δk(z) = determinant of the graph that remains after deleting the kth forward 

path Pk(z).
Then the transfer function is
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(E.5)

Figure E-3 First order di­
rect form structure.

Example E.2.
Consider the coupled form structure shown in Fig. E-1(a). For this we have: 

Loops: z-1 R cos θ, z-1 R cos θ, and —z-2 R2 sin2 θ.
Nontouching pairs: z-1 R cos θ, z-1 R cos θ.

There are no nontouching triples and so on. Using (E.2) the determinant of the 
structure is
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Example E.1
Consider the direct form structure of Fig. E-3. We have only one loop, with 
gain az-1. So the determinant Δ(z) = 1 — az-1. There are two forward paths, 
with gains P1(z) = b0 and P2(z) = b1z-1. If either of these paths is deleted, 
the result is the empty graph, so that Δ1(z) = Δ2(z) = 1. Applying (E.4) we 
obtain

(E.6)
There is only one forward path, with P1(z) = z-2 R sin θ. If this is deleted, the 
result is an empty graph, and we obtain Δ1(z) = 1. Using (E.4) we therefore 
obtain

(E.7)

Example E.3.
We now consider the lattice structure of Fig. E-4, which provides an exampe 
where Δk(z) are nontrivial. Here ki stands for √(1 — k2i), and —1 < ki < 1. 
First let us list the loops:

Loops: —k1k2z-1, —k1z-1, and —k2k21z-2.
Nontouching pairs: (-k1k2z-1, —k1z-1).

Using (E.2) we then obtain the determinant

(E.8)

Next, we have three forward paths. The gains are



The graph that remains after deletion of the forward path Pk(z) is shown in
Fig. E-5 for k = 1,2. (If P3(z) is deleted, the remaining graph empty.) The 
determinants of these 'remaining' graphs are

(E.9)

Substituting these into (E.4) we arrive at the transfer function

(E.10)

which is an allpass function, since ki are real.

Figure E-4 The lattice structure example.

Figure E-5 Graphs that remain after deletion of certain paths from Fig. E-4.
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PROBLEMS

E.1. Find the transfer function of the following structure using Mason’s formula, 
assuming that y(n) is the output.

Figure PE-1

Figure PE-2

E.3. Find the transfer function of the following structure, and show that it is allpass, 
whenever b2 and b3 are real.

Figure PE-3

E.4. Consider the two-input two-output system shown in Fig. PE-4. This is char­
acterized by a 2 × 2 transfer matrix, H(z), that is,

Finds the elements Hkm(z) of this transfer matrix using Mason’s formula.
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If s(n) is regarded as the output instead, what will be the transfer function?
E.2. Find the transfer function of the following structure using Mason’s formula.



Figure PE-4
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GLOSSARY OF SYMBOLS

Bold faced quantities denote matrices and vectors.
∣a∣ denotes the absolute value.
det A denotes the determinant of A.
deg[H(z)] denotes the McMillan degree of H(z).
Tr(A) denotes the Trace of A.
AT denotes the transpose of A.
A† denotes the transpose conjugate of A.
A* denotes the conjugate of A.
A-1 denotes the inverse of A.
A-T denotes the inverse transpose of A.
A-† denotes the inverse transpose conjugate of A.

H(z) = H†(1/z*). Thus H(ejω) = H†(ejω). Page 30. 
∥a∥ denotes the ℒ2 norm of the vector a. Page 785.

a(n)|↓M denotes the decimated version a(Mn), and A(z)|↓M  denotes 
its z-transform.
WM = e-j2π/M. Subscript M is often omitted.
W denotes the M × M DFT matrix with [W]km = Wkm.
E(z) denotes the Polyphase matrix of the analysis bank. Page 231. 
R(z) denotes the Polyphase matrix of the synthesis bank. Page 232. 
δ(n) denotes the unit pulse or impulse function. Page 12.
δa(t) denotes the Dirac delta function or impulse function. Page 12. 
U(n) denotes the unit step function. Page 12.

= denotes “defined as”.

Further details on notations
General. Chapter 2, pages 28-31
Multidimensional multirate. Chapter 12, pages 646, 647.
Abbreviations and acronyms. Please look in the main index.
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• Four types of linear phase filters. Page 35.
• Comparison of filter design techniques. Page 91.
• Design of power symmetric elliptic filters. Page 212.
• Optimal IIR power symmetric filters. Page 217.
• Two-channel QMF bank. Page 267.
• IIR allpass based QMF bank. Page 268.
• FIR power symmetric QMF bank. Page 269.
• The M-channel filter bank. Page 270.
• Matrix notations in filter bank theory. Page 271.
• Perfect reconstruction paraunitary filter banks. Page 327.
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Absolutely summable, 17
AC matrix (see Alias component ma­

trix)
Adaptive multirate filtering, 151
A/D converters (see Analog to digital 

conversion)
Addition rate (see APU)
Adjoint, 789
Adjugate of a matrix, 789
Adjustable multilevel filters, 164
Alias cancelation, 193-194 (see also 

Filter banks)
Alias component (AC) matrix, 193 

circulant, 278 
singularity, 278 
multidimensional filter banks, 629 

hexagonal M, 630 
rectangular M, 630

Alias components, 193
Alias-free decimation (multidimensional), 

597-602
Alias-free filter banks, 193 (see also 

Filter banks)
Aliasing, 23

due to decimation, 105 
in filter banks, 191 (see also Fil­

ter banks)
peak distortion, 367

Aliasing in multidimensional sampling, 
564, 566 (see also Multidi­
mensional sampling)

Allpass complementary (AC), 158
Allpass decomposition, 84-90

Butterworth, Chebyshev and el­
liptic filters, 87-91

efficiency of, 89 
even order case, 90 
generalizations, 99 
pole interlace property, 89 
sufficient conditions for, 85 
theorem, 85

Allpass filters (functions), 71-83 (see 
also Allpass structures) 

continuous-time, 98, 99 
polyphase components, 181

properties, 71-77 
autocorrelation of, 74 
general form, 72,73 
lossless property, 74 
modulus property, 74 
monotone phase, 76 
poles and zeros, 72 
time domain meaning, 74 

Allpass structures, 77-83 
cascade-form, 78 
direct-form, 77, 78 
lattice structures, 79-83 

normalized, 82 
one-multiplier, 83 
stability, 81

by multiplier extraction, 79 
All-pole systems, 17, 64, 66 
AM (Arithmetic mean), 820 
Amplitude response, 34 
Amplitude distortion (AMD), 195 (see 

also Filter banks)
Analog filters, 63-68 (see also Opti­

mal filters)
Analog signals, 23 
Analog to digital conversion, 24 

with filter banks, 163, 164 
with hybrid QMF banks, 163, 

164
with oversampling, 143-145 

Analog QMF banks, 162-163, 274 
Analog voice privacy systems, 148 
Analysis filter bank, 113, 188 

vector notation, 224 
Analysis filters, 113, 188 
Analysis/synthesis system, 146, 188 
Analytic continuation, 37 
Annihilating vector, 789 
Antialiasing filters, 2, 144 
Anticausality, 16 
Antisymmetric matrix, 793 
Antisymmetric polynomials (filters), 

31
Applications of multirate systems, 143—

151
adaptive filtering, 151
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digital audio, 143-145 
multilevel filtering, 164 
subband coding, 145-148 
transmultiplexers, 148 
tunable filters, 164 
voice privacy, 148

APU (Additions per unit time), 123 
AR (Autoregressive process), 833 
Arithmetic mean-geometric mean (AM-

GM) inequality, 820 
proof, 845

Asymptotic coding gain (M → ∞): 
ideal subband coder (SBC), 824- 

825
information theoretic bound, 842 
orthogonal transform coder, 832 

Attenuation characteristics of filters, 
44

maximum passband, 44 
minimum stopband, 43 

Attenuation characteristics of subband 
filters, 6

Audio, digital (see Digital audio) 
Autocorrelation:

of allpass functions, 74 
deterministic, 41, 810 
of a random process, 806

Autocorrelation matrix, 813
of a scalar random process, 814 

Autoregressive (AR) process, 833 
Average bit rate, 820

b-bit number, 397
Backward difference approach (IIR 

filter design), 96
Backward induction, 845
Bandedge, 43
Bandlimited signals (σ-BL) 

continuous-time, 23, 41 
discrete-time, 454

Bandlimited sequence and causality, 
454

Basis vectors, 787
Bessel function in FIR design, 48 
Bezout's identity, 693
BIBO stability, 17
Bilinear transformation, 62
Binary numbers, 397
Bit allocation (see also Optimum bit 

allocation)
in subband coding, 146, 147 

Bit rate, average, 820 
Blocked sequence, 428
Blocked version of a transfer function,

428
LTI property, 721

state space description, 721 
Block filters, 427, 428

and alias-free filter banks, 430 
in multirate notation, 428-429 
and pseudocirculants, 430-432 

Blocking effects in signal coding, 324 
Block length, 428 
Block Toeplitz matrix, 794 
Bounded input bounded output 

(BIBO) stability, 17 
Bounded real (BR) functions, 83 
Bounded sequences, 13 
Bounded transfer functions, 83 
BR functions (see Bounded real func- 

tions)
Butterworth filters, 63-66 (see also 

Optimal filters)
allpass decomposition, 87 
design, 65
properties, 64

Cascade form structures, 18
real coefficient case, 20 

Cauchy-Schwartz inequality
integral version, 846 
summation version, 785 

Causality, 16, 22
Causal inverses of causal (ΜΙΜΟ) sys- 

tems, 711-714
Causal unimodular systems, 712, 713 

state space descriptions, 713 
Smith-McMillan form, 714

Cayley-Hamilton theorem, 793 
Cepstrum (see Complex cepstrum) 
Channel distortion in filter banks, 279 
Characteristic equation, 793 
Characteristic polynomial, 790 
Chebyshev filters, 66, 96-98 (see also 

Optimal filters)
Chebyshev polynomial, 66, 96-97 
Cholesky decomposition, 797 
Circulant matrix, 249, 793

alias cancelation (AC) matrix, 
278

eigenvalues and eigenvectors, 796 
pseudocirculant, 249 
right-circulant, 250

Circularly bandlimited signal, 569 
rectangular sampling, 569 
hexagonal sampling, 570 

co (see Complete observability) 
Coding gain of ideal subband coder 

(SBC), 822-826 
asymptotic (M → ∞), 824-825 
information theoretic bound, 842 
nonmonotonicity, 824
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decimation and interpolation fil­
ters, 123

DFT bank, 126
fractional decimator, 130 
multistage decimation and inter­

polation, 139, 141 
Computational overflow, 398 
Constant Q system, 483 
Continuous-time filter banks, 275-277 
Continuous-time signals, 22-24 
Continuous-time systems, 22-24 
Controllable, 716 
Convergence of z-transform, 14 (see 

also Region of convergence) 
Convolution, 15 

ΜΙΜΟ systems, 25
Coprime polynomials, 663 
Coprime polynomial matrices, 664 
Cosets, 596, 658
Cosine modulated filter banks, 353-

393 
complexity comparisons, 385-391 
using DCT and DST, 388, 389 
definition, 363 
paraunitary perfect reconstruc­

tion, 377-391 
advantages, 390 
complexity, 382 
design, 380-383 
Theorem for, 378 

polyphase structures, 370-373, 388,
389 

pseudo QMF, 354 (see also under
Pseudo QMF)

Cosine modulated perfect reconstruc­
tion systems (see Cosine mod­
ulated filter banks)

Cosine modulation and interpolation,
179 

cr (see Complete reachability) 
crco (Completely reachable and com­

pletely observable), 682 
Coupled form structure, 672-673, 860 

and Mason’s formula, 862 
Covariance matrix, 813 
Covariance sequence of a random pro- 

cess, 807 
Cross correlation 

deterministic signals, 41 
random processes, 809 
random variables, 805 
vector random processes, 814 
vector random variables, 813 

Cross correlation matrix, 813 
Cross covariance between random vari- 

ables, 805
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paraunitary filter banks, 836, 838 
white input, 848

Coding gain of orthogonal transform 
coder, 830-833

in terms of eigenvalues, 831
monotone behavior, 831 
optimal, 830
asymptotic (M → ∞), 832 

Coefficient quantization effects, 418- 
423 (see also Quantization 
effects)

in filter banks, 421-423
FIR QMF lattice, 421 
power symmetric IIR, 421

low sensitivity, 419
magnitude response of filter, 419 
stability, 418, 419 

and lattice, 81, 419
Cofactors of a matrix, 786 
Colored random process, 809 
Comb sequence, 104, 118 
Commutativity of decimator and ex- 

pander, 119
application, 128, 129 
multidimensional case, 645 

Commutator model, 130-131 
Compaction of energy by coding, 834 
Compatible sets in filter bank theory, 

285
Complementary transfer functions, 157- 

159
allpass complementary (AC), 158
doubly complementary (DC), 158 

application in digital audio, 161 
design, 159

Euclidean complementary (EC), 
159

power complementary (PC), 158 
strictly complementary (SC), 157 

Complete observability (co), 680 (see 
Observability)

Complete reachability (cr), 677 (see 
Reachability)

Complex cepstrum, 849
inversion, 853
minimum phase FIR, 850 
and unwrapped phase, 852 

Complexity (see Computational com­
plexity, and also Filter banks) 

Complex quantizer, 405 
Complex random processes, 812 
Complex random variables, 811 
Compressor, 101 (see also Decimator) 
Computational complexity (see also 

'Complexity' under 'Filter banks')



Crossover network, 161
Cross power spectrum, 814
Cross talk, 149 (see also Transmulti­

plexers)
Cutoff frequency, 45, 49

D/A conversion (Digital to analog 
conversion), 24

D/A (Digital to analog) conversion 
with hybrid QMF banks, 162 

in digital audio, 162-163
DCT (see Discrete cosine transform) 
Decibel (dB) plots, 33
Decimation filters, 105-107 

for boundary value problems, 175, 
176 (see also Multigrid meth­
ods)

fractional, 109-111 
linear phase, 125 
polyphase structures for, 122-125 
time domain description, 117 

Decimation of periodic sequences, 180 
Decimator, 100 (see also Decimation) 

aliasing due to, 105 
causality, 111-113 
fractional, 109-111 
nonuniform, 446, 452 
physical time scale, 111 
time varying property, 105 
transform domain analysis, 102— 

105
Decorrelating property of coders, 834 
Degree of determinant

general, 708 
lossless systems, 729, 737, 757

Degree of flatness, 532
Degree reduction step, 727, 735
Degree of a system, 27
Degree (McMillan) of a transfer ma­

trix, 666-668, 707-708 
equivalent definitions, 707-708 
lossless systems, 757

Delay chain, 124
in filter banks, 235 
perfect reconstruction system, 235, 

236
vector notation, 224

Delay-free loops, 21 
Delta function, 12 
Density functions 

probability, 803 
power spectrum, 807

Derivative sampling theorem, 277, 439 
Design specifications (see Digital fil­

ters)

Determinant of autocorrelation, and 
prediction error, 832

Determinant, degree of (see Degree of 
determinant)

Determinant of the denominator ma­
trix, 694

Determinant inequality for positive 
definite matrices, 797

Determinant of a lossless system, 
degree of, 757

Determinant of a matrix, 786 
block diagonal, 786 
block partitioned, 801 
and eigenvalues, 791 
properties, 787

Determinant of the sampling matrix,
562

Determinant of a signal flow graph,
860

Deterministic autocorrelation, 41, 810 
of allpass functions, 74

Deterministic cross correlation, 41
DFT (see also Discrete Fourier Trans­

form), 794
DFT filter banks, 113, 182, 184 

decimated, 127 
polyphase implementation, 125 
and short-time Fourier transform, 

468, 469
DFT matrix, 794
Diadic matrix, 785, 788
Diadic based structures, 732
Diagonalization of matrices, 792 

with unitary matrices, 795
Diagonal matrix, 783
Difference equations, 18

ΜΙΜΟ systems, 719
Difference-sampling theorems, 440-444 

and filter banks, 441, 442
Differential pulse code modulation (DPCM), 

839-844
coder and decoder, 841 
coding gain, 841, 842 
effective number of bits, 841

Digital to analog conversion, 24
Digital audio (music), 2, 143-145 

doubly complementary (DC) fil­
ters in, 161

sampling rate alteration, 143 
subband coding, 147

Digital filter banks (see Filter banks)
Digital filters, 31, 42-99
(see also FIR filter design, IIR fil­

ter design, Optimal filters, 
Time domain constraints) 

design specifications, 42-45
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FIR, 17, 34-37 
transmission zeros, 32 
types of (lowpass, etc.), 32

Digital filter structures (see Struc- 
tures for transfer functions)

Digital signal, 23
Dilation, 488
Dimension of state space, 675 
Dimension of vector space, 787
Dirac delta function δa(t), 12 
Direct-form structure, 18
Discrete cosine transform (DCT), 373 

orthonormality, 374 
in transform coding, 829

Discrete Fourier Transform (DFT),
794

DFT filter bank, 113 
generalized to multidimensions, 

590, 591
Discrete sine transform (DST), 373 
Discrete-time signals, 12
Discrete-time systems, 12-41
Discrete-time wavelet transform (DTWT), 

491
definition, 495
FIR basis, 500
inversion, 495 
orthonormal, 500-510 
summary, 511
and tree-structured filter banks, 

493
Discrete wavelet transform (DWT),

485
Discretizing differential equations, 168 
Disk partitioning diagram, 500
Distortion transfer function, 195 (see 

also Filter banks)
Division theorem for integer vectors, 

577, 596
and polyphase decomposition, 578 

Division theorem for polynomials, 688 
Dolph-Chebyshev window, 50 (see also 

FIR filter design)
Doubly complementary (DC), 158 
Downsampler, 100 (see also Decima­

tor)
DPCM (see Differential pulse code 

modulation)
DST (see Discrete sine transform) 
DTWT (see Discrete-time wavelet trans­

form)
Duration, RMS, 478

and uncertainty principle, 478 
DWT (see Discrete wavelet transform) 
Dynamic range, 397, 400, 817

Ear, resolution, 457
Eigenfilters, 53-56 (see also Optimal 

filters)
for design of Nyquist filters, 155 

Eigenfunctions of LTI systems, 16, 39 
Eigenspaces, 792
Eigenstructures of special matrices, 

795-796
Eigenvalues and eigenvectors of ma­

trices, 790
computation (extremum values), 

799
and determinants, 791 
properties, 791 
and trace, 791

Eigenvalues and poles, 674, 720-721 
Elementary matrix operations, 687 
Elliptic filters 66-70 (see also Optimal 

filters)
allpass decomposition, 87 
design of, 66 
family of, 69,70 
power symmetric, 204, 205, 213 
properties, 68-71 
transfer function, 67 
uniqueness, 70

Electrical multiport network, 723 
Energy balance in state equations, 

741
Energy compaction by coding, 834 
Energy of a random process, 807 
Energy of a sequence, 15 
Energy of a vector, 785
Equiripple filters (see also Optimal fil­

ters)
FIR, 56,57

Estimation of order, 57 
McClellan-Parks algorithm, 57

IIR, 66 (see also Elliptic filters) 
Ergodicity, 809
Error vector 170-177 (see also Multi- 

grid methods)
Euclidean complementary (EC), 159 
Euclid’s theorem, 129, 159
Euclid’s theorem, matrix version, 693 
Expander, 101 (see also Interpola­

tion)
causality, 111-113
imaging due to, 102 
physical time scale, 111 
time varying property, 105 
transform domain analysis, 102 

Expected value of a random variable, 
804

Exponential sequences, 13, 27
one sided, 13
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multidimensional, orthogonal, 590,
591

Extraction of lossless building blocks, 
728, 736

Factorization of lossless (paraunitary) 
matrices

2 × 1 real FIR, 730-731
2 × 2 real FIR, 302, 303, 727-730 
M × 1 FIR, 737
M × M FIR, 314, 735-737 
completeness, 726 
general FIR, 731-740
Givens rotation based, 766, 768 
Householder matrix based, 765, 

766
IIR case, 759-763
minimality, 726, 729
philosophy, 726
real coefficient case, 736, 763 
uniqueness, 739

Factorization of unitary matrices, 315, 
745-754 (see also under Uni­
tary matrix)

Fan filters, 551, 611, 612 (see also 
Multidimensional filters)

FDM (see Frequency division multi­
plexing)

Filter banks, 113
alias cancelation, 193, 196
alias component (AC) matrix, 228 

inversion, 229 
singularity, 230

alias-free filter banks, 6, 193 
examples, 245-249 
most general, 249-254 
necessary and sufficient condi- 

tions, 249, 250
perfect reconstruction, 253 (see 

also under Perfect reconstruc­
tion)

pseudocirculant condition, 250 
aliasing, 191, 225 
alias terms, 225, 226

gain of, 226
amplitude distortion (AMD), 195, 

226
elimination, 201-203 
minimization, 199

analysis, 113
with channel distortion, 278 
compatible sets, 285 
complexity

comparisons, 329-332, 385-391 
cosine modulated, 385 
Johnston’s FIR design, 201 

paraunitary (general), 329 
paraunitary (cosine modulated), 

385
power symmetric (allpass based 

IIR), 215, 217
power symmetric FIR, 221-223 
pseudo QMF, 373
QMF lattice, 311 

continuous-time, 275-277 
cosine modulated (see Cosine mod­

ulated filter banks)
DFT (or uniform DFT) 113, 116 
distortion transfer function, 195 
errors in, 188, 225 
history, 189-190 
with ideal filters, 226 
linear-phase filters (approximate 

reconstruction), 198—201 
linear-phase filters (perfect re- 

construction), 337-352 
maximally decimated, 188, 224 
noise analysis (see under Noise 

analysis)
noise comparison 412-416 
nonuniform bandwidth, decima­

tion, 190, 256, 284, 482 
nonmaximally decimated, 283 
octave spacing, 5
overall transfer function, 195 
paraunitary (see Paraunitary fil­

ter banks)
perfect reconstruction, 196, 228 

(see also under Perfect re- 
construction)

phase distortion (PHD), 196, 226 
elimination, 198

polyphase representation, 197, 230- 
234

IIR (special design), 201-218 
power symmetric

and allpass filters, 207 
Butterworth, 211 
definitions, 205, 206 
design (FIR), 219 
design (IIR) 210-213, 215 
elliptic, 208, 211, 213 
FIR (perfect reconstruction), 

218-220
IIR (allpass based), 204-218
IIR complex, 275
IIR even ordered, 273 
poles of, 208

pseudo QMF (see Pseudo QMF) 
quantization effects (see under

Quantization effects) 
robustness to quantization, 218
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spectrum analyzers, 5-6 
summary (Tables), 267-271 
time varying property, 193-195 
transmultiplexing (see Transmul­

tiplexers) 
tree-structured, 254-259, 280-282, 

335
binary, 254
and Laplacian pyramid, 258 
and multiresolution, 256, 257 
and nonuniform decimation, 280- 

282
unconventional modifications, 277, 

279, 285
and wavelets, 457-538 

Filter bank transform, 475 
Filter design techniques, comparison, 

67, 91
Filters (see Analog filters, and Digital 

filters)
Finite impulse response (FIR) filters, 

45-60 (see also Time domain 
constraints, Nyquist filters) 

four types of, 35 
length of, 17 
nonlinear (minimum) phase, 59 
optimal FIR filters (see Equirip­

ple filters, and Eigenfilters) 
order of, 17, 28 
order estimation, 48, 57 
phase response 

linear phase , 34-37 
maximum phase, 28 
minimum phase, 28 
mixed phase, 28 

window technique, 46 
Dolph-Chebyshev window, 50 
Kaiser window, 47-49 
limitations, 50, 53 
minimax window, 50 
optimal windows, 50-53 
prolate spheroidal windows, 50- 

53
FIR filter design (see Finite impulse 

response filters)
FIR lattice structures, 302
FIR sequences, 17
FIR transfer matrices, 708-711 

state space description, 709 
Smith-McMillan form, 710

Filter structures (see Structures for 
transfer functions)

Fixed point binary fraction, 397 
Flatness constraints, 45 
Flatness, degree of, 532 
Fourier transform (FT) 

continuous-time, 22 
discrete-time, 13-14 
and filter banks, 465 
inverse of, 14, 22

FPD (see Fundamental parallelepiped) 
Fractional sampling rate alteration, 

109-111
in digital audio, 143-145 
polyphase implementation, 127 

Frequency, 22
Frequency division multiplexing (FDM), 

148, 149
Frequency response, 31
Frequency response matrix, 26 
FT (see Fourier transform)
Full memory lossless system, 759 
Fundamental parallelepiped, 561

Gabor lattice, 481
Gabor transform, 476
Gaussian random process, 843
Gaussian random variable 

density function, 804, 806 
uncorrelatedness and independence, 

806, 813 
vector case, 813

Gaussian elimination, 170, 172
Gaussian window, 476

duration (RMS), 541
Fourier transform, 541 
optimality (Gabor transform), 478 

Gcd (Greatest common divisor), 511, 
544

General degree-one paraunitary (loss- 
less) building block Vm(z), 
734

Generalized DFT (multidimensional), 
590, 591 (see also Multidi­
mensional DFT matrix)

Generalized orthogonal exponentials 
(multidimensional), 591

Generalized STFT (see Short-time Fourier 
transform)

Gibbs phenomenon, 46
Givens rotation, 290, 291, 747

in paraunitary factorization, 728 
limitations of, 769

Glcd, 664 (see Greatest left common 
divisor)

GM (Geometric mean), 820
Gray and Markel structure, 79 (see

also Allpass structures)
Grcd, 664 (see Greatest right common 

divisor)
Greatest left common divisor (glcd),

664
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identification of, 692
Greatest right common divisor (grcd), 

664
Group delay, 32, 34

Haar basis, 517, 520, 521
Half-band filters 153-156 (see also 

Nyquist(M) filters) 
definitions, 153, 154 
design, 155, 185-186 
in perfect reconstruction filter bank 

design, 220-221
Harmonic process, 815, 831
Height conventions for wavelet filter 

banks, 483, 497, 539
Hermitian matrix, 793

eigenvalues, 796
Hermitian polynomials, and general­

izations, 30
Hexagonal decimator M573

AC matrix, 630
noble identity, 606, 607 
perfect reconstruction filter bank, 

633-636
polyphase decomposition, 588 
summary, 648
uniform DFT filter bank, 627 

Hexagonal sampling, 558
general definition, 571 
circular support, 570

Hilbert transformers, 35, 447 
Homogeneous difference equations, 719, 

720
Householder unitary matrices, 315,

751
in lossless factorization, 765, 766 

Hurwitz polynomial, 28 
Hybrid QMF banks, 162-164

Ideal lowpass filters, 45
Ideal subband coder, 818, 819 (see 

also Optimum bit allocation, 
and Coding gain)

Identity matrix, 783
IDFT (see Inverse DFT)
IDFT matrix, 794
IIR (see Infinite impulse response)
IIR filter design (see Infinite impulse 

response filter design)
IFIR approach (see Interpolated FIR) 
IIR filters based on allpass filters, 84- 

90 (see also Allpass decom- 
position)

Image compression (coding), 7, 147 
Images, 102 (see also Expander)
Image suppressor, 137

Imaging due to expanders, 102 
Impedance matrix, 723
Implementations of transfer functions, 

18 (see also Structures for 
transfer functions)

Impulse response, 15
finite (FIR), 17
infinite (IIR), 17
matrix, 25
and state space description, 674 

Impulse function, 12
Indefinite matrices, 796
Infinite impulse response (IIR) filter 

design, 60-70 (see also Op­
timal filters)

bilinear transform, design using, 
62

pole crowding, 62
poles of sharp-cutoff filters, 62 
working principle, 60, 61

Infinite impulse response (IIR) sys- 
tems, 17

linear phase, 37
Infinite products, 512, 514

convergence, 514, 516
Information theoretic bound on coders, 

842
Gaussian processes, 843

Inner product, 785
Interconnections of multirate building 

blocks, 118-119
Interlacing with expanders and delay 

chain, 129
Interpolated FIR (IFIR) approach, 

134-138
for decimation filters, 138-143 
extensions, 137, 138, 183 
for interpolation filters, 184 
for narrowband filters, 135 
for wideband filters, 183

Interpolation, 100-113
fractional, 111
polynomial fitting, 111 
interpolation filters, 105-109 
and modulation, 109, 178-179 
time domain description, 117 
structures for, 123-125

Interpolation filters for boundary value 
problems, 175, 176 (see also 
Multigrid methods)

Interpolation and cosine modulation, 
179

Interpolator, 101 (see also Expander, 
and Interpolation)

Inverse Chebyshev filters, 98
Inverse DFT (IDFT), 115, 794

898 Index



Inverse of a matrix, 789-790 
Irreducible transfer functions, 16, 663 
Irreducible matrix fraction descrip­

tions, 668
deeper results, 693, 694
Smith-McMillan form, 697 

Iterative techniques for solving equa- 
tions, 170 (see also Multi- 
grid methods)

Johnston’s technique, 199, 200 
Joint probability density functions, 

805, 806
Jointly wide sense stationary process,

809
Jordan form, 720
Kaiser window, 48-50 (see also FIR 

filter design)
Kalman Yacubovic lemma, 740 
Karhunen-Loeve Transform (KLT), 324, 

828-829
KLT (see Karhunen-Loeve Transform) 
Kronecker product of matrices, 644

ℒ2-norm
of a function, 402
of a vector, 785

ℒ2 scaling, 402, 403 
ℒp-norm, 402
ℒp scaling, 401-402, 424-425 
Lag variable, 41, 807 
Laplace’s transform, 22 
Laplacian pyramid, 258 
Lapped orthogonal transform (LOT), 

322-326
LAT(V), 559
Lattice LAT(V), 559
Lattice sampling (multidimensional),

559
Lattice structures (see QMF lattice, 

Allpass structures, and FIR 
lattice)

LBR lemma, 740 
LBR transfer functions, 83 
Lcd (see Left common divisor) 
LC networks, 723
Leading principal minors, 786 
Least squares design, 46, 54 
Left common divisor (lcd), 664 

greatest (glcd), 664
Left coprimeness, 664
Left divisor, 663
Left matrix fraction description, 665 
Leibnitz’s rule, 533
Limit cycles, 416

granular or roundoff, 417
overflow, 417 
suppression, 418

Linear combination, 787
Linear equations, 790

solvability, 790
uniqueness, 790

Linear independence, 787
Linear periodically time varying (LPTV) 

systems
in filter banks, 132, 193, 435 
formal definition, 433
and pseudocirculants, 435

Linear phase filter banks (approxi­
mate reconstruction), 198— 
201 (see also under Filter 
banks)

Linear phase filter banks (perfect re- 
construction), 337-352 

comparison with Johnston’s de­
sign, 352

complexity, 343-345 
design using lattice, 342, 343 

initialization, 345
lattice structures for, 339 

one-multiplier version, 351
lattice synthesis, 347-350 
paraunitariness, 338 
power complementarity, 338

Linear phase filters 34-37 (see also 
Digital filters)

advantages of, 36 
amplitude response, 34 
conditions for, 35, 37 
efficient structures for, 36 
four types of, 35
polyphase components, 125, 182,183 
zero locations of, 37
zero-phase response, 34

Linear prediction, 831
Linear prediction error and determi­

nant of autocorrelation ma­
trix, 832

Linear predictive coder
closed loop, 839, 842 
open loop, 842, 847

Linear shift invariant (LSI) systems,
Linear systems, 15
Linear time invariant (LTI) systems 

definition, 15 
causality, 16
eigenfunctions of, 16
ΜΙΜΟ case, definition, 718 

Linear time varying (LTV) property, 
105,
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decimators and interpolators, 178 
definition, 433

Localization
in time, 117, 460 
optimal, 478

Lossless bounded real (LBR), 83, 288 
Lossless building block Vm(z), 732

(see also under Paraunitary, 
degree-one, building block) 

Lossless property, 288 (see also entries 
beginning Paraunitary) 

under quantization, 768-771 
state space manifestation, 740 

theorem, 743
Lossless transfer functions, 83 
Lossless transfer matrices, 288 
Lossless (paraunitary) systems 

degree of, 757 
definition, 724 
determinant, 725 
energy balance, 724 
factorizations, 726 (see under Fac­

torizations)
history, 723 
impulse response, 725 
modulus property, 758 
most general, 2 × 2, 776 
poles and zeros, 755, 756 
Smith-McMillan form, 754-757 

FIR case, 756
structures, 726 
summary and tables, 772-774 
zero location, 757

LOT (see Lapped orthogonal trans- 
form)

Low sensitivity structures, 419-423 
LPR lemma, 740
LPTV (see Linear periodically time 

varying system)
LSI systems (see Linear shift invariant 

systems)
LTI systems (see Linear time invari­

ant systems)
LTV systems (see Linear time varying 

property)
Lyapunov Lemma, 686

Mth band filters, 151-156 (see also
Nyquist filters) 

M-channel QMF (M-channel filter banks),
223

Mth root of unity WM, 104 
MacClellan-Parks algorithm, 57 
MacMillan degree, 27 (see also Degree

of a system) 
Magnitude response, 32 

in dB, 44 
normalized, 43

Magnitude truncation, 398 
Main diagonal of a matrix, 783 
Marginal density functions, 805 
Mason’s gain formula, 859, 861

for ΜΙΜΟ systems (example), 864 
Matrices, review of, 782-802 
Matrices, 29-30 (see also under spe­

cific entries, e.g., Positive 
definite matrices) 

addition, 784 
antisymmetric, 793 
circulant, 793 
diadic, 785, 788 
diagonal, 783 
DFT, 794 
eigenvalues and eigenvectors, 790- 

793
functions, 29-30 
Hermitian, 793 
identity, 783 
inverse, 789-790 
as lowpass filters, 174, 176, 187 
multiplication, 784 
nonsingular, 787 
normal, 794 
null, 783 
null space, 789 
paraconjugation, 30 
positive definite, 796 
range space, 789 
rank of, 788 
rectangular, 783 
singular, 787 
skew-Hermitian, 793 
square, 783 
stability, 685, 799 
symmetric, 793 
tilde operation, 29 
Toeplitz, 794 
trace of, 785 
transpose, 783 
transpose conjugation, 783 
transposition, 29 
triangular, 783

determinants, 787 
unitary, 793 
Vandermonde, 795 

Matrix adjugate, 789 
Matrix convolution, 25 
Matrix diagonalization, 792 
Matrix fraction descriptions (MFD), 

665
irreducible, 668 

Matrix inequalities, 796
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Matrix inverse, 789-790
Matrix inversion lemma, 790 

application, 712
Matrix polynomials, 661 (see Polyno­

mial matrices)
Matrix products

properties preserved, 799, 801 
Matrix triangularization, 798 
Maximally decimated filter banks, 5, 

188-285 (see also under Fil- 
ter banks)

Maximally flat filters
FIR, 532

half-band, 535 
order estimation, 535

HR (Butterworth) 63-65 
Maximization of quadratic forms, 798 
Maximum eigenvalue, computation, 

799
Maximum modulus theorem, 75 

matrix version, 758, 781
Maximum phase, 28 
McClellan-Parks algorithm, 137
McMillan degree, 666 (see Degree of 

a system)
MD (see under Multidimensional) 
Mean opinion score (MOS), 147 
Mean of a random variable, 805 
Mean square value of a random vari- 

able, 804
Memoryless system, 759
MFD (see Matrix fraction descrip­

tions)
ΜΙΜΟ (see Multi-input multi-output 

systems)
ΜΙΜΟ LTI system, definition, 718 
Minimal structures, 21, 676

relation to reachability and ob- 
servability, 681, 682

and similarity transform, 682, 683 
real coefficient systems, 684, 716 
and unitariness of realization ma­

trix, 745
Minimax property, 44, 97 
Minimum phase, 28 
Minors of a matrix, 786
Mirror image polynomials, 31
Mixed phase, 28
Modulo notation (integer vectors), 577 
Modulus property of allpass filters, 74 
Modulus property of lossless systems, 

758
Monotone phase response of allpass 

filters, 76
MOS (Mean Opinion Score), 147 
Mother wavelet Ψ(t), 488

MPU (Multiplications per unit time),
123Multidimensional complex exponen­
tial, 657

Multidimensional decimation fi!ters, 
606-607

alias-free, 598-600 
design, 608-623 
diamond shape, 610-612 
fan shape, 610-612 
multistage, 615-619 
nonuniqueness, 602 
from one-dimensional filters, 610, 

619
Multidimensional decimators, 572 

aliasing due to, 584, 585 
decimation ratio, 575 
hexagonal M, 573, 593 
nonuniqueness, 593 
quincunx M, 573 
rectangular M, 573, 575 
transform domain analysis, 583- 

586
unimodular, 594 

Multidimensional DFT matrix, 590, 
591

hexagonal M, 592 
Multidimensional expanders, 576

images due to, 581 
transform domain analysis, 580 

Multidimensional frequency partition­
ing, 602, 603 

Multidimensional (generalized) DFT 
and Smith decomposition, 644 
as a Kronecker product, 644 

Multidimensional filter banks, 627- 
641

AC matrix, 629 
hexagonal M, 630

AC matrix and relation to polyphase 
matrix, 655

analysis of, 628
delay chain system, 633 
paraunitary, 654, 656 
perfect reconstruction, 633 

hexagonal M, 633
polyphase representation, 631-632 
quincunx, 654, 656 
tree-structured, 640-641 

Multidimensional filters
diamond filters, 551 
fan filters, 551, 553 
frequency responses, 550, 551 
frequency supports, 552 
linear phase, 553
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from one-dimensional filters, 610,
619

separable, 553
zero phase, 553, 650 

Multidimensional interpolation fiIters, 
606.Multidimensional Mth band filters, 
623

Multidimensional multirate building 
blocks

cascade connections, 603 
Multidimensional multirate identities, 

603-605
Multidimensional multirate systems, 

summary
hexagonal M, 648
multirate fundamentals, 647
notations and lattice concepts, 

646
quincunx M, 649 

Multidimensional multistage designs, 
612

Multidimensional noble identity, 604 
hexagonal M, 606-607 
quincunx M, 637 
rectangular M, 605

Multidimensional Nyquist(M) filters, 
623

Multidimensional paraunitary filter banks, 
636

Multidimensional polyphase decom- 
position, 578

and cosets, 596
decimation filters, 606, 607 
hexagonal M, 578-579 

transform domain, 586, 588
type 2, 588 

Multidimensional sampling, 555, 558 
aliasing, 564-566, 568 
and Fourier transform, 565, 567 
general, 558 
hexagt>nal, 558, 570 

definition, 571
rectangular, 555, 559 
sampling density, 561, 563 

minimum, 568
Multidimensional signals, 546 

bandlimited, 547 
convolution, 550 
discrete-time, 547
Fourier transform, 546-548 
modulation, 550 
z-transform, 548-549 

Multidimensional subband coding, 7 
Multidimensional (uniform) DFT fil­

ter banks, 624-627

Multigrid methods, 9, 168-177 
for boundary value problems, 168, 

169
dense and coarse grids, 177 
information exchange between grids, 

176-177
Multi-input multi-output (ΜΙΜΟ) sys- 

tems, 10, 24-27, 660-714 
causality, 26 
frequency response matrix, 26 
impulse response matrix, 24 
poles, 27 
stability, 27 
transfer matrix, 24

Multilevel filters, 164
in nonuniform sampling and re- 

construction, 447
Multiple use of a filter, 93, 94 
Multiplexing, 123 (see also TDM, FDM, 

and Transmultiplexers)
Multiplication rate (see MPU) 
Multiport, electrical, 723
Multirate adaptive filtering, 151 
Multirate building blocks, 100-118 

interconnections, 118-119
Multirate identities, 118-120 

basic ones, 118 
noble identities, 119 
polyphase identity, 133 
multidimensional, 603-605

Multirate system, 1
Multiresolution methods, 256, 257, 

496
Multistage implementations, 134-143 

(see also IFIR approach) 
decimation filters, 134, 138 
interpolation filters, 143 
complexity, 139, 141

Multivariable systems, 10, 660
Music, digital, 2, 4 

subband coding, 147

Negative definite matrices, 796 
Negative frequency, 14
Negative number representation, 397 
Noble identities, 119 

multidimensional, 604 (see also 
Multidimensional noble iden- 
tity)

Nodes to be scaled, 401
Noise analysis, 405 

allpass cascade, 404 
cascaded structure, 404 
cosine modulated filter bank, 425, 

426
decimators, 405
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direct form (FIR), 403 
expanders, 405
filter banks, 408
filter bank output noise, 412 

comparisons, 412-416, 
summary, 417

fractional sampling rate changer, 
425

lattice (IIR), 424 
multistage (IFIR) filter designs, 

425
paraunitary (lossless) systems, 408 
paraunitary filter banks, 409, 412 
transmultiplexers, 425

Noise gain, 399
Noise model assumptions, 398
Noise source, 395, 398
Noise transfer function, 396
Noise variance, 398, 399
Nonmaximally decimated filter banks,

283Nonrectangular decimation, 576 (see 
also Multidimensional deci- 
mators)

Nonsingular matrix, 787
Nontouching loops, 860
Nonuniform decimator, 446, 452 
Nonuniform filter banks (see also Fil- 

ter banks)
uses, 457
and wavelets, 482, 498 

Nonuniform sampling, 440, 444-453 
filter bank model, 446 

Normalization of frequency Ω, 66 
Normalized frequency ω/2π, 43 
Normalized paraunitary, 289 
Normalized specifications, 43, 44 
Normalized lattice structure, 82 (see 

also Allpass structures) 
Normalized unitary, 793 
Normal matrix, 794

and diagonalization, 795 
eigenvectors, 795

Normal rank, 662
Norms, 785
Notations

general 28-31
digital filter building blocks, 18 

Null matrix, 783
Null space, 789
Nyquist(M) filters, 54, 151-156 

continuous-time, 153 
definition, 152 
design, 155-157
eigenfilter approach, 155

frequency domain manifestation, 
153

in interpolation filtering, 151-152 
multidimensional, 623 
in multilevel filter design, 165 
and power-complementary filters, 

159
Nyquist property and wavelet orthonor­

mality, 529, 530
Nyquist rate, 23, 276
Nyquist sampling theorem, 23 

generalizations, 275, 277 
derivative sampling, 277, 439

Observability, 680 
condition for, 680 
reduction to observable form, 681 
test for, 684

Octave-band filter banks, 8 
One-multiplier lattice, 83 (see also 

Allpass structures)
Optimal filters, 44 (see also Analog 

filters, and Digital filters) 
criteria for, 44 
eigenfilters, 53-56 
equiripple, 44

FIR, 56, 57
IIR Chebyshev, 96-98
IIR elliptic, 66-70 

least squares, 45 
maximally flat filters

FIR, 532
IIR (Butterworth), 63, 64

Optimal windows (see FIR filter de- 
sign)

Optimal window for short-time Fourier 
transform, 478

Optimum bit allocation 
ideal subband coder, 820 
orthogonal transform coder, 826- 

828
paraunitary filter banks, 836 

Order estimation for filters
FIR filters, 134 

equiripple design, 57 
maximally flat, 535 
window design, 48 

IIR filters
Butterworth, 65 
Chebyshev, 97
Elliptic, 66

Order of a FIR transfer matrix, 666- 
668, 708

Order of a pole
ΜΙΜΟ case, 703

Order of a system
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definition, 16
FIR case, 17
ΜΙΜΟ case, 708

Order of a zero, 704
Orthogonal complement, 789
Orthogonal exponentials, generalized 

(multidimensional) 590, 591 
Orthogonal matrix, 793
Orthogonal random variables, 806
Orthogonal transform coder, 826 (see 

also Transform coders) 
suboptimal, 829

Orthogonal vectors, 785
Orthonormal basis, 94

and least squares, 95
and optimality of rectangular win- 

dow, 95
and binary tree structure, 504 

Orthonormal basis, definition
wavelets (continuous-time), 489
wavelets (discrete-time), 496 

Orthonormality expressed in z-domain, 
5C2,509

Orthonormality and uncorrelatedness,
544

Orthonormality of wavelet basis (continuous- 
time) 510-530

completeness, 524
finite duration, 524
generation, 522
Haar basis, 517, 520, 521
and paraunitariness, 512, 523 
sufficient conditions (lemma), 529 
sufficient conditions (theorem), 530 

Orthonormality of wavelet basis (discrete- 
time) 500-510

generation (design) 503
and paraunitary property, 503-

510
M-channel, 507-510

Orthonormal matrix, 793
Outer product, 785
Outline of the book, 8-11
Output equation, 670
Overflow, 398

probability, 403, 818
Oversampling, 2, 143-145
Paraconjugation, 28-30
Paraunitary, degree-one, building block

Vm(z), 732
generality, 734
IIR case, 759, 780
properties, 733 

Paraunitary matrix or system (see
also under Lossless)

definition, 288 
determinant, 289 
examples, 290-294 
history, 287
IIR, 293 
inteconnections, 290 
multidimensional, 636 
normalized, 289 
properties, 289 
and quantization, 770-771

Paraunitary matrix factorization (see 
under Factorization)

Paraunitary (perfect reconstruction) 
filter banks, 286-336 

alias-component (AC) matrix, 297 
advantages, 286, 328, 329 
bit allocation and coding gain, 

836-838
complexity, 

cosine modulated, 385-389 
general, 329
QMF lattice, 311

cosine modulated, 377, 378 
definition, 294 
energy of analysis filters, 297 
and ideal subband filters, 297 
IIR, 295
M-channel, design 314-322 
and Nyquist property, 297 
perfect reconstruction, 294-296 
power complementary property, 

296
properties, 294-298 
quantization and perfect recon- 

struction, 307
two-channel case, 298-314 

design, 301 
lattice structure (QMF lattice), 

302
power symmetric property, 298 
relation among analysis filters, 

299
summary, 327 
synthesis filters, 295

Paraunitary polyphase matrix, 238,
294

Paraunitary property and uncorrelat­
edness, 408, 544

Paraunitary pseudocirculant matrix,
431

Parseval's relation, 14 
for vector signals, 27

Passband, 43
Passband edge, 43
Passband ripple, 43
Passive quantizers, 418
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Passivity, 723
PBH test, 684
PC (see Power complementary) 
PCM scheme, 822
Peak ripple in filter design, 43, 93, 94 
Peak aliasing distortion, 367
Perfect reconstruction (PR) systems, 

132
definition in maximally decimated 

systems, 196, 228 
delay-chain systems, 235, 236 
DFT filter banks, 132-133, 241 
FIR case, 238
general theory, 234-238 
linear phase (see Linear phase fil­

ter banks)
necessary and suffcient conditions, 

237, 253
summary, 326-332
Venn diagram, 326, 328 

Periodically time varying, 130 
Periodicity matrix, 567

and multidimensional sampling, 
568

Periodic sequences and decimation,
180

Phase distortion (PHD), 2
in digital audio, 143 
in filter banks, 196 (see also un-

der Filter banks)
Phase response, 32 (see also Wrapped 

and Unwrapped phase)
Pid (Principal ideal domain), 661 
Planar rotation, 291
Pole crowding, 62
Pole interlace property, 89
Poles, 16

dynamical meaning, 39 
and stability, 17, 27 
time domain meaning, 39

Poles of a transfer matrix, 27, 674 
and homogeneous difference equa- 

tion, 719, 720
and eigenvalues of A, 674, 720- 

721
order of, 703
summary of various manifesta­

tions, 702
time domain (dynamical) mean- 

ing, 701
with zeros at the same place, 707 
and zeros of det Q(z), 700 
and zeros of β0(z), 700

Poles and zeros of lossless systems, 
755, 756 (see also Lossless 
systems)

Polygons, linear transformation, 580 
Polynomials, 28 (see also Finite im­

pulse response (FIR) func­
tions)

Polynomial matrices, 661
normal rank, 662
order, 662
rank, 662

Polyphase component, 121
linear phase filters, 125, 182, 183 
matrix, 231

Polyphase decomposition, 6, 120-134 
allpass filters, 181 
in filter banks, 230-234 
justification of name, 166 
linear phase filters, 125, 182, 183 
multidimensional filter banks, 631 
origin of the term, 166 
for transmultiplexers, 262, 263 
Type 1, 121
Type 2, 122

Polyphase identity, 133, 261 
multidimensional, 605

Polyphase implementation
and commutator models, 130— 

131
decimation filters, 122 

linear phase, 125
DFT filter bank, 125
fractional decimation circuit, 127- 

130
interpolation filters, 123 

Polyphase matrix
and AC matrix, 234 
definition, 231

Polyphase representation (see Poly- 
phase decomposition)

Positive definite matrices, 796 
determinant inequality, 797 

application, 828-829 
proofs, 801, 802 

properties, 796 
square roots of, 797 
test for, 797

Power complementary (PC) functions, 
83, 85, 88, 90, 158 

and Nyquist(M) filters, 159
Power method (eigenvalue computa­

tion), 799
Power spectral density, 807 (see also 

Power spectrum)
Power spectrum matrix of a vector 

random process, 813
Power symmetric filters, filter banks, 

20+223 (see also under Fil- 
ter banks)
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Power symmetry and paraunitariness, 
298, 301

Prediction coefficients, 831
Prediction error, 831
Prediction gain, 833, 847
Prediction order, 831
Principal ideal domain (pid), 642, 661
Principal minors, 786
Probability density function, 803 

uniform, 803, 804
Gaussian, 804

Probability of overflow, 403, 818
Prolate spheroidal sequences, 50-53 

(see also FIR filter design) 
zeros of, 52, 53, 95 
symmetry of, 95

PR (Perfect reconstruction) QMF (see 
under Perfect reconstruction, 
and under Filter banks)

PR systems (see under Perfect recon- 
struction, and under Filter 
banks)

Pseudocirculant matrix, 249
and alias-free filter banks, 250 
and block filters, 430 
and LPTV systems, 435, 436 
paraunitary property, 431 
product of, 454 
summary, 437
and vector random processes, 814

Pseudo QMF, 7, 354-373 
complexity, 373 
design, 363-370 
polyphase implementation, 370-

373
theory, 354-363 

alias cancelation (approximate),
357, 358 

amplitude distortion reduction,
363-365 

phase distortion elimination, 359

Q (Quality factor), 483
QMF (see Quadrature mirror filter)
QMF lattice, linear-phase, 339, 351
QMF lattice (paraunitary), 302-314 

advantages, 313 
complexity, 311 
design based on, 309 
hierarchical property, 306 
properties, 304-307 
recursions for, 306-307, 334 
robustness to quantization, 307 
two-multiplier version, 304

Quadratic forms, 796

maximization and minimization,
798

Quadrature mirror filter (QMF) bank,
147, 188, 189, 223 

analog/digital hybrid, 162,163 
reason for the name, 196 
use of the misnomer, 223 

Quantization effects (see also Coef­
ficient quantization effects, 
and Noise analysis) 

filter bank coefficients, 218 
multiplier quantization (see Co­

efficient quantization) 
robustness of filter banks to, 218 
signal quantization, 395 
subband signals, 189, 191 (see 

also under Subband signals) 
types of, 394

Quantization of paraunitary matrices,
770-771

Quantization step size, 397, 816 
Quantization of subband signals, 816—

848
Quantization of unitary matrices, 769,

770
Quantizer, 397 

complex, 405 
error, 395 
noise source, 395, 398 
passive, 418 
types of, 398

Quantizer noise (error) variance, 816-
818equalization, and bit allocation,
821 

Quincunx M, 573 
filter banks, 636-640, 654 
noble identities 637 
polyphase decomposition, 636 
summary, 649

Quotient (integer vector division), 577

Random processes, 806 
harmonic, 815 
and LTI systems, 810 
and multirate building blocks, 406-

408 
vector, 813 
white, 808, 809 
wide sense stationary (WSS), 806, 

813
Random variables (r.v.) 803 
Random vectors, 812

Gaussian, 813 
Range space, 789 
Rank of a matrix, 788
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Rate distortion theory, 842-844
Rational decimation (see Fractional 

sampling rate alteration)
Rational transfer functions, 16
Rayleigh’s principle, 52, 798
Rcd (Right common divisor), 664
Reachability, 677 

conditions for, 678 
reduction to reachable form, 678 
test for, 684

Reactance functions, 98
and allpass filters, 98
and LC networks, 98

Real coefficient systems, 17 
cascade form, 20

Realization matrix R, 740, 777, 779 
and losslessness, 740 
and minimality, 745 
unitariness, 742

Reciprocal conjugate pairs, 37, 72
Reciprocal lattice, 565
Rectangular decimator, 573, 575
Rectangular to hexagonal conversion, 

612-615
Rectangular sampling, 555, 559
Rectangular window

in filter design, 46
and Gibbs phenomenon, 45
and optimality, 95

Recursive difference equation, 18 
Reflection zeros, 69, 98, 209
Region of convergence (ROC) 

z-transform, 14 
Laplace’s transform, 22 
ΜΙΜΟ systems, 27

Regularity, 530 (see also Wavelets 
with regularity)

Relatively prime 
integers, 118, 128, 179 
polynomials, 16

Euclid’s theorem, 159
Remainder (vector division), 577
Residual, 170
Residual vector, 170-177

decimation of, 175 
smoothing of, 173-174

Resolution (in frequency), 460
Reversal matrix, 785
Right common divisor (rcd), 664
Right matrix fraction description (MFD), 

666
Ripple (in filter response), 43
RMS (root mean square) duration of 

a signal, 478
Robust (to quantization) filter banks, 

218

ROC (see Region of convergence) 
Root of unity, 104
Rotation, planar (see Givens rota- 

tion)
Roundoff arithmetic, 398
Roundoff noise model, 396, 398 (see 

also Quantization effects)
Roundoff noise (see Noise analysis) 

and dynamic range, 400
r.v. (random variable), 803

Sampling (see also under Multidimen­
sional sampling)

and aliasing, 23
definition, 22 
frequency, 22 
at Nyquist rate, 23 
period, 22 
rate, 22

Sampling density, 561, 563 (see also 
under Multidimensional sam­
pling)

and determinant, 563 
minimum, 568

Sampling geometry, 557
Sampling matrix, 556, 559
Sampling rate alteration, 2 

in digital audio, 145 
fractional, 109-111

Sampling rate compressor, 101 (see 
also Decimator)

Sampling rate expander, 101 (see also 
Expander)

Sampling theorems
derivative based, 277, 439 
difference based, 440 
nonuniform, 440 
traditional, 436 
unconventional, 436-453

Scalar systems (see SISO systems) 
SBC (see Subband coding)
Scaling a structure, 400, 401

ℒ2 scaling, 402
ℒp scaling, 401 
lattice structure (IIR), 424 
sum-scaling, 401

Scaling function φ(t), 512
and Nyquist property, 528, 529 
recursion for, 518 
self similarity, 519

Scattering matrix, 723
Self similarity, 519
Sequences, 12—15 

bounded, 13 
energy of, 15 
exponential, 13 
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single-frequency, 13 
sinusoidal, 13 
unit-pulse, 12 
unit-step, 12

Shift-invariant systems, 15 
Short-time Fourier Transform (STFT) 

basis functions, 475 
continuous-time case, 476, 478 
definitions, 463, 464 
discrete-time, 463-476 
and filter banks, 464, 468 
generalizations, 474 
inversion, 472-474 
motivation, 459 
orthonormal basis, 475, 476 
summary, 477 
time-frequency tradeoff, 469 
and uniform DFT, 468 
window, choice of, 469 
window, step size, 470 

Sigma-bandlimited (σ-BL), 23, 276 
Signal to noise ratio, 401, 402 
Signal flowgraph, 859 
Sign-bit, 397 
Sign-magnitude convention, 397 
Similarity transform, 675, 792 

and Jordan form, 720 
and minimality, 682, 683 

Single-frequency sequence, 13
Fourier transform of, 14 

Single-input single-output (SISO) sys­
tem, 25, 30 

Single rate system, 1 
Singular matrices, 787 

summary, 791
Sinusoids, 13
SISO (see Single-input single-output 

system)
Skew Hermitian matrix, 793 
Skew Hermitian polynomials, 30 
Sliding windows, 117 

and the DFT, 126
Smith form decomposition for integer 

matrices, 641
in multidimensional decimators, 

641-643
in multidimensional polyphase de- 

composition, 643
in generalized multidimensional 

DFT, 644
Smith form decomposition for polyno­

mial matrices, 687, 690 
Smith-McMillan decomposition, 695 
Smith-McMillan form for rational trans­

fer matrices, 694-699 
and irreducible MFD, 697

lossless systems, 754-757 (see also
Lossless systems) 

noncausality, 696 
structural meaning, 698, 699 
FIR case, 710

Smoothing of residual vector, 173, 
174, 186 (see also Multigrid 
methods)

SPD (see Symmetric parallelepiped) 
Space (vector space), 787
Special sequences, 12-13 (see also Se- 

quences)
Special types of filters, 83, 84 (see also 

Nyquist(M) filters, Comple­
mentary transfer functions) 

applications of, 161-164
Spectral factorization, 57-60

phase of factors, 59
Spectral factorization techniques, 220, 

849-856
algorithm, 855, 856 
theory, 854, 855

Spectral flatness measure, 825
Spectrum analyzers, 116, 474-475 (see 

also Filter banks)
and sliding windows, 117

Speech coding, 4-5
Square roots of matrices, 797
Stability

conditions for, 40
definition, 17
and lattice structures, 81, 99 
and eigenvalues of A, 685 
second order case, 41 
triangle, 41

Stable matrix, 685, 799
Stalling phenomenon, 171-172, 186 

(see also Multigrid methods)
Standard deviation, 805
State equations, 670
State space descriptions, 669

FIR, 709
impulse response, 674
transfer functions, 673

State space manifestation of lossless 
property, 740, 743

State space realizations, 673
State space structures, 673
State transition matrix (STM), 671
State variables, 669, 671
State vector, 671
Statistically independent random vari- 

ables, 806
Step size, 397
STFT (see Short time Fourier Trans- 

form)
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STM (State transition matrix), 671 
Stopband, 43

attenuation, 43
edge, 43
ripple, 43

Strictly complementary (SC), 157 
Structurally bounded (passive) imple- 

mentation, 781
Structural passivity, 419

and low sensitivity, 420 
Structures for allpass filters (see All- 

pass structures)
Structures for lossless systems (see 

under Factorization)
Structures for transfer functions, 

direct form, 18
cascade form, 18 
minimal, 21

Subband coding (SBC), 4
bit allocation, 146, 821 
signal compression, 145-148 

Subband coder, ideal (see Ideal sub- 
band coder)

Subband decomposition, 3 
Subband quantization, 816-848 
Subband signals, 3

quantization of, 189, 816-844 
Subband and transform coders

similarities and differences, 833- 
838

summary, 834-836 
Sublattices, 596, 658 
Submatrices, 784 
Suboptimal orthogonal transforms, 829 
Subsampler, 101 (see also Decimator) 
Sum-scaling, 401
Support of a bandlimited signal, 547 
Symmetric matrix, 793
Symmetric parallelepiped [SPD(V)],

597
in alias-free decimation filtering,

598
Symmetric polynomials (filters), and 

their variations, 31
Symmetric wavelet basis, 536, 542, 

543
Symmetry conditions in filter bank 

design, 318
Synthesis bank, 113

vector notation, 224 
Synthesis filters, 3, 113, 188

TDM (see Time division multiplex­
ing)Tilde notation, 28-30

Time division multiplexing (TDM), 
148, 149

Time-domain constraints in filter de- 
sign, 54

Nyquist constraint, 54 (see also 
Nyquist filters)

Time-domain description of 
multirate filters, 117

Time-frequency grid 
short-time Fourier transform, 471 
wavelet transform, 485, 486

Time-frequency representation 
motivation, 459-461

Time-invariant systems, 15 
Time-localization (see Localization) 
Time-multiplexing, 123
Toeplitz matrix, 794 

block, 794 
determinant, 832 
product, 800

Tolerance regions in filter design, 43,
44

Touching loops, 860 
Trace of a matrix, 785 

applications, 830-831 
and eigenvalues, 791

Transfer functions, 15 
poles of, 16 
rational, 16 
real, 16 
and state space descriptions, 673 
zeros of, 16

Transfer matrices (see Multi-input multi- 
output systems) 

row and column vectors, 26 
Transform coders, 322 (see also KLT, 

LOT) 
analysis of, 826-833 
optimum bit allocation, 826 
coding gain, 830 
decorrelation property, 834 

Transform and subband coders 
similarities and differences, 833- 

838
summary, 834-836

Transition band, 42
Transition bandwidth, 43
Transmission zeros, 32, 35, 69, 209 

(see also Digital filters) 
Transmultiplexers, 148-151, 259-266 

cross-talk, 149, 262 
cross-talk free, 265 
guard bands, 259 
perfect reconstruction, 264 
polyphase representation, 262-265 
relation to QMF bank, 264

Index 909



Transpose of a matrix, 783
Transposed direct form, 18 
Tree-structured filter banks (see un- 

der Filter banks) 
multidimensional, 640-641

Triangularization, unitary, 798 
Triangular matrices, 783 

determinant, 787 
eigenvalues, 791 
properties and summary, 798

Truncation arithmetic, 398
Tunable filters, 166
Two’s complement arithmetic, 397 

and scaling, 401
Type 1-4 FIR filters, 35

Uncertainty principle: 
demonstration, 459 
proof of, 540 
quantitative, 478

Uncorrelatedness
Gaussian case, 806, 813 
random processes, 809 
random variables, 806

Uniform density, 803, 804
Uniform DFT filter banks, 116 (see 

also DFT filter banks)
Unimodular integer matrices, 559 

in multidimensional decimation, 
594-596

Unimodular polynomial matrices, 663 
causal systems, 712, 713 
factorization, 692 
in perfect reconstruction, 238

Uniqueness of paraunitary factoriza­
tions, 739

Unitary diagonalization, 795
Unitary matrix 

definition, 746, 793 
degrees of freedom, 754, 777 
eigenvalues, 796 
factorization, 316, 745-754

Givens rotation based, 747- 
751Householder (diadic) based, 751— 
753

general 2 × 2, 727
Givens rotation, 290, 291 
normalized, 289, 793 
quantization, 769, 770

Unitary triangularization, 798
Unit circle, 14 

zeros on, 32
Unit-pulse sequence δ(n), 12
Unit-step sequence, 12
Unreachable state component, 679

Unwrapped phase, 33
in complex cepstrum computa­

tion, 852
periodicity, 852, 858 

Upsampler, 101 (see also Expander)

Vandermonde matrix, 795 
Variance of a random variable, 804 
Vector random processes, 813

wide sense stationary, 813
and LTI systems, 814

Vector random variables, 812
Vector space, 787
Voice privacy systems, 148
Von Neumann lattice, 481

WaveIet basis, finite duration, 521 
Wavelet basis, symmetric, 536, 542, 

543
Wavelet coefficients

continuous-time, 487 
discrete-time, 494 

Wavelet function ψ(t), 488, 512
Haar basis, 517, 520, 521 
recursion for, 518
zeros in the frequency domain, 

531, 544
Wavelet orthonormality (see under Or­

thonormal, and Orthonormal­
ity)

and uncorrelatedness, 544 
Wavelet packets, 510 
Wavelet transforms, 457-544

basis functions, 487, 488 
and filters, 488

definitions
discrete, 485 
discrete-time, 491 (see also Discrete- 

time wavelet transform)
general, 487

introduction, 461, 482-486 
inversion, 487-489

using synthesis bank, 488
and nonuniform decimation, 485
and nonuniform filter banks, 483-

484
orthonormal basis, 489 (see un­

der Orthonormal)
summary, 490, 491, 497-500 
time-frequency grid, 485, 486 

Wavelets, summary of
continuous-time wavelets, 490 
discrete-time wavelets, 511 
generation of continuous-time or- 

thonormal wavelets, 537
short-time Fourier transform, 477
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Wavelets with regularity, 530, 531 
design, 535
and maximally flat FIR filters, 

532, 534, 535
and zeros of QMF filter, 531 

White random processes, 808, 809 
Wide sense stationary (WSS) process, 

806
passage through LTI systems, 810 
vector case, 813

Windows (see FIR filter design) 
Windows, optimal for STFT, 478 (see 

also Short-time Fourier trans- 
form)

Wordlength, 397 
Wrapped phase, 33
WSS (see Wide sense stationary) 
WUZE process, 407

Zero-phase filter, 34, 45
Zero-phase response, 34 
Zeros of a transfer function, 16

time domain (dynamical) mean-
ing, 39,40

Zeros of a transfer matrix, 703, 704 
definition, 704
time domain (dynamical) inter- 

pretation, 705, 719 
z-transform, 13-14

convergence, 14 
definition, 13 
multidimensional, 548
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